1
|
Yang SH, Zhang SN, Li XZ. Advances in Therapeutic Targets and Traditional Chinese Medicine for Cardiomyopathy. Phytother Res 2025. [PMID: 40219655 DOI: 10.1002/ptr.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Cardiomyopathy is a kind of heart disease caused by multiple factors of myocardial structure and function disorders. In this paper, we summarized and found the targets and mechanisms with therapeutic potential by querying the relevant literature on cardiomyopathy in the past 10 years from databases. Numerous pieces of literature have proven the significant efficacy of traditional Chinese medicine (TCM) in the treatment of cardiomyopathy. Through effective screening methods, we quickly identified a variety of commonly used Chinese herbs such as Astragalus, Danggui, Danshen, Pueraria Root, and ginseng, and further analyzed the active ingredients that play key roles in the treatment of cardiomyopathy. Specifically, our study revealed significant interaction activity at the molecular level of active ingredients such as calycosin, formononetin, and beta-sitosterol, which were strongly validated by sophisticated molecular docking experiments. These active ingredients can be precisely combined with 14 core targets (such as AKT1, TP53, IL6, and other key proteins), which not only reveals their potential therapeutic mechanisms but also provides direct and solid scientific support for the application of TCM in the treatment of cardiomyopathy. It is helpful to develop new TCM preparations further and provide more treatment options for patients with cardiomyopathy.
Collapse
Affiliation(s)
- Si-Hui Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| | - Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| |
Collapse
|
2
|
Echols TC, Britt A, Vatsky SE, Sheppard SE, Pukenas BA, Borst AJ. Unusual Presentation of Coronary Artery Fistula in Capillary Malformation Arteriovenous Malformation 2 Syndrome: A Case Report. Am J Med Genet A 2025:e64041. [PMID: 40047120 DOI: 10.1002/ajmg.a.64041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Capillary malformation-arteriovenous malformation syndrome (CM-AVM) is a germline vascular dysplasia that is typically characterized by cutaneous capillary malformations and central nervous system arteriovenous malformations (AVM). We report an atypical presentation of CM-AVM2 featuring a giant coronary fistula. A 22-day-old male exhibited a cardiac murmur, leading to the discovery of a large fistula from the left circumflex coronary artery. The patient developed left eye exophthalmos due to a left-sided basilar to pontomesencephalic vein fistula. Genetic testing demonstrated a previously reported pathogenic ephrin type B-receptor 4 (EPHB4) variant c.175G>A, p.Glu59Lys, suggesting a diagnosis of CM-AVM2 syndrome. A variant of uncertain significance in GATA-binding factor 2 (GATA2) c.1289C>T, p.Ala430Val was also identified. Due to residual enlargement of the left coronary artery following fistula occlusion, the patient was initiated on warfarin and aspirin for dual anticoagulation and antiplatelet therapy. This uncommon presentation may warrant cardiac imaging for patients with CM-AVM syndrome presenting with a murmur or other cardiac symptoms. Further investigation is necessary to determine the incidence of cardiac involvement in patients with CM-AVM syndrome.
Collapse
Affiliation(s)
- Tyson C Echols
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allison Britt
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Seth E Vatsky
- Division of Interventional Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E Sheppard
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Bryan A Pukenas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J Borst
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Hematology-Oncology, The University of North Carolina, Chapel Hill, North Carolina, USA
- UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Lin Y, Zhan M, Chen X, Xiao X. Biological function of EPHB4 in the aging process of vascular endothelial cells: mtDNA molecular mechanism and MAPK/PGC-1/TFAM signaling pathway. Int J Biol Macromol 2025; 293:138536. [PMID: 39653203 DOI: 10.1016/j.ijbiomac.2024.138536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
Previous studies have shown that EPHB4 is also involved in regulating the proliferation, migration, and apoptosis of endothelial cells. In this study, we found a close relationship between EPHB4 and aging. Therefore, in-depth research on the relationship between EPHB4 and aging can help reveal the molecular mechanisms of aging and provide new ideas and methods for developing anti-aging drugs and treating vascular aging-related diseases. In addition, in our current study, we found a close relationship between EPHB4, cellular senescence, and CM-AVM. The MAPK/PGC-1/TFAM signaling axis mediated by EPHB4 may also be involved in the process of CM-AVM, laying a solid foundation for future in-depth studies on the relationship between EPHB4 and CM-AVM. Our findings revealed a decrease in mitochondrial membrane potential associated with EPHB4 deficiency, suggesting that EPHB4 loss may contribute to mitochondrial dysfunction. Additionally, EPHB4 deficiency led to an elevation in mitochondrial ROS levels, which was confirmed using mitochondrial-specific fluorescent probes. Furthermore, EPHB4 deficiency resulted in down-regulated expression of NRF1 and SOD2, which could be a significant contributor to mitochondrial oxidative stress. To validate this hypothesis, we conducted rescue experiments by restoring PGC-1 expression. The results showed a partial recovery of mitochondrial membrane potential and a reduction in cell senescence. These findings suggest that EPHB4 regulates mitochondrial functional integrity through the MAPK/PGC-1/TFAM signaling axis.
Collapse
Affiliation(s)
- Yanyan Lin
- Department of Dermatology, the Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Minzhen Zhan
- Department of Dermatology, the Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiangqi Chen
- Department of Dermatology, 900Th Hospital of Joint Logistics Support Force, PLA, Fuzhou, Fujian, China.
| | - Xuemin Xiao
- Department of Dermatology, the Union Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Carlantoni C, Liekfeld LMH, Beerens M, Frye M. Same same but different? How blood and lymphatic vessels induce cell contact inhibition. Biochem Soc Trans 2025; 53:BST20240573. [PMID: 39912714 DOI: 10.1042/bst20240573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Endothelial cells (ECs) migrate, sprout, and proliferate in response to (lymph)angiogenic mitogens, such as vascular endothelial growth factors. When ECs reach high confluency and encounter spatial confinement, they establish mature cell-cell junctions, reduce proliferation, and enter a quiescent state through a process known as contact inhibition. However, EC quiescence is modulated not only by spatial confinement but also by other mechano-environmental factors, including blood or lymph flow and extracellular matrix properties. Changes in physical forces and intracellular signaling can disrupt contact inhibition, resulting in aberrant proliferation and vascular dysfunction. Therefore, it is critical to understand the mechanisms by which endothelial cells regulate contact inhibition. While contact inhibition has been well studied in blood endothelial cells (BECs), its regulation in lymphatic endothelial cells (LECs) remains largely unexplored. Here, we review the current knowledge on extrinsic stimuli and intrinsic molecular pathways that govern endothelial contact inhibition and highlight nuanced differences between BECs and LECs. Furthermore, we provide perspectives for future research on lymphatic contact inhibition. A deeper understanding of the BEC and LEC-specific pathways underlying contact inhibition may enable targeted modulation of this process in blood or lymphatic vessels with relevance to lymphatic or blood vascular-specific disorders.
