1
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje cells control posture in larval zebrafish ( Danio rerio). eLife 2025; 13:RP97614. [PMID: 40272244 PMCID: PMC12021414 DOI: 10.7554/elife.97614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Rubinstein Y, Moshkovitz M, Ottenheimer I, Shapira S, Tiomkin S, Avitan L. A detailed quantification of larval zebrafish behavioral repertoire uncovers principles of hunting behavior. iScience 2025; 28:112213. [PMID: 40235586 PMCID: PMC11999616 DOI: 10.1016/j.isci.2025.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
During goal-directed behavior, animals select actions from a diverse repertoire of movements. Accurately quantifying this complex and high-dimensional repertoire is essential to uncovering the underlying rules that guide the behavior. Here, we developed a low-dimensional mathematical model that accurately reproduces the complete and continuous repertoire of hunting larval zebrafish. We show that fish position and change in heading angle following a movement are coupled, such that the choice of one of them limits the other. This repertoire structure uncovered fundamental principles of movements, showing that fish rotate around an identified rotation point and then move forward or backward. Moreover, it identified a new guiding rule of the hunt: fish turn to face the prey in each movement and then move forward or backward. These results present the first low-dimensional and continuous description of movements repertoire, uncover guiding behavioral rules, and offer insights into the underlying motor control.
Collapse
Affiliation(s)
- Yoav Rubinstein
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Maayan Moshkovitz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Itay Ottenheimer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sapir Shapira
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Stas Tiomkin
- Computer Science Department, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Lilach Avitan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Edens BM, Bronner ME. Making sense of vertebrate senses from a neural crest and cranial placode evo-devo perspective. Trends Neurosci 2025; 48:213-226. [PMID: 39848838 PMCID: PMC11903184 DOI: 10.1016/j.tins.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
The evolution of vertebrates from protochordate ancestors marked the beginning of the gradual transition to predatory lifestyles. Enabled by the acquisition of multipotent neural crest and cranial placode cell populations, vertebrates developed an elaborate peripheral nervous system, equipped with paired sense organs, which aided in adaptive behaviors and ultimately, successful colonization of diverse environmental niches. Underpinning the enduring success of vertebrates is the highly adaptable nature of the peripheral nervous system, which is enabled by the exceptional malleability of the neural crest and placode developmental programs. Here, we explore the embryonic origins of the vertebrate senses from the neural crest and cranial placodes and discuss the evolutionary trajectory of the senses in the context of adaptation to novel environments.
Collapse
Affiliation(s)
- Brittany M Edens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Boyle R. Medial and lateral vestibulospinal projections to the cervical spinal cord of the squirrel monkey. Front Neurol 2025; 15:1513132. [PMID: 39830204 PMCID: PMC11739338 DOI: 10.3389/fneur.2024.1513132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements. Methods The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve. The visualization of axon location in the descending medial longitudinal fasciculus (MLF) differentiated ipsi- (i) and contralateral (c)-projecting MVST neurons. Vestibuloocular collic (VOC) neurons were comparably typed as cMVST cells but were also antidromically activated from the rostral MLF. Cervical-only LVST neurons projected ipsilaterally in the lateral to ventrolateral funiculi. Targets of VS axons, such as central cervical nucleus neurons, sternocleidomastoid, trapezius, and splenius motoneurons, were identified using anti- and orthodromic electrical stimuli and intra-somatically labeled to describe their local spinal morphology. Results Thirty-five VS neurons (26% of the 134 attempted samples) were successfully labeled to permit a moderate to (near) complete reconstruction of their trajectories and synaptic innervations. VOC neurons exhibited a prolific innervation of caudal brainstem nuclei, extensively innervated laminae VII and VIII, and, to a lesser extent, lateral and ventromedial lamina IX, from C1 to C8, and on average issued 15 branches along their trajectory with 92 terminal and en passant boutons per branch. The VOC innervation was either uniformly distributed among the cervical segments, indicating a more global control of head and neck movement, or restricted specific spinal segments, indicating a more precise motor control strategy. The innervation pattern of iMVST axons resembled that of VOC and cMVST axons but was less extensive and supplied mostly the upper two cervical segments. LVST and cMVST neurons exhibited a predominantly equally weighted innervation of separate and joint moto- and inter-neuronal spinal circuits along their cervical trajectory. Discussion Their extensive axon branching distribution in the ventral horn provides a redundant and variable synaptic input to spinal cell groups. This suggests a common and site-specific control of the head and neck reflexes.
Collapse
Affiliation(s)
- Richard Boyle
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
6
|
Davis SN, Zhu Y, Schoppik D. Larval zebrafish maintain elevation with multisensory control of posture and locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576760. [PMID: 38328242 PMCID: PMC10849565 DOI: 10.1101/2024.01.23.576760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fish actively control posture in the pitch axis (nose-up/nose-down) to counter instability and regulate their elevation in the water column. To test the hypothesis that environmental cues shape strategies fish use to control posture, we leveraged a serendipitous finding: larval zebrafish (Danio rerio) sink mildly after acute loss of lateral line hair cells. Using long-term (48 h) recordings of unrestrained swimming, we discovered that sinking larvae compensated differently depending on light conditions. In the dark, they swim more frequently with an increased nose-up posture. In contrast, larvae in the light do not swim more frequently, but do climb more often. Finally, after lateral line regeneration, larvae returned to normal buoyancy and swam comparably to control siblings. We conclude that larvae can switch postural control strategies depending on the availability of visual information. Our findings complement and extend morphological and kinematic analyses of locomotion. More broadly, by quantifying the variation in strategies our work speaks to the evolutionary substrate for different balance behaviors.
