1
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. J Cell Biol 2025; 224:e202406153. [PMID: 40261303 PMCID: PMC12013514 DOI: 10.1083/jcb.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells, macrophages, and cultured human cells by facilitating the trafficking of cargos that are acted on by peripherally localized dynein. Our data suggest that CCSer2 disfavors the interaction between dynein and its regulator Ndel1 at the cell edge, resulting in localized dynein activation. These findings support a model where the spatial specificity of dynein is achieved by the localization of proteins that trigger Ndel1's release from dynein. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via regulating Ndel1-dynein interaction.
Collapse
Affiliation(s)
- Juliana L. Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Catherine M. Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Morgan E. DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Mercado Soto NM, Horn A, Keller NP, Huttenlocher A, Wagner AS. Larval zebrafish burn wound infection model reveals conserved innate immune responses against diverse pathogenic fungi. mBio 2025; 16:e0348024. [PMID: 40197062 PMCID: PMC12077223 DOI: 10.1128/mbio.03480-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans. Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell-depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden, whereas neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for the successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds.IMPORTANCESecondary fungal infections within burn wound injuries are a significant problem that delays wound healing and increases the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin elucidating both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans, common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.
Collapse
Affiliation(s)
- Nayanna M. Mercado Soto
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison Department of Pediatrics, Madison, Wisconsin, USA
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
3
|
Ma Y, Hui KL, Ambaw YA, Walther TC, Farese RV, Lengyel M, Gelashvili Z, Lu D, Niethammer P. DHRS7 Integrates NADP +/NADPH Redox Sensing with Inflammatory Lipid Signalling via the Oxoeicosanoid Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636725. [PMID: 39975387 PMCID: PMC11839141 DOI: 10.1101/2025.02.05.636725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During the innate immune response at epithelial wound sites, oxidative stress acts microbicidal and-mechanistically less well understood-as an immune and resilience signal. The reversible sulfhydryl (SH) oxidation of kinases, phosphatases, and transcription factors constitute the perhaps best-known redox signalling paradigm, whereas mechanisms that transduce metabolic redox cues, such as redox cofactor balance, remain little explored. Here, using mammalian cells, microsomes, and live zebrafish, we identify DHRS7, a short-chain fatty acid dehydrogenase/reductase (SDR), as conserved, 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Under oxidative stress, DHRS7 consumes NADP+ to convert arachidonic acid (AA)-derived 5(S)-HETE into the inflammatory lipid 5-KETE, which activates leukocyte chemotaxis via the OXER1 receptor. While Dhrs7 acts as a NADPH-dependent 5-KETE sink in unstressed, healthy tissue, it promotes rapid, 5-KETE dependent leukocytic inflammation in wounded zebrafish skin. Thus, DHRS7 epitomizes an underappreciated mode of redox signalling-beyond classic SH oxidation-that leverages NADPH metabolism to generate or quench a paracrine lipid signal. Metabolic redox sensors like DHRS7 might be promising therapeutic targets in diseases characterized by disturbed redox balance.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yohannes A. Ambaw
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias C. Walther
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Robert V. Farese
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miklos Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Ramakrishnan G, Miskolci V, Hunter M, Giese MA, Münch D, Hou Y, Eliceiri KW, Lasarev MR, White RM, Huttenlocher A. Real-time imaging reveals a role for macrophage protrusive motility in melanoma invasion. J Cell Biol 2025; 224:e202403096. [PMID: 39570286 PMCID: PMC11586626 DOI: 10.1083/jcb.202403096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Macrophages are primary cells of the innate immune system that mediate tumor progression. However, the motile behavior of macrophages and interactions with tumor cells are not well understood. Here, we exploit the optical transparency of larval zebrafish and perform real-time imaging of macrophage-melanoma interactions. We found that macrophages are highly motile in the tumor microenvironment. Macrophages extend dynamic projections between tumor cells that precede invasive melanoma migration. Modulating macrophage motility with a dominant inhibitory mutation in Rac2 inhibits recruitment to the tumor and impairs tumor invasion. However, a hyperactivating mutation in Rac2 does not affect macrophage recruitment but limits macrophage projections into the melanoma mass and reduces invasive melanoma cell migration. Taken together, these findings reveal a role for Rac2-mediated macrophage protrusive motility in melanoma invasion.