Collapse
Affiliation(s)
- Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Leon M H Liekfeld
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| |
Collapse
|
5
|
Peterson TE, Hahn VS, Moaddel R, Zhu M, Haberlen SA, Palella FJ, Plankey M, Bader JS, Lima JAC, Gerszten RE, Rotter JI, Rich SS, Heckbert SR, Kirk GD, Piggott DA, Ferrucci L, Margolick JB, Brown TT, Wu KC, Post WS. Proteomic signature of HIV-associated subclinical left atrial remodeling and incident heart failure. Nat Commun 2025; 16:610. [PMID: 39800750 PMCID: PMC11725572 DOI: 10.1038/s41467-025-55911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
People living with HIV are at higher risk of heart failure and associated left atrial remodeling compared to people without HIV. Mechanisms are unclear but have been linked to inflammation and premature aging. Here we obtain plasma proteomics concurrently with cardiac magnetic resonance imaging in two independent study populations to identify parallels between HIV-related and aging-related immune dysfunction that could contribute to atrial remodeling and clinical heart failure. We discover a plasma proteomic signature that may in part reflect or contribute to HIV-associated atrial remodeling, many features of which are associated with older age and time to incident heart failure among an independent community-based cohort without HIV. This proteomic profile was statistically enriched for immune checkpoint proteins, tumor necrosis factor signaling, ephrin signaling, and extracellular matrix organization, identifying possible shared pathways in HIV and aging that may contribute to risk of heart failure.
Collapse
Grants
- 75N92020D00005 NHLBI NIH HHS
- K23 HL166770 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- U01 HL120393 NHLBI NIH HHS
- K24 AI120834 NIAID NIH HHS
- P30 DK063491 NIDDK NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- HHSN2682015000031, HSN26800004, HHSN268201600034I U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- UL1 TR000040 NCATS NIH HHS
- ZIA AG000297 Intramural NIH HHS
- U01-HL146201 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- ZIAAG000297 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U01 DA036297 NIDA NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- N01HC95160 NHLBI NIH HHS
- R01 HL120393 NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- P30 AI094189 NIAID NIH HHS
- U01 HL146205 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- U01-DA036297 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 75N92020D00001 NHLBI NIH HHS
- U01-HL146193, U01-HL146240, U01-HL146205 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- HL007227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95164 NHLBI NIH HHS
- P30AI094189 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 HL126552 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- T32 HL007227 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- U01 HL146201 NHLBI NIH HHS
- 1K23HL166770-01 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95161 NHLBI NIH HHS
- U01 HL146193 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- R01 HL117626 NHLBI NIH HHS
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- UL1 TR001881 NCATS NIH HHS
- U01 HL146240 NHLBI NIH HHS
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Sarnoff Scholar Award 138828 (McLean, VA)
Collapse
Affiliation(s)
- Tess E Peterson
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Virginia S Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ruin Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Min Zhu
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sabina A Haberlen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frank J Palella
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Plankey
- Division of General Internal Medicine, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joao A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Damani A Piggott
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joseph B Margolick
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Molecular Microbiology and Immunology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Todd T Brown
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Katherine C Wu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Chen D, Tang Y, Lapinski PE, Wiggins D, Sevick EM, Davis MJ, King PD. EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis. Circ Res 2024; 135:1048-1066. [PMID: 39421925 PMCID: PMC11560524 DOI: 10.1161/circresaha.124.325383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND EPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves. METHODS We used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo. RESULTS LV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV valve specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV valve development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos. CONCLUSIONS EPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Yipei Tang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - David Wiggins
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eva M. Sevick
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| |
Collapse
|
7
|
Morton AB, Jacobsen NL, Diller AR, Kendra JA, Golpasandi S, Cornelison DDW, Segal SS. Inducible deletion of endothelial cell Efnb2 delays capillary regeneration and attenuates myofibre reinnervation following myotoxin injury in mice. J Physiol 2024; 602:4907-4927. [PMID: 39196901 PMCID: PMC11466691 DOI: 10.1113/jp285402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024] Open
Abstract
Acute injury of skeletal muscle disrupts myofibres, microvessels and motor innervation. Myofibre regeneration is well characterized, however its relationship with the regeneration of microvessels and motor nerves is undefined. Endothelial cell (EC) ephrin-B2 (Efnb2) is required for angiogenesis during embryonic development and promotes neurovascular regeneration in the adult. We hypothesized that, following acute injury to skeletal muscle, loss of EC Efnb2 would impair microvascular regeneration and the recovery of neuromuscular junction (NMJ) integrity. Mice (aged 3-6 months) were bred for EC-specific conditional knockout (CKO) of Efnb2 following tamoxifen injection with non-injected CKO mice as controls (CON). The gluteus maximus, tibialis anterior or extensor digitorum longus muscle was then injured with local injection of BaCl2. Intravascular staining with wheat germ agglutinin revealed diminished capillary area in the gluteus maximus of CKO vs. CON at 5 days post-injury (dpi); both recovered to uninjured (0 dpi) level by 10 dpi. At 0 dpi, tibialis anterior isometric force of CKO was less than CON. At 10 dpi, isometric force was reduced by half in both groups. During intermittent contractions (75 Hz, 330 ms s-1, 120 s), isometric force fell during indirect (sciatic nerve) stimulation whereas force was maintained during direct (electrical field) stimulation of myofibres. Neuromuscular transmission failure correlated with perturbed presynaptic (terminal Schwann cells) and postsynaptic (nicotinic acetylcholine receptors) NMJ morphology in CKO. Resident satellite cell number on extensor digitorum longus myofibres did not differ between groups. Following acute injury of skeletal muscle, loss of Efnb2 in ECs delays capillary regeneration and attenuates recovery of NMJ structure and function. KEY POINTS: The relationship between microvascular regeneration and motor nerve regeneration following skeletal muscle injury is undefined. Expression of Efnb2 in endothelial cells (ECs) is essential to vascular development and promotes neurovascular regeneration in the adult. To test the hypothesis that EfnB2 in ECs is required for microvascular regeneration and myofibre reinnervation, we induced conditional knockout of Efnb2 in ECs of mice. Acute injury was then induced by BaCl2 injection into gluteus maximus, tibialis anterior or extensor digitorum longus (EDL) muscle. Capillary regeneration was reduced at 5 days post-injury (dpi) in gluteus maximus of conditional knockout vs. controls; at 10 dpi, neither differed from uninjured. Nerve stimulation revealed neuromuscular transmission failure in tibialis anterior with perturbed neuromuscular junction structure. Resident satellite cell number on EDL myofibres did not differ between groups. Conditional knockout of EC Efnb2 delays capillary regeneration and attenuates recovery of neuromuscular junction structure and function.