Collapse
Affiliation(s)
- Samantha N. Davis
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Yunlu Zhu
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
7
|
Hughes NC, Roberts DC, Tarchini B, Cullen KE. Instrumented swim test for quantifying motor impairment in rodents. Sci Rep 2024; 14:29270. [PMID: 39587238 PMCID: PMC11589839 DOI: 10.1038/s41598-024-80344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Swim tests are highly effective for identifying vestibular deficits in rodents by offering significant vestibular motor challenges with reduced proprioceptive input, unlike rotarod and balance beam tests. Traditional swim tests rely on subjective assessments, limiting objective quantification and reproducibility. We present a novel instrumented swim test using a miniature motion sensor with a 3D accelerometer and 3D gyroscope affixed to the rodent's head. This setup robustly quantifies six-dimensional motion-three translational and three rotational axes-during swimming with high temporal resolution. We demonstrate the test's capabilities by comparing head movements of Gpr156-/- mutant mice, which have impaired otolith organ development, to their heterozygous littermates. Our results show axis-specific differences in head movement probability distribution functions and dynamics that identify mice with the Gpr156 mutation. Axis-specific power spectrum analyses reveal selective movement alterations within distinct frequency ranges. Additionally, our spherical visualization and 3D analysis quantifies swimming performance based on head vector distance from upright. We use this analysis to generate a single classifier metric-a weighted average of an animal's head deviation from upright during swimming. This metric effectively distinguishes animals with vestibular dysfunction from those with normal vestibular function. Overall, this instrumented swim test provides quantitative metrics for assessing performance and identifying subtle, axis- and frequency-specific deficits not captured by existing systems. This novel quantitative approach can enhance understanding of rodent sensorimotor function including enabling more selective and reproducible studies of vestibular-motor deficits.
Collapse
Affiliation(s)
- Natasha C Hughes
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dale C Roberts
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
9
|
Xu Z, Xie L, Li H, You J. Sensitivity Variations in Developmental Toxicity of Imidacloprid to Zebrafish Embryos at Different Neurodevelopmental Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2398-2408. [PMID: 39185675 DOI: 10.1002/etc.5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Neonicotinoids are ubiquitous in global surface waters and pose a significant risk to aquatic organisms. However, information is lacking on the variations in sensitivity of organisms at different developmental stages to the neurotoxic neonicotinoids. We established a spectrum of toxicity to zebrafish embryos at four neurodevelopmental stages (1, 3, 6, and 8 h post fertilization [hpf]) and dechorionated embryos at 6 hpf based on external and internal exposure to imidacloprid as a representative neonicotinoid. Embryos at the gastrula stage (6 and 8 hpf) were more sensitive to imidacloprid than embryos at earlier developmental stages. Dechorionated embryos were more sensitive to imidacloprid than embryos with a chorion, suggesting that the chorion offers protection against pollutants. Nine sublethal effects were induced by imidacloprid exposure, among which uninflated swim bladder (USB) was the most sensitive. Water depth and air availability in the exposure chambers were critical factors influencing the occurrence of USB in zebrafish larvae. Internal residues of metabolites accounted for <10% of imidacloprid, indicating that imidacloprid was metabolized in a limited fashion in the embryos. In addition, acute toxicity of the main metabolite 5-hydroxy-imidacloprid was significantly lower than that of imidacloprid, indicating that the observed toxicity in embryos exposed to imidacloprid was mainly induced by the parent compound. Our research offers a fresh perspective on choosing the initial exposure time in zebrafish embryo toxicity tests, particularly for neurotoxicants. Environ Toxicol Chem 2024;43:2398-2408. © 2024 SETAC.
Collapse
Affiliation(s)
- Zewei Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Lingzhi Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Zhu Y, Gelnaw H, Leary P, Raghuraman R, Kamath N, Kraja A, Liu J, Bai Q, Higashijima SI, Burton EA, Schoppik D. Tau load in select brainstem neurons predicts the severity and nature of balance deficits in the absence of cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618073. [PMID: 39464026 PMCID: PMC11507750 DOI: 10.1101/2024.10.14.618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Patients with tauopathies present with profoundly different clinical symptoms 1 , even within the same disorder 2 . A central hypothesis in the field, well-supported by biomarker studies 3,4 and post-mortem pathology 5-7 , is that clinical heterogeneity reflects differential degeneration of vulnerable neuronal populations responsible for specific neurological functions. Recent work has revealed mechanisms underlying susceptibility of particular cell types 8-10 , but relating tau load to disrupted behavior - es- pecially before cell death - requires a targeted circuit-level approach. Here we studied two distinct balance behaviors in larval zebrafish 11 expressing a human 0N/4R-tau allele 12 in select populations of evolutionarily-conserved and well-characterized brainstem vestibular circuits 13,14 . We observed that human tau load predicted the severity of circuit-specific deficits in posture and navigation in the ab- sence of cell death. Targeting expression to either mid- or hindbrain balance neurons recapitulated these particular deficits in posture and navigation. By parametrically linking tau load in specific neu- rons to early behavioral deficits, our work moves beyond cell type to close the gap between pathological and neurological conceptions of tauopathy.