Collapse
Affiliation(s)
- Gayathri Ramakrishnan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Miranda Hunter
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Daniela Münch
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Michael R. Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Richard M. White
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
5
|
Segone RT, Sandasi M, Ncube E, Gouws C, Viljoen AM. Insights into the wound-healing properties of medicinally important South African Bulbine species - A comparative study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118901. [PMID: 39369917 DOI: 10.1016/j.jep.2024.118901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE South Africa harbours a large number of Bulbine (Xanthorrhoeaceae) species, which includes ethnobotanically important indigenous species. Traditionally, Bulbine leaves are used by several ethnic groups in South Africa to treat dermatological conditions including wounds, which led to the development of Bulbine-containing cosmetic products. However, scientific evidence is needed to support the claims in treating skin conditions and wound-healing. AIM OF THE STUDY This comparative study was undertaken to investigate the wound-healing properties of five Bulbine species indigenous to South Africa, using in vitro and in vivo models. MATERIALS AND METHODS Five Bulbine species, B. abyssinica, B. asphodeloides, B. frutescens, B. latifolia and B. narcissifolia were collected from natural populations in the Eastern Cape Province of South Africa. The chemical profiles of the methanol leaf extracts were acquired using ultra-performance liquid chromatography with photodiode array detection in tandem with quadrupole time-of-flight mass spectrometry. The methyl thiazolyl tetrazolium (MTT) assay and maximum tolerated concentration (MTC) assay were used to assess the in vitro and in vivo toxicity of the extracts, respectively. The in vitro scratch assay was employed to monitor cell migration and wound-closure in a HaCaT cell monolayer, following treatment with the plant extracts for 48 h. In vivo wound-healing potential was determined using the zebrafish larvae caudal fin amputation assay, assessed in three-days post fertilization larvae and various concentrations of the plant extracts were tested in both assays to determine the concentration-response effect. Data were analysed using MS Excel® enhanced with the Real Statistics add-in. RESULTS AND DISCUSSION Using UPLC-MS, 11 major compounds were tentatively identified in the five Bulbine species. Although the compounds varied between species, all five Bulbine species contained the phenylanthraquinone, knipholone. Kaempferol glucoside was identified in four species, but not in B. abyssinica. The five Bulbine species were non-cytotoxic (cell viability > 80%) towards keratinocytes at all three tested concentrations. However, B. latifolia was toxic towards zebrafish larvae at all the tested concentrations, while the other four species were non-toxic at low concentrations. The results of the scratch assay revealed that B. abyssinica was the most active extract at 100 μg/mL. Compared to the untreated control, wound-closure notably increased by 28% (p < 0.05), 44% (p < 0.01) and 34% (p < 0.05) after 12 h, 24 h and 36 h post-treatment, respectively. Although none of the species achieved 100% caudal fin regeneration by the end of the treatment period, B. frutescens demonstrated the highest regeneration (90%) and most significant difference (p < 0.01) compared to the untreated control. CONCLUSION The results revealed that the five Bulbine species have complex chemical profiles, however, they share major compound classes (i.e. phenylanthroquinones and flavonoid analogues) across the species. The study highlights the wound-healing properties of the five species, which is consistent with their traditional use.
Collapse
Affiliation(s)
- Ramoagi T Segone
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria, 0001, South Africa
| | - Efficient Ncube
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, 2520, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
6
|
Horn A, Wagner AS, Hou Y, Zajac JC, Fister AM, Chen Z, Pashaj J, Junak M, Mercado Soto NM, Gibson A, Huttenlocher A. Isotonic medium treatment limits burn wound microbial colonisation and improves tissue repair. Wound Repair Regen 2025; 33:e13242. [PMID: 39654306 PMCID: PMC11628904 DOI: 10.1111/wrr.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Burn injuries undergo a complex healing process in which progressive spreading of epithelial damage can lead to secondary complications such as wound infection, which is a major driver of mortality among burn patients. We recently reported that burning larval zebrafish triggers dysregulated keratinocyte dynamics compared to mechanical injury. Here, we investigate keratinocyte behaviour following burn injury and the subsequent potential for microbial colonisation of burn wounds over time. Real-time imaging, coupled with tracking of photoconverted cells, revealed that early keratinocyte motility contributes to the spread of epithelial damage beyond the initial site of burn injury and that increased epithelial damage was associated with wound colonisation by the fungal pathogen Candida albicans. Modulating osmotic balance by treating larval zebrafish with isotonic medium limited the spread of epithelial damage and reduced microbial colonisation of burn wounds. Using cultured human skin, we found that topical treatment with isotonic solution (saline) similarly prevented the spread of epithelial damage over time. These findings indicate that keratinocyte behaviour contributes to burn wound progression in larval zebrafish and links keratinocyte dynamics to microbial colonisation of burn wounded tissue.