Collapse
Affiliation(s)
- Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | - Nicole L. Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| | | | - Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Shadi Golpasandi
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
8
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
9
|
Dupont V, Xhaard C, Behm-Ansmant I, Bresso E, Thuillier Q, Branlant C, Lopez-Sublet M, Deleuze JF, Zannad F, Girerd N, Rossignol P. Multiomic profiling of new-onset kidney function decline: insights from the STANISLAS study cohort with a 20-year follow-up. Clin Kidney J 2024; 17:sfae224. [PMID: 39135941 PMCID: PMC11317839 DOI: 10.1093/ckj/sfae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background Identifying the biomarkers associated with new-onset glomerular filtration rate (GFR) decrease in an initially healthy population could offer a better understanding of kidney function decline and help improving patient management. Methods Here we described the proteomic and transcriptomic footprints associated with new-onset kidney function decline in an initially healthy and well-characterized population with a 20-year follow-up. This study was based on 1087 individuals from the familial longitudinal Suivi Temporaire Annuel Non-Invasif de la Santé des Lorrains Assurés Sociaux (STANISLAS) cohort who attended both visit 1 (from 1993 to 1995) and visit 4 (from 2011 to 2016). New-onset kidney function decline was approached both in quantitative (GFR slope for each individual) and qualitative (defined as a decrease in GFR of >15 ml/min/1.7 m2) ways. We analysed associations of 445 proteins measured both at visit 1 and visit 4 using Olink Proseek® panels and 119 765 genes expressions measured at visit 4 with GFR decline. Associations were assessed using multivariable models. The Bonferroni correction was applied. Results We found several proteins (including PLC, placental growth factor (PGF), members of the tumour necrosis factor receptor superfamily), genes (including CCL18, SESN3), and a newly discovered miRNA-mRNA pair (MIR1205-DNAJC6) to be independently associated with new-onset kidney function decline. Complex network analysis highlighted both extracellular matrix and cardiovascular remodelling (since visit 1) as well as inflammation (at visit 4) as key features of early GFR decrease. Conclusions These findings lay the foundation to further assess whether the proteins and genes herein identified may represent potential biomarkers or therapeutic targets to prevent renal function impairment.
Collapse
Affiliation(s)
- Vincent Dupont
- Department of Nephrology, University hospital of Reims, Reims, France
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- CNRS UMR 7369, Université de Reims Champagne-Ardenne, Reims, France
| | - Constance Xhaard
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 14-33, Inserm U1116, CHRU Nancy, France
| | | | - Emmanuel Bresso
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 14-33, Inserm U1116, CHRU Nancy, France
| | | | | | - Marilucy Lopez-Sublet
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- AP-HP, Hopital Avicenne, Centre d'Excellence Europeen en Hypertension Arterielle, Service de Medecine Interne, INSERM UMR 942 MASCOT, Paris 13-Universite Paris Nord, Bobigny, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Faiez Zannad
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 14-33, Inserm U1116, CHRU Nancy, France
| | - Nicolas Girerd
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 14-33, Inserm U1116, CHRU Nancy, France
| | - Patrick Rossignol
- FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)
- Medicine and Nephrology-dialysis departments, Princess Grace Hospital, and Monaco Private Hemodialysis Centre, Monaco, Monaco
| |
Collapse
|
10
|
Stewen J, Kruse K, Godoi-Filip AT, Zenia, Jeong HW, Adams S, Berkenfeld F, Stehling M, Red-Horse K, Adams RH, Pitulescu ME. Eph-ephrin signaling couples endothelial cell sorting and arterial specification. Nat Commun 2024; 15:2539. [PMID: 38570531 PMCID: PMC10991410 DOI: 10.1038/s41467-024-46300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.
Collapse
Affiliation(s)
- Jonas Stewen
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Anca T Godoi-Filip
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Zenia
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
- Sequencing Core Facility, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Frank Berkenfeld
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany.
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany.
| |
Collapse
|
11
|
Vanden Broek K, Ryu JR, Perrier R, Tyndall AV, Childs SJ, Au PYB. SAM domain variants of EPHB4 associated with aberrant signaling are linked to lymphatic-related fetal hydrops and facial dysmorphology. Clin Genet 2024; 105:386-396. [PMID: 38151336 DOI: 10.1111/cge.14467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Variants in EPHB4 (Ephrin type B receptor 4), a transmembrane tyrosine kinase receptor, have been identified in individuals with various vascular anomalies including Capillary Malformation-Arteriovenous Malformation syndrome 2 and lymphatic-related (non-immune) fetal hydrops (LRHF). Here, we identify two novel variants in EPHB4 that disrupt the SAM domain in two unrelated individuals. Proband 1 presented within the LRHF phenotypic spectrum with hydrops, and proband 2 presented with large nuchal translucency prenatally that spontaneously resolved in addition to dysmorphic features on exam postnatally. These are the first disease associated variants identified that do not disrupt EPHB4 protein expression or tyrosine-kinase activity. We identify that EPHB4 SAM domain disruptions can lead to aberrant downstream signaling, with a loss of the SAM domain resulting in elevated MAPK signaling in proband 1, and a missense variant within the SAM domain resulting in increased cell proliferation in proband 2. This data highlights that a functional SAM domain is required for proper EPHB4 function and vascular development.
Collapse
Affiliation(s)
- Kara Vanden Broek
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jae-Ryeon Ryu
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Renee Perrier
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Amanda V Tyndall
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Sarah J Childs
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ping Yee Billie Au
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
13
|
Peterson TE, Hahn VS, Moaddel R, Zhu M, Haberlen SA, Palella FJ, Plankey M, Bader JS, Lima JA, Gerszten RE, Rotter JI, Rich SS, Heckbert SR, Kirk GD, Piggott DA, Ferrucci L, Margolick JB, Brown TT, Wu KC, Post WS. Proteomic Signature of HIV-Associated Subclinical Left Atrial Remodeling and Incident Heart Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302797. [PMID: 38405757 PMCID: PMC10888991 DOI: 10.1101/2024.02.13.24302797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background People living with HIV (PLWH) are at higher risk of heart failure (HF) and preceding subclinical cardiac abnormalities, including left atrial dilation, compared to people without HIV (PWOH). Hypothesized mechanisms include premature aging linked to chronic immune activation. We leveraged plasma proteomics to identify potential novel contributors to HIV-associated differences in indexed left atrial volume (LAVi) among PLWH and PWOH and externally validated identified proteomic signatures with incident HF among a cohort of older PWOH. Methods We performed proteomics (Olink Explore 3072) on plasma obtained concurrently with cardiac magnetic resonance imaging among PLWH and PWOH in the United States. Proteins were analyzed individually and as agnostically defined clusters. Cross-sectional associations with HIV and LAVi were estimated using multivariable regression with robust variance. Among an independent general population cohort, we estimated associations between identified signatures and LAVi using linear regression and incident HF using Cox regression. Results Among 352 participants (age 55±6 years; 25% female), 61% were PLWH (88% on ART; 73% with undetectable HIV RNA) and mean LAVi was 29±9 mL/m 2 . Of 2594 analyzed proteins, 439 were associated with HIV serostatus, independent of demographics, hepatitis C virus infection, renal function, and substance use (FDR<0.05). We identified 73 of these proteins as candidate contributors to the independent association between positive HIV serostatus and higher LAVi, enriched in tumor necrosis factor (TNF) signaling and immune checkpoint proteins regulating T cell, B cell, and NK cell activation. We identified one protein cluster associated with LAVi and HIV regardless of HIV viral suppression status, which comprised 42 proteins enriched in TNF signaling, ephrin signaling, and extracellular matrix (ECM) organization. This protein cluster and 30 of 73 individual proteins were associated with incident HF among 2273 older PWOH (age 68±9 years; 52% female; 8.5±1.4 years of follow-up). Conclusion Proteomic signatures that may contribute to HIV-associated LA remodeling were enriched in immune checkpoint proteins, cytokine signaling, and ECM organization. These signatures were also associated with incident HF among older PWOH, suggesting specific markers of chronic immune activation, systemic inflammation, and fibrosis may identify shared pathways in HIV and aging that contribute to risk of HF.