Collapse
|
11
|
Dowell CK, Lau JYN, Antinucci P, Bianco IH. Kinematically distinct saccades are used in a context-dependent manner by larval zebrafish. Curr Biol 2024; 34:4382-4396.e5. [PMID: 39236716 DOI: 10.1016/j.cub.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Saccades are rapid eye movements that are used by all species with good vision. In this study, we set out to characterize the complete repertoire of larval zebrafish horizontal saccades to gain insight into their contributions to visually guided behavior and underlying neural control. We identified five saccade types, defined by systematic differences in kinematics and binocular coordination, which were differentially expressed across a variety of behavioral contexts. Conjugate saccades formed a large group that serves at least four functions. These include fast phases of the optokinetic nystagmus, visual scanning in stationary animals, and shifting gaze in coordination with body turns. In addition, we discovered a previously undescribed pattern of eye-body coordination in which small conjugate saccades partially oppose head rotation to maintain gaze during forward locomotion. Convergent saccades were coordinated with body movements to foveate prey targets during hunting. Detailed kinematic analysis showed that conjugate and convergent saccades differed in the millisecond coordination of the eyes and body and followed distinct velocity main sequence relationships. This challenges the prevailing view that all horizontal saccades are controlled by a common brainstem circuit and instead indicates saccade-type-specific neural control.
Collapse
Affiliation(s)
- Charles K Dowell
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Joanna Y N Lau
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Paride Antinucci
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Barrios G, Olechowski-Bessaguet A, Pain M, Bacqué-Cazenave J, Cardoit L, Cabirol MJ, Le Ray D, Lambert FM. Functional organization of vestibulospinal inputs responsible for tail postural control in larval Xenopus. Front Neurol 2024; 15:1439784. [PMID: 39220733 PMCID: PMC11361976 DOI: 10.3389/fneur.2024.1439784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
In all vertebrates, maintaining trunk posture primarily depends on descending commands originating from brainstem vestibulospinal nuclei. Despite being broadly outlined across species, the detailed anatomical and operational structure of these vestibulospinal networks remains poorly understood. Xenopus frogs have previously served as an excellent model for exploring such anatomical and functional aspects in relation to the animal's behavioral requirements. In this study, we examined the reflex motor reactions induced by vestibular stimulation in pre-metamorphic tadpoles. Our findings indicate that natural vestibular stimulation in the horizontal plane yields greater efficacy compared to stimulation in other planes, a phenomenon replicated in a frequency-dependent manner through specific galvanic stimulation (GVS) of the horizontal semicircular canals. With the exception of a very rostral cluster of neurons that receive vestibular inputs and project to the spinal cord, the overall anatomical segregation of vestibulospinal nuclei in the brainstem mirrors that observed in juvenile frogs. However, our results suggest closer similarities to mammalian organization than previously acknowledged. Moreover, we demonstrated that vestibulospinal cells project not only to spinal motoneurons in rostral segments but also to more distal segments that undergo regression during metamorphosis. Lastly, we illustrated how vestibular-induced spinal reflexes change during larval development, transitioning from tail swim-based activity to rostral trunk bursting responses, likely anticipating postural control in post-metamorphic frogs.
Collapse
Affiliation(s)
| | | | - Mathilde Pain
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Julien Bacqué-Cazenave
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
- Normandie Univ, Unicaen, CNRS, EthoS, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine)-UMR 6552, Rennes, France
| | - Laura Cardoit
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Didier Le Ray
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
13
|
Hamling KR, Harmon K, Kimura Y, Higashijima SI, Schoppik D. The Vestibulospinal Nucleus Is a Locus of Balance Development. J Neurosci 2024; 44:e2315232024. [PMID: 38777599 PMCID: PMC11270517 DOI: 10.1523/jneurosci.2315-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed instability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal contributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neurons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinematics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural stability, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Katherine Harmon
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Yukiko Kimura
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
14
|
Hamling KR, Harmon K, Kimura Y, Higashijima SI, Schoppik D. The vestibulospinal nucleus is a locus of balance development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570482. [PMID: 38105966 PMCID: PMC10723429 DOI: 10.1101/2023.12.06.570482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed instability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal contributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neurons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinematics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural stability, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Katherine Harmon
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Yukiko Kimura
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki 444-8787, Aichi, Japan
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki 444-8787, Aichi, Japan
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| |
Collapse
|
15
|
Zhu Y, Gelnaw H, Auer F, Hamling KR, Ehrlich DE, Schoppik D. A brainstem circuit for gravity-guided vertical navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584680. [PMID: 38559209 PMCID: PMC10980031 DOI: 10.1101/2024.03.12.584680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The sensation of gravity anchors our perception of the environment and is crucial for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to inefficient vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily-conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move efficiently through their environment.
Collapse
Affiliation(s)
- Yunlu Zhu
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Franziska Auer
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - David E. Ehrlich
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
16
|
Lin A, Álvarez-Salvado E, Milicic N, Pujara N, Ehrlich DE. Multisensory navigational strategies of hatchling fish for dispersal. Curr Biol 2023; 33:4917-4925.e4. [PMID: 37865093 PMCID: PMC10842570 DOI: 10.1016/j.cub.2023.09.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Animals influence how they disperse in the environment by sensing local cues and adapting how they move. However, controlling dispersal can present a particular challenge early in life when animals tend to be more limited in their capacities to sense and move. To what extent and by what mechanisms can newly hatched fish control how they disperse? Here, we reveal hatchling sensorimotor mechanisms for controlling dispersal by combining swim tracking and precise sensory manipulations of a model species, zebrafish. In controlled laboratory experiments, if we physically constrained hatchlings or blocked sensations of motion through vision and the lateral line, hatchlings responded by elevating their buoyancy and passively moving with faster surface currents. Complementarily, in stagnant water, hatchlings covered more ground using hyperstable swimming, strongly orienting based on graviception. Using experimentally calibrated hydrodynamic simulations, we show that these hatchling behaviors nearly tripled diffusivity and made dispersal robust to local conditions, suggesting this multisensory strategy may provide important advantages for early life in a variable environment.