Collapse
Affiliation(s)
- Adam Horn
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Jocelyn C. Zajac
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Alexandra M. Fister
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Biology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Zhili Chen
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Biology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Joana Pashaj
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Mary Junak
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Nayanna M. Mercado Soto
- Microbiology Doctoral Training Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Angela Gibson
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Department of Pediatrics, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
7
|
Mercado Soto NM, Horn A, Keller NP, Huttenlocher A, Wagner AS. A conserved in vivo burn wound infection model for diverse pathogenic fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623264. [PMID: 39605401 PMCID: PMC11601320 DOI: 10.1101/2024.11.12.623264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans . Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden while neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection, and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds. Importance Secondary fungal infections within burn wound injuries are a significant problem that delay wound healing and increase the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin to elucidate both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans , common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.
Collapse
|
8
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U. Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Molly H. Anderson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
9
|
Fister AM, Horn A, Lasarev MR, Huttenlocher A. Damage-induced basal epithelial cell migration modulates the spatial organization of redox signaling and sensory neuron regeneration. eLife 2024; 13:RP94995. [PMID: 39207919 PMCID: PMC11361710 DOI: 10.7554/elife.94995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production, and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
Collapse
Affiliation(s)
- Alexandra M Fister
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Michael R Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
- Department of Pediatrics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
10
|
Hou Y, Khatri P, Rindy J, Schultz Z, Gao A, Chen Z, Gibson AL, Huttenlocher A, Dinh HQ. Single-cell Transcriptional Landscape of Temporal Neutrophil Response to Burn Wound in Larval Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:469-480. [PMID: 38922186 PMCID: PMC11300161 DOI: 10.4049/jimmunol.2400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Neutrophils accumulate early in tissue injury. However, the cellular and functional heterogeneity of neutrophils during homeostasis and in response to tissue damage remains unclear. In this study, we use larval zebrafish to understand neutrophil responses to thermal injury. Single-cell transcriptional mapping of myeloid cells during a 3-d time course in burn and control larvae revealed distinct neutrophil subsets and their cell-cell interactions with macrophages across time and conditions. The trajectory formed by three zebrafish neutrophil subsets resembles human neutrophil maturation, with varying transition patterns between conditions. Through ligand-receptor cell-cell interaction analysis, we found that neutrophils communicate more in burns in a pathway and temporal manner. Finally, we identified the correlation between zebrafish myeloid signatures and human burn severity, establishing GPR84+ neutrophils as a potential marker of early innate immune response in burns. This work builds a comparative single-cell transcriptomic framework to identify neutrophil markers of tissue damage using model organisms.
Collapse
Affiliation(s)
- Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Parth Khatri
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zachery Schultz
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Anqi Gao
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zhili Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Angela L.F. Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
11
|
Iriawati I, Vitasasti S, Rahmadian FNA, Barlian A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS One 2024; 19:e0304335. [PMID: 38959219 PMCID: PMC11221653 DOI: 10.1371/journal.pone.0304335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.
Collapse
Affiliation(s)
- Iriawati Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Safira Vitasasti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
12
|
Isiaku AI, Zhang Z, Pazhakh V, Lieschke GJ. A nox2/cybb zebrafish mutant with defective myeloid cell reactive oxygen species production displays normal initial neutrophil recruitment to sterile tail injuries. G3 (BETHESDA, MD.) 2024; 14:jkae079. [PMID: 38696730 PMCID: PMC11152067 DOI: 10.1093/g3journal/jkae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.
Collapse
Affiliation(s)
- Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zuobing Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Center and The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
13
|
Fister AM, Horn A, Lasarev M, Huttenlocher A. Damage-induced basal epithelial cell migration modulates the spatial organization of redox signaling and sensory neuron regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532628. [PMID: 36993176 PMCID: PMC10055054 DOI: 10.1101/2023.03.14.532628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue-scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
Collapse
|
14
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
15
|
Shen S, Miskolci V, Dewey CN, Sauer JD, Huttenlocher A. Infection induced inflammation impairs wound healing through IL-1β signaling. iScience 2024; 27:109532. [PMID: 38577110 PMCID: PMC10993181 DOI: 10.1016/j.isci.2024.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/14/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Wound healing is impaired by infection; however, how microbe-induced inflammation modulates tissue repair remains unclear. We took advantage of the optical transparency of zebrafish and a genetically tractable microbe, Listeria monocytogenes, to probe the role of infection and inflammation in wound healing. Infection with bacteria engineered to activate the inflammasome, Lm-Pyro, induced persistent inflammation and impaired healing despite low bacterial burden. Inflammatory infections induced il1b expression and blocking IL-1R signaling partially rescued wound healing in the presence of persistent infection. We found a critical window of microbial clearance necessary to limit persistent inflammation and enable efficient wound repair. Taken together, our findings suggest that the dynamics of microbe-induced tissue inflammation impacts repair in complex tissue damage independent of bacterial load, with a critical early window for efficient tissue repair.