Collapse
|
14
|
Carlantoni C, Liekfeld LMH, Hemkemeyer SA, Schreier D, Saygi C, Kurelic R, Cardarelli S, Kalucka J, Schulte C, Beerens M, Mailer RK, Schäffer TE, Naro F, Pellegrini M, Nikolaev VO, Renné T, Frye M. The phosphodiesterase 2A controls lymphatic junctional maturation via cGMP-dependent notch signaling. Dev Cell 2024; 59:308-325.e11. [PMID: 38159569 DOI: 10.1016/j.devcel.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered. In the absence of PDE2A, human lymphatic endothelial cells fail to induce mature junctions and cell cycle arrest, whereas cGMP levels, but not cAMP levels, are increased. Loss of PDE2A-mediated cGMP hydrolysis leads to the activation of p38 signaling and downregulation of NOTCH signaling. However, DLL4-induced NOTCH activation restores junctional maturation and contact inhibition in PDE2A-deficient human lymphatic endothelial cells. In postnatal mouse mesenteries, PDE2A is specifically enriched in collecting lymphatic valves, and loss of Pde2a results in the formation of abnormal valves. Our data demonstrate that PDE2A selectively finetunes a crosstalk of cGMP, p38, and NOTCH signaling during lymphatic vessel maturation.
Collapse
Affiliation(s)
- Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Leon M H Liekfeld
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sandra A Hemkemeyer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Silvia Cardarelli
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Schulte
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany; Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Fabio Naro
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Pellegrini
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus A. Buzzati Traverso, Monterotondo Scalo, Rome 00015, Italy
| | - Viacheslav O Nikolaev
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany.
| |
Collapse
|
15
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. Sequence basis for selectivity of ephrin-B2 ligand for Eph receptors and pathogenic henipavirus G glycoproteins. J Virol 2023; 97:e0062123. [PMID: 37931130 PMCID: PMC10688352 DOI: 10.1128/jvi.00621-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
- Cyrus Biotechnology, Seattle, Washington, USA
| |
Collapse
|
17
|
Chen D, Wiggins D, Sevick EM, Davis MJ, King PD. An EPHB4-RASA1 signaling complex inhibits shear stress-induced Ras-MAPK activation in lymphatic endothelial cells to promote the development of lymphatic vessel valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568378. [PMID: 38045382 PMCID: PMC10690291 DOI: 10.1101/2023.11.22.568378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
EPHB4 is a receptor protein tyrosine kinase that is required for the development of lymphatic vessel (LV) valves. We show here that EPHB4 is necessary for the specification of LV valves, their continued development after specification, and the maintenance of LV valves in adult mice. EPHB4 promotes LV valve development by inhibiting the activation of the Ras-MAPK pathway in LV endothelial cells (LEC). For LV specification, this role for EPHB4 depends on its ability to interact physically with the p120 Ras-GTPase-activating protein (RASA1) that acts as a negative regulator of Ras. Through physical interaction, EPHB4 and RASA1 dampen oscillatory shear stress (OSS)-induced Ras-MAPK activation in LEC, which is required for LV specification. We identify the Piezo1 OSS sensor as a focus of EPHB4-RASA1 regulation of OSS-induced Ras-MAPK signaling mediated through physical interaction. These findings contribute to an understanding of the mechanism by which EPHB4, RASA1 and Ras regulate lymphatic valvulogenesis.
Collapse
|
18
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
19
|
Turley TN, Theis JL, Evans JM, Fogarty ZC, Gulati R, Hayes SN, Tweet MS, Olson TM. Identification of Rare Genetic Variants in Familial Spontaneous Coronary Artery Dissection and Evidence for Shared Biological Pathways. J Cardiovasc Dev Dis 2023; 10:393. [PMID: 37754822 PMCID: PMC10532385 DOI: 10.3390/jcdd10090393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Rare familial spontaneous coronary artery dissection (SCAD) kindreds implicate genetic disease predisposition and provide a unique opportunity for candidate gene discovery. Whole-genome sequencing was performed in fifteen probands with non-syndromic SCAD who had a relative with SCAD, eight of whom had a second relative with extra-coronary arteriopathy. Co-segregating variants and associated genes were prioritized by quantitative variant, gene, and disease-level metrics. Curated public databases were queried for functional relationships among encoded proteins. Fifty-four heterozygous coding variants in thirteen families co-segregated with disease and fulfilled primary filters of rarity, gene variation constraint, and predicted-deleterious protein effect. Secondary filters yielded 11 prioritized candidate genes in 12 families, with high arterial tissue expression (n = 7), high-confidence protein-level interactions with genes associated with SCAD previously (n = 10), and/or previous associations with connective tissue disorders and aortopathies (n = 3) or other vascular phenotypes in mice or humans (n = 11). High-confidence associations were identified among 10 familial SCAD candidate-gene-encoded proteins. A collagen-encoding gene was identified in five families, two with distinct variants in COL4A2. Familial SCAD is genetically heterogeneous, yet perturbations of extracellular matrix, cytoskeletal, and cell-cell adhesion proteins implicate common disease-susceptibility pathways. Incomplete penetrance and variable expression suggest genetic or environmental modifiers.
Collapse
Affiliation(s)
- Tamiel N. Turley
- Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jeanne L. Theis
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jared M. Evans
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA; (J.M.E.); (Z.C.F.)
| | - Zachary C. Fogarty
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA; (J.M.E.); (Z.C.F.)
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
| | - Sharonne N. Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
| | - Marysia S. Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
| | - Timothy M. Olson
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (R.G.); (S.N.H.); (M.S.T.)