Collapse
Affiliation(s)
- Allia Lin
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Efrén Álvarez-Salvado
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nikola Milicic
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrative Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nimish Pujara
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David E Ehrlich
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrative Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Liu Z, Bagnall MW. Organization of vestibular circuits for postural control in zebrafish. Curr Opin Neurobiol 2023; 82:102776. [PMID: 37634321 PMCID: PMC11528713 DOI: 10.1016/j.conb.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/zhikai_liu
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA.
| |
Collapse
|
18
|
D'Elia KP, Hameedy H, Goldblatt D, Frazel P, Kriese M, Zhu Y, Hamling KR, Kawakami K, Liddelow SA, Schoppik D, Dasen JS. Determinants of motor neuron functional subtypes important for locomotor speed. Cell Rep 2023; 42:113049. [PMID: 37676768 PMCID: PMC10600875 DOI: 10.1016/j.celrep.2023.113049] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanna Hameedy
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dena Goldblatt
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul Frazel
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mercer Kriese
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yunlu Zhu
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyla R Hamling
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Shane A Liddelow
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - David Schoppik
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jeremy S Dasen
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals. Cell Rep 2023; 42:112573. [PMID: 37267107 PMCID: PMC10592459 DOI: 10.1016/j.celrep.2023.112573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hannah Gelnaw
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Samantha N Davis
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kyla R Hamling
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christina E May
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine I Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
Beiza-Canelo N, Moulle H, Pujol T, Panier T, Migault G, Le Goc G, Tapie P, Desprat N, Straka H, Debrégeas G, Bormuth V. Magnetic actuation of otoliths allows behavioral and brain-wide neuronal exploration of vestibulo-motor processing in larval zebrafish. Curr Biol 2023:S0960-9822(23)00621-8. [PMID: 37285844 DOI: 10.1016/j.cub.2023.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
The vestibular system in the inner ear plays a central role in sensorimotor control by informing the brain about the orientation and acceleration of the head. However, most experiments in neurophysiology are performed using head-fixed configurations, depriving animals of vestibular inputs. To overcome this limitation, we decorated the utricular otolith of the vestibular system in larval zebrafish with paramagnetic nanoparticles. This procedure effectively endowed the animal with magneto-sensitive capacities: applied magnetic field gradients induced forces on the otoliths, resulting in robust behavioral responses comparable to those evoked by rotating the animal by up to 25°. We recorded the whole-brain neuronal response to this fictive motion stimulation using light-sheet functional imaging. Experiments performed in unilaterally injected fish revealed the activation of a commissural inhibition between the brain hemispheres. This magnetic-based stimulation technique for larval zebrafish opens new perspectives to functionally dissect the neural circuits underlying vestibular processing and to develop multisensory virtual environments, including vestibular feedback.
Collapse
Affiliation(s)
- Natalia Beiza-Canelo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Hippolyte Moulle
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Thomas Pujol
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Plateforme d'Imagerie, 75005 Paris, France
| | - Geoffrey Migault
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Pierre Tapie
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Nicolas Desprat
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; Université Paris Diderot, 10 Rue Alice Domon et Leonie Duquet, 75013 Paris, France
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152 Planegg, Germany
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France.
| |
Collapse
|
21
|
Hamling KR, Harmon K, Schoppik D. The Nature and Origin of Synaptic Inputs to Vestibulospinal Neurons in the Larval Zebrafish. eNeuro 2023; 10:ENEURO.0090-23.2023. [PMID: 37268420 PMCID: PMC10241381 DOI: 10.1523/eneuro.0090-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/04/2023] Open
Abstract
Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current-clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage-clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a nonunitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral, to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared with recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology and Neuroscience & Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Katherine Harmon
- Departments of Otolaryngology and Neuroscience & Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - David Schoppik
- Departments of Otolaryngology and Neuroscience & Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
22
|
McArthur KL, Tovar VM, Griffin-Baldwin E, Tovar BD, Astad EK. Early development of respiratory motor circuits in larval zebrafish (Danio rerio). J Comp Neurol 2023; 531:838-852. [PMID: 36881713 PMCID: PMC10081962 DOI: 10.1002/cne.25467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Rhythm-generating circuits in the vertebrate hindbrain form synaptic connections with cranial and spinal motor neurons, to generate coordinated, patterned respiratory behaviors. Zebrafish provide a uniquely tractable model system to investigate the earliest stages in respiratory motor circuit development in vivo. In larval zebrafish, respiratory behaviors are carried out by muscles innervated by cranial motor neurons-including the facial branchiomotor neurons (FBMNs), which innervate muscles that move the jaw, buccal cavity, and operculum. However, it is unclear when FBMNs first receive functional synaptic input from respiratory pattern-generating neurons, and how the functional output of the respiratory motor circuit changes across larval development. In the current study, we used behavior and calcium imaging to determine how early FBMNs receive functional synaptic inputs from respiratory pattern-generating networks in larval zebrafish. Zebrafish exhibited patterned operculum movements by 3 days postfertilization (dpf), though this behavior became more consistent at 4 and 5 dpf. Also by 3dpf, FBMNs fell into two distinct categories ("rhythmic" and "nonrhythmic"), based on patterns of neural activity. These two neuron categories were arranged differently along the dorsoventral axis, demonstrating that FBMNs have already established dorsoventral topography by 3 dpf. Finally, operculum movements were coordinated with pectoral fin movements at 3 dpf, indicating that the operculum behavioral pattern was driven by synaptic input. Taken together, this evidence suggests that FBMNs begin to receive initial synaptic input from a functional respiratory central pattern generator at or prior to 3 dpf. Future studies will use this model to study mechanisms of normal and abnormal respiratory circuit development.