Collapse
Affiliation(s)
- Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Hou Y, Khatri P, Rindy J, Schultz Z, Gao A, Chen Z, Gibson ALF, Huttenlocher A, Dinh HQ. Single-cell transcriptional landscape of temporal neutrophil response to burn wound in larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587641. [PMID: 38617269 PMCID: PMC11014537 DOI: 10.1101/2024.04.01.587641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Neutrophils accumulate early in tissue injury. However, the cellular and functional heterogeneity of neutrophils during homeostasis and in response to tissue damage remains unclear. Here, we use larval zebrafish to understand neutrophil responses to thermal injury. Single-cell transcriptional mapping of myeloid cells during a 3-day time course in burn and control larvae revealed distinct neutrophil subsets and their cell-cell interactions with macrophages across time and conditions. The trajectory formed by three zebrafish neutrophil subsets resembles human neutrophil maturation, with varying transition patterns between conditions. Through ligand-receptor cell-cell interaction analysis, we found neutrophils communicate more in burns in a pathway and temporal manner. Finally, we identified the correlation between zebrafish myeloid signatures and human burn severity, establishing GPR84+ neutrophils as a potential marker of early innate immune response in burns. This work builds the molecular foundation and a comparative single-cell genomic framework to identify neutrophil markers of tissue damage using model organisms.
Collapse
Affiliation(s)
- Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Parth Khatri
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Julie Rindy
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zachery Schultz
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Anqi Gao
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zhili Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Angela LF Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research;Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
17
|
Sudhakar MP, Ali S, Chitra S. Scrutinizing the effect of rGO-cuttlefish bone hydroxyapatite composite infused carrageenan membrane towards wound reconstruction. Int J Biol Macromol 2024; 262:130155. [PMID: 38365153 DOI: 10.1016/j.ijbiomac.2024.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Carrageenan is an emerging biopolymer for wound healing and regenerative applications. In this study, reduced graphene oxide (rGO) and hydroxyapatite (HAp) nano-composites infused carrageenan bioactive membrane was fabricated. Here, hydroxyapatite was synthesized from cuttlefish bone (CF-HAp) and its properties were compared with that of chemically synthesized HAp. Crystalline Ca5(PO4)3(OH) and Ca3(PO4)2) phases were obtained in cuttlefish bone derived HAp. Reduced graphene oxide was synthesized and composites were prepared with chemical HAp and CF-HAp. FT-IR spectral analysis showed the imprints of hydroxyapatite on the membrane and also nano-structured particles were evident through morphological estimations that confirm the distribution of nano-particles on the carrageenan membrane. Nano-particulates infused carrageenan membrane showed the maximum tensile strength, in which graphene incorporated carrageenan bioactive membrane showed highest stability of 15.26 MPa. The contact angle of chemical HAp infused carrageenan membrane (CAR-HAp) showed more hydrophilic in nature (48.63° ± 7.47°) compared to control (61.77° ± 1.28°). Bio-compatibility features enunciate the optimal compatibility of fabricated bioactive membrane with fibroblast cell line; simultaneously, CAR-rGO-CF-HAp showed tremendous wound healing behavior with zebrafish model. Hence, fabricated bioactive membrane with the infusion of rGO- hydroxyapatite derived from cuttlefish bone was found to be a versatile biopolymer membrane for wound healing application.