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Berkowicz P, Totoń-Żurańska J, Kwiatkowski G, Jasztal A, Csípő T, Kus K, Tyrankiewicz U, Orzyłowska A, Wołkow P, Tóth A, Chlopicki S. Accelerated ageing and coronary microvascular dysfunction in chronic heart failure in Tgαq*44 mice. GeroScience 2023; 45:1619-1648. [PMID: 36692592 PMCID: PMC10400753 DOI: 10.1007/s11357-022-00716-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023] Open
Abstract
Age represents a major risk factor in heart failure (HF). However, the mechanisms linking ageing and HF are not clear. We aimed to identify the functional, morphological and transcriptomic changes that could be attributed to cardiac ageing in a model of slowly progressing HF in Tgαq*44 mice in reference to the cardiac ageing process in FVB mice. In FVB mice, ageing resulted in the impairment of diastolic cardiac function and in basal coronary flow (CF), perivascular and interstitial fibrosis without changes in the cardiac activity of angiotensin-converting enzyme (ACE) or aldosterone plasma concentration. In Tgαq*44 mice, HF progression was featured by the impairment of systolic and diastolic cardiac function and in basal CF that was associated with a distinct rearrangement of the capillary architecture, pronounced perivascular and interstitial fibrosis, progressive activation of cardiac ACE and systemic angiotensin-aldosterone-dependent pathways. Interestingly, cardiac ageing genes and processes were represented in Tgαq*44 mice not only in late but also in early phases of HF, as evidenced by cardiac transcriptome analysis. Thirty-four genes and 8 biological processes, identified as being ageing related, occurred early and persisted along HF progression in Tgαq*44 mice and were mostly associated with extracellular matrix remodelling and fibrosis compatible with perivascular fibrosis resulting in coronary microvascular dysfunction (CMD) in Tgαq*44 mice. In conclusion, accelerated and persistent cardiac ageing contributes to the pathophysiology of chronic HF in Tgαq*44 mice. In particular, prominent perivascular fibrosis of microcirculation resulting in CMD represents an accelerated cardiac ageing phenotype that requires targeted treatment in chronic HF.
Collapse
Affiliation(s)
- Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Justyna Totoń-Żurańska
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tamás Csípő
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Paweł Wołkow
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
21
|
Langford JT, Gonzalez L, Taniguchi R, Brahmandam A, Zhang W, Dardik A. EphB4 monomer inhibits chronic graft vasculopathy in an aortic transplant model. JVS Vasc Sci 2023; 4:100109. [PMID: 37519335 PMCID: PMC10372308 DOI: 10.1016/j.jvssci.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 08/01/2023] Open
Abstract
T cells and macrophages play an important role in the formation of allograft vasculopathy, which is the predominant form of chronic rejection in cardiac transplants. Arteries express Ephrin-B2 as a marker of arterial identity, whereas circulating monocytes express the cognate receptor EphB4, which facilitates monocyte adhesion to the endothelial surface. Adherent monocytes transmigrate and differentiate into macrophages that activate T cells and are a main source of tissue damage during rejection. We hypothesized that inhibition of Ephrin-B2-EphB4 binding would decrease immune cell accumulation within a transplanted graft and prevent allograft vasculopathy. We used EphB4 monomer to inhibit Ephrin-B2-EphB4 binding in a rat infrarenal aortic transplant model. Rats treated with EphB4 monomer had fewer macrophages and T cells in the aortic allografts at 28 days, as well as significantly less neointima formation. These data show that the Ephin-B2-EphB4 axis may be an important target for prevention or treatment of allograft vasculopathy.
Collapse
Affiliation(s)
- John T. Langford
- Department of Surgery, Yale School of Medicine, New Haven, CT
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Division of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Anand Brahmandam
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
22
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. The Sequence Basis for Selectivity of Ephrin-B2 Ligand for Eph Receptors and Pathogenic Henipavirus G Glycoproteins: Selective Ephrin-B2 Decoys for Nipah and Hendra Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538420. [PMID: 37162958 PMCID: PMC10168364 DOI: 10.1101/2023.04.26.538420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and functions as a cell entry receptor for several henipaviruses including Nipah virus (NiV), a pathogenic zoonotic virus with pandemic potential. To understand the sequence basis of promiscuity for EFNB2 binding to the attachment glycoprotein of NiV (NiV-G) and Eph receptors, we performed deep mutagenesis on EFNB2 to identify mutations that enhance binding to NiV-G over EphB2, one of the highest affinity Eph receptors. The mutations highlight how different EFNB2 conformations are selected by NiV-G versus EphB2. Specificity mutations are enriched at the base of the G-H binding loop of EFNB2, especially surrounding a phenylalanine hinge upon which the G-H loop pivots, and at a phenylalanine hook that rotates away from the EFNB2 core to engage Eph receptors. One EFNB2 mutant, D62Q, possesses pan-specificity to the attachment glycoproteins of closely related henipaviruses and has markedly diminished binding to the six Eph receptors. However, EFNB2-D62Q has high residual binding to EphB3 and EphB4. A second deep mutational scan of EFNB2 identified combinatorial mutations to further enhance specificity to NiV-G. A triple mutant of soluble EFNB2, D62Q-Q130L-V167L, has minimal binding to Eph receptors but maintains binding, albeit reduced, to NiV-G. Soluble EFNB2 decoy receptors carrying the specificity mutations were potent neutralizers of chimeric henipaviruses. These findings demonstrate how specific residue changes at the shared binding interface of a promiscuous ligand (EFNB2) can influence selectivity for multiple receptors, and may also offer insight towards the development of henipavirus therapeutics and diagnostics.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana IL, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
- Cyrus Biotechnology, Seattle WA, USA
| |
Collapse
|
23
|
Tao Y, Wang W, Jin Y, Wang M, Xu J, Wang Y, Gong F. The Therapeutic Effects of EFNB2-Fc in a Cell Model of Kawasaki Disease. Pharmaceuticals (Basel) 2023; 16:ph16040500. [PMID: 37111257 PMCID: PMC10142267 DOI: 10.3390/ph16040500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The EphrinB2/EphB4 signaling pathway involves the regulation of vascular morphogenesis and angiogenesis. However, little is known about EphrinB2/EphB4 in the pathogenesis of Kawasaki disease (KD) and coronary artery aneurysm formation. Hence, this study aimed to explore the role of EphrinB2/EphB4 and the potential therapeutic effect of EphrinB2-Fc in the coronary arterial endothelial injury of KD. The levels of EphB4 were compared between KD patients and healthy children. Human coronary artery endothelial cells (HCAECs) were stimulated with sera from acute KD patients to establish the KD cell model. The overexpression of EphB4 or treatment with EphrinB2-Fc was found to intervene in the cell model. The cell migration, angiogenesis, and proliferation ability were assessed, and the expression of inflammation-related factors was measured. Our study showed that EphB4 showed low expression in both KD patients and the cell model of KD. The EphB4 protein levels in the CECs of CAA+ KD patients were much lower than those in healthy children. EphrinB2-Fc treatment of KD sera-activated HCAECs suppressed cell proliferation, reduced the expression of inflammation-related factors (such as IL-6 and P-selectin), and elevated cell angiogenesis ability. The results reveal that EphrinB2-Fc has a protective function in endothelial cells and has promising clinical applications for protecting vascular endothelium in patients with KD.