Collapse
Affiliation(s)
| | | | | | - Bria D. Tovar
- Biology Department, Southwestern University, Georgetown, TX 78626
| | - Emma K. Astad
- Biology Department, Southwestern University, Georgetown, TX 78626
| |
Collapse
|
23
|
Zhou KC, Harfouche M, Cooke CL, Park J, Konda PC, Kreiss L, Kim K, Jönsson J, Doman T, Reamey P, Saliu V, Cook CB, Zheng M, Bechtel JP, Bègue A, McCarroll M, Bagwell J, Horstmeyer G, Bagnat M, Horstmeyer R. Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second. NATURE PHOTONICS 2023; 17:442-450. [PMID: 37808252 PMCID: PMC10552607 DOI: 10.1038/s41566-023-01171-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 10/10/2023]
Abstract
Wide field of view microscopy that can resolve 3D information at high speed and spatial resolution is highly desirable for studying the behaviour of freely moving model organisms. However, it is challenging to design an optical instrument that optimises all these properties simultaneously. Existing techniques typically require the acquisition of sequential image snapshots to observe large areas or measure 3D information, thus compromising on speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over an area of 135 cm2, achieving up to 230 frames per second at spatiotemporal throughputs exceeding 5 gigapixels per second. 3D-RAPID employs a 3D reconstruction algorithm that, for each synchronized snapshot, fuses all 54 images into a composite that includes a co-registered 3D height map. The self-supervised 3D reconstruction algorithm trains a neural network to map raw photometric images to 3D topography using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. The resulting reconstruction process is thus robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. We demonstrate the broad applicability of 3D-RAPID with collections of several freely behaving organisms, including ants, fruit flies, and zebrafish larvae.
Collapse
Affiliation(s)
- Kevin C. Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
- Current affiliation: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Mark Harfouche
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Colin L. Cooke
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Jaehee Park
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Pavan C. Konda
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kanghyun Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joakim Jönsson
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas Doman
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Paul Reamey
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Veton Saliu
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Clare B. Cook
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Maxwell Zheng
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | | | - Aurélien Bègue
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
| | - Matthew McCarroll
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Ramona Optics Inc., 1000 W Main St., Durham, NC 27701, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. Scalable Apparatus to Measure Posture and Locomotion (SAMPL): a high-throughput solution to study unconstrained vertical behavior in small animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523102. [PMID: 36712122 PMCID: PMC9881893 DOI: 10.1101/2023.01.07.523102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Franziska Auer
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Samantha N. Davis
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Christina E. May
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Katherine I. Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - David Schoppik
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
26
|
Hamling KR, Harmon K, Schoppik D. The nature and origin of synaptic inputs to vestibulospinal neurons in the larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532859. [PMID: 36993365 PMCID: PMC10055124 DOI: 10.1101/2023.03.15.532859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vestibulospinal neurons integrate sensed imbalance to regulate postural reflexes. As an evolutionarily-conserved neural population, understanding their synaptic and circuit-level properties can offer insight into vertebrate antigravity reflexes. Motivated by recent work, we set out to verify and extend the characterization of vestibulospinal neurons in the larval zebrafish. Using current clamp recordings together with stimulation, we observed that larval zebrafish vestibulospinal neurons are silent at rest, yet capable of sustained spiking following depolarization. Neurons responded systematically to a vestibular stimulus (translation in the dark); responses were abolished after chronic or acute loss of the utricular otolith. Voltage clamp recordings at rest revealed strong excitatory inputs with a characteristic multimodal distribution of amplitudes, as well as strong inhibitory inputs. Excitatory inputs within a particular mode (amplitude range) routinely violated refractory period criteria and exhibited complex sensory tuning, suggesting a non-unitary origin. Next, using a unilateral loss-of-function approach, we characterized the source of vestibular inputs to vestibulospinal neurons from each ear. We observed systematic loss of high-amplitude excitatory inputs after utricular lesions ipsilateral, but not contralateral to the recorded vestibulospinal neuron. In contrast, while some neurons had decreased inhibitory inputs after either ipsilateral or contralateral lesions, there were no systematic changes across the population of recorded neurons. We conclude that imbalance sensed by the utricular otolith shapes the responses of larval zebrafish vestibulospinal neurons through both excitatory and inhibitory inputs. Our findings expand our understanding of how a vertebrate model, the larval zebrafish, might use vestibulospinal input to stabilize posture. More broadly, when compared to recordings in other vertebrates, our data speak to conserved origins of vestibulospinal synaptic input.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Katherine Harmon
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| |
Collapse
|
27
|
Hamling KR, Zhu Y, Auer F, Schoppik D. Tilt in Place Microscopy: a Simple, Low-Cost Solution to Image Neural Responses to Body Rotations. J Neurosci 2023; 43:936-948. [PMID: 36517242 PMCID: PMC9908314 DOI: 10.1523/jneurosci.1736-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Animals use information about gravity and other destabilizing forces to balance and navigate through their environment. Measuring how brains respond to these forces requires considerable technical knowledge and/or financial resources. We present a simple alternative-Tilt In Place Microscopy (TIPM), a low-cost and noninvasive way to measure neural activity following rapid changes in body orientation. Here, we used TIPM to study vestibulospinal neurons in larval zebrafish during and immediately after roll tilts. Vestibulospinal neurons responded with reliable increases in activity that varied as a function of ipsilateral tilt amplitude. TIPM differentiated tonic (i.e., sustained tilt) from phasic responses, revealing coarse topography of stimulus sensitivity in the lateral vestibular nucleus. Neuronal variability across repeated sessions was minor relative to trial-to-trial variability, allowing us to use TIPM for longitudinal studies of the same neurons across two developmental time points. There, we observed global increases in response strength and systematic changes in the neural representation of stimulus direction. Our data extend classical characterization of the body tilt representation by vestibulospinal neurons and establish the utility of TIPM to study the neural basis of balance, especially in developing animals.SIGNIFICANCE STATEMENT Vestibular sensation influences everything from navigation to interoception. Here, we detail a straightforward, validated, and nearly universal approach to image how the nervous system senses and responds to body tilts. We use our new method to replicate and expand on past findings of tilt sensing by a conserved population of spinal-projecting vestibular neurons. The simplicity and broad compatibility of our approach will democratize the study of the response of the brain to destabilization, particularly across development.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Yunlu Zhu
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Franziska Auer
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - David Schoppik
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
28
|
Venuto A, Thibodeau-Beganny S, Trapani JG, Erickson T. A sensation for inflation: initial swim bladder inflation in larval zebrafish is mediated by the mechanosensory lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523756. [PMID: 36712117 PMCID: PMC9882242 DOI: 10.1101/2023.01.12.523756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish. A strong candidate is the mechanosensory lateral line, a hair cell-based sensory system that detects hydrodynamic information from sources like water currents, predators, prey, and surface waves. However, a role for the lateral line in mediating initial inflation of the swim bladder has not been reported. To explore the connection between the lateral line and surfacing, we utilized a genetic mutant (lhfpl5b-/-) that renders the zebrafish lateral line insensitive to mechanical stimuli. We observe that approximately half of these lateral line mutants over-inflate their swim bladders during initial inflation and become positively buoyant. Thus, we hypothesize that larval zebrafish use their lateral line to moderate interactions with the air-water interface during surfacing to regulate swim bladder inflation. To test the hypothesis that lateral line defects are responsible for swim bladder over-inflation, we show exogenous air is required for the hyperinflation phenotype and transgenic rescue of hair cell function restores normal inflation. We also find that chemical ablation of anterior lateral line hair cells in wild type larvae causes hyperinflation. Furthermore, we show that manipulation of lateral line sensory information results in abnormal inflation. Finally, we report spatial and temporal differences in the surfacing behavior between wild type and lateral line mutant larvae. In summary, we propose a novel sensory basis for achieving neutral buoyancy where larval zebrafish use their lateral line to sense the air-water interface and regulate initial swim bladder inflation.
Collapse
Affiliation(s)
- Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | - Josef G. Trapani
- Department of Biology and Neuroscience Program, Amherst College, Amherst, MA, USA
| | - Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
29
|
Laureano AS, Flaherty K, Hinman AM, Jadali A, Nakamura T, Higashijima SI, Sabaawy HE, Kwan KY. shox2 is required for vestibular statoacoustic neuron development. Biol Open 2023; 11:286143. [PMID: 36594417 PMCID: PMC9838637 DOI: 10.1242/bio.059599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023] Open
Abstract
Homeobox genes act at the top of genetic hierarchies to regulate cell specification and differentiation during embryonic development. We identified the short stature homeobox domain 2 (shox2) transcription factor that is required for vestibular neuron development. shox2 transcripts are initially localized to the otic placode of the developing inner ear where neurosensory progenitors reside. To study shox2 function, we generated CRISPR-mediated mutant shox2 fish. Mutant embryos display behaviors associated with vestibular deficits and showed reduced number of anterior statoacoustic ganglion neurons that innervate the utricle, the vestibular organ in zebrafish. Moreover, a shox2-reporter fish showed labeling of developing statoacoustic ganglion neurons in the anterior macula of the otic vesicle. Single cell RNA-sequencing of cells from the developing otic vesicle of shox2 mutants revealed altered otic progenitor profiles, while single molecule in situ assays showed deregulated levels of transcripts in developing neurons. This study implicates a role for shox2 in development of vestibular but not auditory statoacoustic ganglion neurons.
Collapse
Affiliation(s)
- Alejandra S. Laureano
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Kathleen Flaherty
- Department of Comparative Medicine Resources, Rutgers University, Piscataway, NJ 08854, USA
| | - Anna-Maria Hinman
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Azadeh Jadali
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Shin-ichi Higashijima
- Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, Okazaki, Aichi 444-8787, Japan
| | - Hatim E. Sabaawy
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Department of Medicine RBHS-Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y. Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA,Author for correspondence ()
| |
Collapse
|
30
|
Burton EA, Burgess HA. A Critical Review of Zebrafish Neurological Disease Models-2. Application: Functional and Neuroanatomical Phenotyping Strategies and Chemical Screens. OXFORD OPEN NEUROSCIENCE 2022; 2:kvac019. [PMID: 37637775 PMCID: PMC10455049 DOI: 10.1093/oons/kvac019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 08/29/2023]
Abstract
Extensive phylogenetic conservation of molecular pathways and neuroanatomical structures, associated with efficient methods for genetic modification, have been exploited increasingly to generate zebrafish models of human disease. A range of powerful approaches can be deployed to analyze these models with the ultimate goal of elucidating pathogenic mechanisms and accelerating efforts to find effective treatments. Unbiased neurobehavioral assays can provide readouts that parallel clinical abnormalities found in patients, although some of the most useful assays quantify responses that are not routinely evaluated clinically, and differences between zebrafish and human brains preclude expression of the full range of neurobehavioral abnormalities seen in disease. Imaging approaches that use fluorescent reporters and standardized brain atlases coupled with quantitative measurements of brain structure offer an unbiased means to link experimental manipulations to changes in neural architecture. Together, quantitative structural and functional analyses allow dissection of the cellular and physiological basis underlying neurological phenotypes. These approaches can be used as outputs in chemical modifier screens, which provide a major opportunity to exploit zebrafish models to identify small molecule modulators of pathophysiology that may be informative for understanding disease mechanisms and possible therapeutic approaches.