Collapse
|
24
|
Chen D, Van der Ent MA, Lartey NL, King PD. EPHB4-RASA1-Mediated Negative Regulation of Ras-MAPK Signaling in the Vasculature: Implications for the Treatment of EPHB4- and RASA1-Related Vascular Anomalies in Humans. Pharmaceuticals (Basel) 2023; 16:165. [PMID: 37259315 PMCID: PMC9959185 DOI: 10.3390/ph16020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 08/26/2023] Open
Abstract
Ephrin receptors constitute a large family of receptor tyrosine kinases in mammals that through interaction with cell surface-anchored ephrin ligands regulate multiple different cellular responses in numerous cell types and tissues. In the cardiovascular system, studies performed in vitro and in vivo have pointed to a critical role for Ephrin receptor B4 (EPHB4) as a regulator of blood and lymphatic vascular development and function. However, in this role, EPHB4 appears to act not as a classical growth factor receptor but instead functions to dampen the activation of the Ras-mitogen activated protein signaling (MAPK) pathway induced by other growth factor receptors in endothelial cells (EC). To inhibit the Ras-MAPK pathway, EPHB4 interacts functionally with Ras p21 protein activator 1 (RASA1) also known as p120 Ras GTPase-activating protein. Here, we review the evidence for an inhibitory role for an EPHB4-RASA1 interface in EC. We further discuss the mechanisms by which loss of EPHB4-RASA1 signaling in EC leads to blood and lymphatic vascular abnormalities in mice and the implications of these findings for an understanding of the pathogenesis of vascular anomalies in humans caused by mutations in EPHB4 and RASA1 genes. Last, we provide insights into possible means of drug therapy for EPHB4- and RASA1-related vascular anomalies.
Collapse
Affiliation(s)
| | | | | | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Zheng S, Sun F, Tian X, Zhu Z, Wang Y, Zheng W, Liu T, Wang W. Roles of Eph/ephrin signaling pathway in repair and regeneration for ischemic cerebrovascular and cardiovascular diseases. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Liu Z, Sun D, Wang C. Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information. Genome Biol 2022; 23:218. [PMID: 36253792 PMCID: PMC9575221 DOI: 10.1186/s13059-022-02783-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cell-cell interactions are important for information exchange between different cells, which are the fundamental basis of many biological processes. Recent advances in single-cell RNA sequencing (scRNA-seq) enable the characterization of cell-cell interactions using computational methods. However, it is hard to evaluate these methods since no ground truth is provided. Spatial transcriptomics (ST) data profiles the relative position of different cells. We propose that the spatial distance suggests the interaction tendency of different cell types, thus could be used for evaluating cell-cell interaction tools. RESULTS We benchmark 16 cell-cell interaction methods by integrating scRNA-seq with ST data. We characterize cell-cell interactions into short-range and long-range interactions using spatial distance distributions between ligands and receptors. Based on this classification, we define the distance enrichment score and apply an evaluation workflow to 16 cell-cell interaction tools using 15 simulated and 5 real scRNA-seq and ST datasets. We also compare the consistency of the results from single tools with the commonly identified interactions. Our results suggest that the interactions predicted by different tools are highly dynamic, and the statistical-based methods show overall better performance than network-based methods and ST-based methods. CONCLUSIONS Our study presents a comprehensive evaluation of cell-cell interaction tools for scRNA-seq. CellChat, CellPhoneDB, NicheNet, and ICELLNET show overall better performance than other tools in terms of consistency with spatial tendency and software scalability. We recommend using results from at least two methods to ensure the accuracy of identified interactions. We have packaged the benchmark workflow with detailed documentation at GitHub ( https://github.com/wanglabtongji/CCI ).
Collapse
Affiliation(s)
- Zhaoyang Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
28
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
29
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
30
|
Kumari R, Dutta R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Pal HC, Verma SK. ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Front Cardiovasc Med 2022; 8:817304. [PMID: 35127873 PMCID: PMC8811170 DOI: 10.3389/fcvm.2021.817304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Endothelial cells dysfunction has been reported in many heart diseases including acute myocardial infarction, and atherosclerosis. The molecular mechanism for endothelial dysfunction in the heart is still not clearly understood. We aimed to study the role of m6A RNA demethylase alkB homolog 5 (ALKBH5) in ECs angiogenesis during ischemic injury. Methods and Results ECs were treated with ischemic insults (lipopolysaccharide and 1% hypoxia) to determine the role of ALKBH5 in ECs angiogenesis. siRNA mediated ALKBH5 gene silencing was used for examining the loss of function. In this study, we report that ALKBH5 levels are upregulated following ischemia and are associated with maintaining ischemia-induced ECs angiogenesis. To decipher the mechanism of action, we found that ALKBH5 is required to maintain eNOS phosphorylation and SPHK1 protein levels. ALKBH5 silencing alone or with ischemic stress significantly increased SPHK1 m6A mRNA methylation. In contrast, METTL3 (RNA methyltransferase) overexpression resulted in the reduced expression of SPHK1. Conclusion We reported that ALKBH5 helps in the maintenance of angiogenesis in endothelial cells following acute ischemic stress via reduced SPHK1 m6A methylation and downstream eNOS-AKT signaling.
Collapse
Affiliation(s)
- Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Roshan Dutta
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Gbongbo Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Chandra Pal
- Department of Pathology, Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Suresh Kumar Verma
| |
Collapse
|
31
|
Chen D, Hughes ED, Saunders TL, Wu J, Hernández Vásquez MN, Makinen T, King PD. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 2022; 7:156928. [PMID: 35015735 PMCID: PMC8876457 DOI: 10.1172/jci.insight.156928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss of function mutations in RASA1 or EPHB4 genes that encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4) respectively. However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell (EC)-specific disruption of Ephb4 in mice results in accumulation of collagen IV in the EC endoplasmic reticulum leading to EC apoptotic death and defective developmental, neonatal and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice can be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4 mutant mice that express a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity show normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications with regards possible means of treatment of this disease.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States of America
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Taija Makinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, United States of America
| |
Collapse
|
32
|
Tombor LS, Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol 2022; 117:35. [PMID: 35834003 PMCID: PMC9283358 DOI: 10.1007/s00395-022-00941-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Myocardial injury as induced by myocardial infarction results in tissue ischemia, which critically incepts cardiomyocyte death. Endothelial cells play a crucial role in restoring oxygen and nutrient supply to the heart. Latest advances in single-cell multi-omics, together with genetic lineage tracing, reveal a transcriptional and phenotypical adaptation to the injured microenvironment, which includes alterations in metabolic, mesenchymal, hematopoietic and pro-inflammatory signatures. The extent of transition in mesenchymal or hematopoietic cell lineages is still debated, but it is clear that several of the adaptive phenotypical changes are transient and endothelial cells revert back to a naïve cell state after resolution of injury responses. This resilience of endothelial cells to acute stress responses is important for preventing chronic dysfunction. Here, we summarize how endothelial cells adjust to injury and how this dynamic response contributes to repair and regeneration. We will highlight intrinsic and microenvironmental factors that contribute to endothelial cell resilience and may be targetable to maintain a functionally active, healthy microcirculation.