Collapse
Affiliation(s)
- Edward A Burton
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA 15240, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Hariri R, Nakhostin-Ansari A, Mohammadi F, Memari AH, Oskouie IM, Haghparast A. An Overview of the Available Intervention Strategies for Postural Balance Control in Individuals with Autism Spectrum Disorder. AUTISM RESEARCH AND TREATMENT 2022; 2022:3639352. [PMID: 36452121 PMCID: PMC9705119 DOI: 10.1155/2022/3639352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 04/03/2024]
Abstract
BACKGROUND Postural instability is a prevalent issue among individuals with autism spectrum disorder (ASD) that affects the development of their perceptual-motor skills and social functioning. Visual and somatosensory processing deficits, hypotonia, basal ganglia dysfunction, and anxiety are some of the concurrent disorders in individuals with ASD. Nevertheless, a definite management protocol for postural instability in ASD has not been introduced yet. Hence, we aim to shed light on the available intervention strategies for postural instability in individuals with ASD. METHODS Even though several studies have been conducted on the effects of various interventions for balance control in individuals with ASD, no study has compared their efficacy, limitations, and clinical implications. RESULTS This review discusses diverse proposed interventions contributing to ASD postural instability, including martial arts, water-based interventions, animal-assisted therapies, trampoline, balance training, vestibular therapy, transcranial direct current stimulation, sports, play, and active recreation for kids (SPARK), and square-stepping exercise (SSE). CONCLUSION Enhancing motor skills, cerebellum function, and sensory input integration were some of the main mechanisms of these interventions to improve balance control in ASD. Some interventions, such as water-based exercises and video games, were enjoyable for children with ASD and could raise their treatment adherence. In most studies, small sample sizes and the lack of a control group represented their major limitations. Therefore, future well-designed randomized controlled trials are required to assess the effects of available interventions on postural control in ASD.
Collapse
Affiliation(s)
- Rabeeh Hariri
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Memari
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Menbari Oskouie
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afarin Haghparast
- Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Liu Z, Hildebrand DGC, Morgan JL, Jia Y, Slimmon N, Bagnall MW. Organization of the gravity-sensing system in zebrafish. Nat Commun 2022; 13:5060. [PMID: 36030280 PMCID: PMC9420129 DOI: 10.1038/s41467-022-32824-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Collapse
Affiliation(s)
- Zhikai Liu
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joshua L Morgan
- Dept. of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yizhen Jia
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Slimmon
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Bacqué-Cazenave J, Courtand G, Beraneck M, Straka H, Combes D, Lambert FM. Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes. Nat Commun 2022; 13:2957. [PMID: 35618719 PMCID: PMC9135768 DOI: 10.1038/s41467-022-30636-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
- Normandie Univ, Unicaen, CNRS, EthoS, 14000, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine)-UMR 6552, F-35000, Rennes, France
| | - Gilles Courtand
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
| | - Mathieu Beraneck
- Université de Paris, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006, Paris, France
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152, Planegg, Germany
| | - Denis Combes
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France
| | - François M Lambert
- Université de Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, F-33076, Bordeaux, France.
| |
Collapse
|
34
|
Liu B, Zhao G, Jin L, Shi J. Association of Static Posturography With Severity of White Matter Hyperintensities. Front Neurol 2021; 12:579281. [PMID: 33643184 PMCID: PMC7905220 DOI: 10.3389/fneur.2021.579281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Impaired gait and balance are associated with severity of leukoaraiosis. Evaluation of balance is based on neurological examination using Romberg's test with bipedal standing, assessment scale, and posturographic parameters. The goal of this study was to determine the relationship between static equilibrium and grades of white matter hyperintensities (WMHs) using static posturography as a quantitative technical method. Method: One hundred and eighteen (118) patients with lacunar infarct were recruited and assessed on MRI with Fazekas's grading scale into four groups. On admission, age, gender, height, weight, Berg Balance Scale (BBS), mini-mental state examination (MMSE), and static posturography parameters were recorded, and their correlations with WMHs were determined. Results: Age was significantly and positively correlated with severity of WMHs (r = 0.39, p < 0.05). WMH score was negatively correlated with BBS score (r = −0.65, p < 0.05) and MMSE score (r = −0.79, p < 0.05). There was a significant positive correlation between track length anteroposterior (AP, with eyes closed) and severity of WMHs (r = 0.70, p < 0.05). Partial correlation analysis and multiple logistic regression analysis indicated that track length AP with eyes closed, was a predictor for the severity of WMHs (p< 0.05). Conclusion: The severity of WHMs is associated with age, cognitive decline, and impairment in balance. Posturography parameter in track length in AP direction with eyes closed in relation to cognition and balance, may be a potential marker for disease progression in WMHs.
Collapse
Affiliation(s)
- Bin Liu
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guifeng Zhao
- Department Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ling Jin
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
35
|
Liu Z, Kimura Y, Higashijima SI, Hildebrand DGC, Morgan JL, Bagnall MW. Central Vestibular Tuning Arises from Patterned Convergence of Otolith Afferents. Neuron 2020; 108:748-762.e4. [PMID: 32937099 DOI: 10.1016/j.neuron.2020.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 01/31/2023]
Abstract
As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yukiko Kimura
- Department of Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | - Joshua L Morgan
- Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
36
|
Neuronal Circuits That Control Rhythmic Pectoral Fin Movements in Zebrafish. J Neurosci 2020; 40:6678-6690. [PMID: 32703904 DOI: 10.1523/jneurosci.1484-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The most basic form of locomotion in limbed vertebrates consists of alternating activities of the flexor and extensor muscles within each limb coupled with left/right limb alternation. Although larval zebrafish are not limbed, their pectoral fin movements exhibit the following fundamental aspects of this basic movement: abductor/adductor alternation (corresponding to flexor/extensor alternation) and left/right fin alternation. Because of the simplicity of their movements and the compact neural organization of their spinal cords, zebrafish can serve as a good model to identify the neuronal networks of the central pattern generator (CPG) that controls rhythmic appendage movements. Here, we set out to investigate neuronal circuits underlying rhythmic pectoral fin movements in larval zebrafish, using transgenic fish that specifically express GFP in abductor or adductor motor neurons (MNs) and candidate CPG neurons. First, we showed that spiking activities of abductor and adductor MNs were essentially alternating. Second, both abductor and adductor MNs received rhythmic excitatory and inhibitory synaptic inputs in their active and inactive phases, respectively, indicating that the MN spiking activities are controlled in a push-pull manner. Further, we obtained the following evidence that dmrt3a-expressing commissural inhibitory neurons are involved in regulating the activities of abductor MNs: (1) strong inhibitory synaptic connections were found from dmrt3a neurons to abductor MNs; and (2) ablation of dmrt3a neurons shifted the spike timing of abductor MNs. Thus, in this simple system of abductor/adductor alternation, the last-order inhibitory inputs originating from the contralaterally located neurons play an important role in controlling the firing timings of MNs.SIGNIFICANCE STATEMENT Pectoral fin movements in larval zebrafish exhibit fundamental aspects of basic rhythmic appendage movement: alternation of the abductor and adductor (corresponding to flexor-extensor alternation) coupled with left-right alternation. We set out to investigate the neuronal circuits underlying rhythmic pectoral fin movements in larval zebrafish. We showed that both abductor and adductor MNs received rhythmic excitatory and inhibitory synaptic inputs in their active and inactive phases, respectively. This indicates that MN activities are controlled in a push-pull manner. We further obtained evidence that dmrt3a-expressing commissural inhibitory neurons exert an inhibitory effect on abductor MNs. The current study marks the first step toward the identification of central pattern generator organization for rhythmic fin movements.
Collapse
|
37
|
Lambert FM, Bacqué-Cazenave J, Le Seach A, Arama J, Courtand G, Tagliabue M, Eskiizmirliler S, Straka H, Beraneck M. Stabilization of Gaze during Early Xenopus Development by Swimming-Related Utricular Signals. Curr Biol 2020; 30:746-753.e4. [PMID: 31956031 DOI: 10.1016/j.cub.2019.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Abstract
Locomotor maturation requires concurrent gaze stabilization improvement for maintaining visual acuity [1, 2]. The capacity to stabilize gaze, in particular in small aquatic vertebrates where coordinated locomotor activity appears very early, is determined by assembly and functional maturation of inner ear structures and associated sensory-motor circuitries [3-7]. Whereas utriculo-ocular reflexes become functional immediately after hatching [8, 9], semicircular canal-dependent vestibulo-ocular reflexes (VORs) appear later [10]. Thus, small semicircular canals are unable to detect swimming-related head oscillations, despite the fact that corresponding acceleration components are well-suited to trigger an angular VOR [11]. This leaves the utricle as the sole vestibular origin for swimming-related compensatory eye movements [12, 13]. We report a remarkable ontogenetic plasticity of swimming-related head kinematics and vestibular end organ recruitment in Xenopus tadpoles with beneficial consequences for gaze-stabilization. Swimming of older larvae generates sinusoidal head undulations with small, similar curvature angles on the left and right side that optimally activate horizontal semicircular canals. Young larvae swimming causes left-right head undulations with narrow curvatures and strong, bilaterally dissimilar centripetal acceleration components well suited to activate utricular hair cells and to substitute the absent semicircular canal function at this stage. The capacity of utricular signals to supplant semicircular canal function was confirmed by recordings of eye movements and extraocular motoneurons during off-center rotations in control and semicircular canal-deficient tadpoles. Strong alternating curvature angles and thus linear acceleration profiles during swimming in young larvae therefore represents a technically elegant solution to compensate for the incapacity of small semicircular canals to detect angular acceleration components.
Collapse
Affiliation(s)
| | | | - Anne Le Seach
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université de Paris, F-75270 Paris, France
| | - Jessica Arama
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université de Paris, F-75270 Paris, France
| | - Gilles Courtand
- INCIA, CNRS UMR 5287, Université de Bordeaux, F-33076 Bordeaux, France
| | - Michele Tagliabue
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université de Paris, F-75270 Paris, France
| | - Selim Eskiizmirliler
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université de Paris, F-75270 Paris, France
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152 Planegg, Germany
| | - Mathieu Beraneck
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université de Paris, F-75270 Paris, France.
| |
Collapse
|