Collapse
Affiliation(s)
- Lukas S. Tombor
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany ,Faculty for Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany ,Faculty for Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
33
|
Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, Su H. Review of treatment and therapeutic targets in brain arteriovenous malformation. J Cereb Blood Flow Metab 2021; 41:3141-3156. [PMID: 34162280 PMCID: PMC8669284 DOI: 10.1177/0271678x211026771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase (MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, USA
| | - Ethan Winkler
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Adib Abla
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| |
Collapse
|
34
|
Lyons O, Walker J, Seet C, Ikram M, Kuchta A, Arnold A, Hernández-Vásquez M, Frye M, Vizcay-Barrena G, Fleck RA, Patel AS, Padayachee S, Mortimer P, Jeffery S, Berland S, Mansour S, Ostergaard P, Makinen T, Modarai B, Saha P, Smith A. Mutations in EPHB4 cause human venous valve aplasia. JCI Insight 2021; 6:e140952. [PMID: 34403370 PMCID: PMC8492339 DOI: 10.1172/jci.insight.140952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
Collapse
Affiliation(s)
- Oliver Lyons
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - James Walker
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Christopher Seet
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Mohammed Ikram
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Adam Kuchta
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Andrew Arnold
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Magda Hernández-Vásquez
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Maike Frye
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Ashish S. Patel
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Soundrie Padayachee
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Peter Mortimer
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Steve Jeffery
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
- South West Thames Regional Genetics Service, St. George’s Hospital, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Taija Makinen
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Bijan Modarai
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Alberto Smith
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
35
|
Abstract
Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.
Collapse
|
36
|
Pérez-Cremades D, Paes AB, Vidal-Gómez X, Mompeón A, Hermenegildo C, Novella S. Regulatory Network Analysis in Estradiol-Treated Human Endothelial Cells. Int J Mol Sci 2021; 22:ijms22158193. [PMID: 34360960 PMCID: PMC8348965 DOI: 10.3390/ijms22158193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA–transcription factor–downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.
Collapse
|
37
|
Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, Verma SK. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res 2021; 118:1680-1692. [PMID: 33956076 DOI: 10.1093/cvr/cvab160] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Among several known RNA modifications, N6-methyladenosine (m6A) is the most studied RNA epitranscriptomic modification and controls multiple cellular functions during development, differentiation, and disease. Current research advancements have made it possible to examine the regulatory mechanisms associated with RNA methylation and reveal its functional consequences in the pathobiology of many diseases, including heart failure. m6A methylation has been described both on coding (mRNA) and non-coding RNA species including rRNA, tRNA, small nuclear RNA and circular RNAs. The protein components which catalyze the m6A methylation are termed methyltransferase or "m6A writers." The family of proteins that recognize this methylation are termed "m6A readers" and finally the enzymes involved in the removal of a methyl group from RNA are known as demethylases or "m6A erasers." At the cellular level, different components of methylation machinery are tightly regulated by many factors to maintain the m6A methylation dynamics. The m6A methylation process impacts different stages of mRNA metabolism and the biogenesis of long non-coding RNA and miRNA. Although, mRNA methylation was initially described in the 1970s, its regulatory roles in various diseases, including cardiovascular diseases are broadly unexplored. Recent investigations suggest the important role of m6A mRNA methylation in both hypertrophic and ischemic heart diseases. In the present review, we evaluate the significance of m6A methylation in the cardiovascular system, in cardiac homeostasis and disease, all of which may help to improve therapeutic intervention for the treatment of heart failure.
Collapse
Affiliation(s)
- Rajesh Kumari
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prabhat Ranjan
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Gbongbo Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Luxán G, Dimmeler S. The vasculature: a therapeutic target in heart failure? Cardiovasc Res 2021; 118:53-64. [PMID: 33620071 PMCID: PMC8752358 DOI: 10.1093/cvr/cvab047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
It is well established that the vasculature plays a crucial role in maintaining oxygen and nutrients supply to the heart. Increasing evidence further suggest that the microcirculation has additional roles in supporting a healthy microenvironment. Heart failure is well known to be associated with changes and functional impairment of the microvasculature. The specific ablation of protective signals in endothelial cells in experimental models is sufficient to induce heart failure. Therefore, restoring a healthy endothelium and microcirculation may be a valuable therapeutic strategy to treat heart failure. The present review article will summarize the current understanding of the vascular contribution to heart failure with reduced or preserved ejection fraction. Novel therapeutic approaches including next generation pro-angiogenic therapies and non-coding RNA therapeutics, as well as the targeting of metabolites or metabolic signaling, vascular inflammation and senescence will be discussed.
Collapse
Affiliation(s)
- Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| |
Collapse
|
39
|
Del Pozo MA, Lolo FN, Echarri A. Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr Opin Cell Biol 2020; 68:113-123. [PMID: 33188985 DOI: 10.1016/j.ceb.2020.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Mechanical forces (extracellular matrix stiffness, vascular shear stress, and muscle stretching) reaching the plasma membrane (PM) determine cell behavior. Caveolae are PM-invaginated nanodomains with specific lipid and protein composition. Being highly abundant in mechanically challenged tissues (muscles, lungs, vessels, and adipose tissues), they protect cells from mechanical stress damage. Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae-rosettes-which also contribute to mechanoprotection. Caveolar components crosstalk with mechanotransduction pathways and recent studies show that they translocate from the PM to the nucleus to convey stress information. Furthermore, caveolae components can regulate membrane traffic from/to the PM to adapt to environmental mechanical forces. The interdependence between lipids and caveolae starts to be understood, and the relevance of caveolae-dependent membrane trafficking linked to mechanoadaption to different physiopathological processes is emerging.
Collapse
Affiliation(s)
- Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
40
|
Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol 2020; 140:715-736. [PMID: 32894330 PMCID: PMC7547031 DOI: 10.1007/s00401-020-02217-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is the most frequent demyelinating disease in young adults and despite significant advances in immunotherapy, disease progression still cannot be prevented. Promotion of remyelination, an endogenous repair mechanism resulting in the formation of new myelin sheaths around demyelinated axons, represents a promising new treatment approach. However, remyelination frequently fails in MS lesions, which can in part be attributed to impaired differentiation of oligodendroglial progenitor cells into mature, myelinating oligodendrocytes. The reasons for impaired oligodendroglial differentiation and defective remyelination in MS are currently unknown. To determine whether intrinsic oligodendroglial factors contribute to impaired remyelination in relapsing–remitting MS (RRMS), we compared induced pluripotent stem cell-derived oligodendrocytes (hiOL) from RRMS patients and controls, among them two monozygous twin pairs discordant for MS. We found that hiOL from RRMS patients and controls were virtually indistinguishable with respect to remyelination-associated functions and proteomic composition. However, while analyzing the effect of extrinsic factors we discovered that supernatants of activated peripheral blood mononuclear cells (PBMCs) significantly inhibit oligodendroglial differentiation. In particular, we identified CD4+ T cells as mediators of impaired oligodendroglial differentiation; at least partly due to interferon-gamma secretion. Additionally, we observed that blocked oligodendroglial differentiation induced by PBMC supernatants could not be restored by application of oligodendroglial differentiation promoting drugs, whereas treatment of PBMCs with the immunomodulatory drug teriflunomide prior to supernatant collection partly rescued oligodendroglial differentiation. In summary, these data indicate that the oligodendroglial differentiation block is not due to intrinsic oligodendroglial factors but rather caused by the inflammatory environment in RRMS lesions which underlines the need for drug screening approaches taking the inflammatory environment into account. Combined, these findings may contribute to the development of new remyelination promoting strategies.
Collapse
|
41
|
Frye M, Stritt S, Ortsäter H, Hernandez Vasquez M, Kaakinen M, Vicente A, Wiseman J, Eklund L, Martínez-Torrecuadrada JL, Vestweber D, Mäkinen T. EphrinB2-EphB4 signalling provides Rho-mediated homeostatic control of lymphatic endothelial cell junction integrity. eLife 2020; 9:57732. [PMID: 32897857 PMCID: PMC7478896 DOI: 10.7554/elife.57732] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
Endothelial integrity is vital for homeostasis and adjusted to tissue demands. Although fluid uptake by lymphatic capillaries is a critical attribute of the lymphatic vasculature, the barrier function of collecting lymphatic vessels is also important by ensuring efficient fluid drainage as well as lymph node delivery of antigens and immune cells. Here, we identified the transmembrane ligand EphrinB2 and its receptor EphB4 as critical homeostatic regulators of collecting lymphatic vessel integrity. Conditional gene deletion in mice revealed that EphrinB2/EphB4 signalling is dispensable for blood endothelial barrier function, but required for stabilization of lymphatic endothelial cell (LEC) junctions in different organs of juvenile and adult mice. Studies in primary human LECs further showed that basal EphrinB2/EphB4 signalling controls junctional localisation of the tight junction protein CLDN5 and junction stability via Rac1/Rho-mediated regulation of cytoskeletal contractility. EphrinB2/EphB4 signalling therefore provides a potential therapeutic target to selectively modulate lymphatic vessel permeability and function. Lymph vessels are thin walled tubes that, similar to blood vessels, carry white blood cells, fluids and waste. Unlike veins and arteries, however, lymph vessels do not carry red blood cells and their main function is to remove excess fluid from tissues. The cells that line vessels in the body are called endothelial cells, and they are tightly linked together by proteins to control what goes into and comes out of the vessels. The chemical, physical and mechanical signals that control the junctions between endothelial cells are often the same in different vessel types, but their effects can vary. The endothelial cells of both blood and lymph vessels have two interacting proteins on their membrane known as EphrinB2 and its receptor, EphB4. When these two proteins interact, the EphB4 receptor becomes activated, which leads to changes in the junctions that link endothelial cells together. Frye et al. examined the role of EphrinB2 and EphB4 in the lymphatic system of mice. When either EphrinB2 or EphB4 are genetically removed in newborn or adult mice, lymph vessels become disrupted, but no significant effect is observed on blood vessels. The reason for the different responses in blood and lymph vessels is unknown. The results further showed that lymphatic endothelial cells need EphB4 and EphrinB2 to be constantly interacting to maintain the integrity of the lymph vessels. Further examination of human endothelial cells grown in the laboratory revealed that this constant signalling controls the internal protein scaffold that determines a cell’s shape and integrity. Changes in the internal scaffold affect the organization of the junctions that link neighboring lymphatic endothelial cells together. The loss of signalling between EphrinB2 and EphB4 in lymph vessels reflects the increase in vessel leakage seen in response to bacterial infections and in some genetic conditions such as lymphoedema. Finding ways to control the signalling between these two proteins could help treat these conditions by developing drugs that improve endothelial cell integrity in lymph vessels.
Collapse
Affiliation(s)
- Maike Frye
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,University Medical Center Hamburg-Eppendorf, Institute of Clinical Chemistry and Laboratory Medicine, Hamburg, Germany
| | - Simon Stritt
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | | | | | - Andres Vicente
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - John Wiseman
- Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lauri Eklund
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| |
Collapse
|
42
|
Vreeken D, Zhang H, van Zonneveld AJ, van Gils JM. Ephs and Ephrins in Adult Endothelial Biology. Int J Mol Sci 2020; 21:ijms21165623. [PMID: 32781521 PMCID: PMC7460586 DOI: 10.3390/ijms21165623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eph receptors and their ephrin ligands are important guidance molecules during neurological and vascular development. In recent years, it has become clear that the Eph protein family remains functional in adult physiology. A subset of Ephs and ephrins is highly expressed by endothelial cells. As endothelial cells form the first barrier between the blood and surrounding tissues, maintenance of a healthy endothelium is crucial for tissue homeostasis. This review gives an overview of the current insights of the role of ephrin ligands and receptors in endothelial function and leukocyte recruitment in the (patho)physiology of adult vascular biology.
Collapse
|
43
|
Tiruppathi C, Regmi SC, Wang DM, Mo GCH, Toth PT, Vogel SM, Stan RV, Henkemeyer M, Minshall RD, Rehman J, Malik AB. EphB1 interaction with caveolin-1 in endothelial cells modulates caveolae biogenesis. Mol Biol Cell 2020; 31:1167-1182. [PMID: 32238105 PMCID: PMC7353165 DOI: 10.1091/mbc.e19-12-0713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Sushil C. Regmi
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Dong-Mei Wang
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Gary C. H. Mo
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Peter T. Toth
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Stephen M. Vogel
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Radu V. Stan
- Department of Pathology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Mark Henkemeyer
- Departments of Neuroscience and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Richard D. Minshall
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- Anesthesiology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Jalees Rehman
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Asrar B. Malik
- Departments of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
- The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
44
|
Luxán G, Stewen J, Díaz N, Kato K, Maney SK, Aravamudhan A, Berkenfeld F, Nagelmann N, Drexler HC, Zeuschner D, Faber C, Schillers H, Hermann S, Wiseman J, Vaquerizas JM, Pitulescu ME, Adams RH. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. eLife 2019; 8:45863. [PMID: 31782728 PMCID: PMC6884395 DOI: 10.7554/elife.45863] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
The homeostasis of heart and other organs relies on the appropriate provision of nutrients and functional specialization of the local vasculature. Here, we have used mouse genetics, imaging and cell biology approaches to investigate how homeostasis in the adult heart is controlled by endothelial EphB4 and its ligand ephrin-B2, which are known regulators of vascular morphogenesis and arteriovenous differentiation during development. We show that inducible and endothelial cell-specific inactivation of Ephb4 in adult mice is compatible with survival, but leads to rupturing of cardiac capillaries, cardiomyocyte hypertrophy, and pathological cardiac remodeling. In contrast, EphB4 is not required for integrity and homeostasis of capillaries in skeletal muscle. Our analysis of mutant mice and cultured endothelial cells shows that EphB4 controls the function of caveolae, cell-cell adhesion under mechanical stress and lipid transport. We propose that EphB4 maintains critical functional properties of the adult cardiac vasculature and thereby prevents dilated cardiomyopathy-like defects.
Collapse
Affiliation(s)
- Guillermo Luxán
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jonas Stewen
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Noelia Díaz
- Regulatory Genomics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sathish K Maney
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Frank Berkenfeld
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Hannes Ca Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Hermann Schillers
- Institute for Physiology II, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - John Wiseman
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Juan M Vaquerizas
- Regulatory Genomics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|