Collapse
Affiliation(s)
- M P Sudhakar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (Govt. of India), Pallikaranai, Chennai 600 100, Tamil Nadu, India
| | - Saheb Ali
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - S Chitra
- Department of Biomaterials (Prosthodontics), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
18
|
Boutillon A. Organizing collective cell migration through guidance by followers. C R Biol 2023; 346:117-126. [PMID: 38095130 DOI: 10.5802/crbiol.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Morphogenesis, wound healing, and some cancer metastases rely on the collective migration of groups of cells. In these processes, guidance and coordination between cells and tissues are critical. While strongly adherent epithelial cells have to move collectively, loosely organized mesenchymal cells can migrate as individual cells. Nevertheless, many of them migrate collectively. This article summarizes how migratory reactions to cell-cell contacts, also called "contact regulation of locomotion" behaviors, organize mesenchymal collective cell migration. It focuses on one recently discovered mechanism called "guidance by followers", through which a cell is oriented by its immediate followers. In the gastrulating zebrafish embryo, during embryonic axis elongation, this phenomenon is responsible for the collective migration of the leading tissue, the polster, and its guidance by the following posterior axial mesoderm. Such guidance of migrating cells by followers ensures long-range coordination of movements and developmental robustness. Along with other "contact regulation of locomotion" behaviors, this mechanism contributes to organizing collective migration of loose populations of cells.
Collapse
|
19
|
Ding P, Xiang C, Li X, Chen H, Shi X, Li X, Huang C, Yu Y, Qi J, Li AJ, Zhang L, Hu G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163480. [PMID: 37068667 DOI: 10.1016/j.scitotenv.2023.163480] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants and cause neurotoxicity in various organisms. However, previous studies that analyzed the effects of MPs mainly focused on virgin polystyrene (V-PS) as representative models of MPs, and the mechanism underlying the neurotoxicity of photoaged polystyrene (P-PS) remains largely unknown. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0.1-100 μg/L) of V-PS and P-PS(10 μm). The results indicated that UV radiation accelerated the aging process and changed physical and chemical properties of PS. Whereas exposure to both V-PS and P-PS at low concentrations (100 μg/L) significantly reduced the locomotor behavior of zebrafish larvae, P-PS caused more severe neurotoxicity compared to V-PS. The activity of antioxidant enzymes (SOD, CAT, and GST) and MDA content were significantly altered in zebrafish exposed to 10-100 μg/L of P-PS. Similarly, exposure to P-PS significantly increased neurotransmitter (5-HT, GABA, DA, and ACh) levels and activity of AChE, ChAT, and ChE. Star plots based on integrated biomarker response (IBR) values showed more incline toward neurotransmitter biomarkers in response to increasing P-PS concentration, and the behavioral parameters negatively correlated with the neurotransmitter biomarkers. Further investigations revealed that the expression of neurotransmission- (e.g., ache, drd3, 5th2c, and gat1) and oxidative stress- (e.g., cat1, sod1, gpx1a, and gstrl) related genes was significantly affected by PS in larval zebrafish. Thus, this study provides new insights on the potential risks of MPs into the environment.
Collapse
Affiliation(s)
- Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
20
|
Griebel M, Vasan A, Chen C, Eyckmans J. Fibroblast clearance of damaged tissue following laser ablation in engineered microtissues. APL Bioeng 2023; 7:016112. [PMID: 36938481 PMCID: PMC10017124 DOI: 10.1063/5.0133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 03/15/2023] Open
Abstract
Although the mechanisms underlying wound healing are largely preserved across wound types, the method of injury can affect the healing process. For example, burn wounds are more likely to undergo hypertrophic scarring than are lacerations, perhaps due to the increased underlying damage that needs to be cleared. This tissue clearance is thought to be mainly managed by immune cells, but it is unclear if fibroblasts contribute to this process. Herein, we utilize a 3D in vitro model of stromal wound healing to investigate the differences between two modes of injury: laceration and laser ablation. We demonstrate that laser ablation creates a ring of damaged tissue around the wound that is cleared by fibroblasts prior to wound closure. This process is dependent on ROCK and dynamin activity, suggesting a phagocytic or endocytic process. Transmission electron microscopy of fibroblasts that have entered the wound area reveals large intracellular vacuoles containing fibrillar extracellular matrix. These results demonstrate a new model to study matrix clearance by fibroblasts in a 3D soft tissue. Because aberrant wound healing is thought to be caused by an imbalance between matrix degradation and production, this model, which captures both aspects, will be a valuable addition to the study of wound healing.
Collapse
Affiliation(s)
- Megan Griebel
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| | - Anish Vasan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
21
|
Ma Y, Hui KL, Gelashvili Z, Niethammer P. Oxoeicosanoid signaling mediates early antimicrobial defense in zebrafish. Cell Rep 2023; 42:111974. [PMID: 36640321 PMCID: PMC9973399 DOI: 10.1016/j.celrep.2022.111974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
5-oxoETE is a bioactive lipid derived from arachidonic acid generated when phospholipase A2 activation coincides with oxidative stress. Through its G protein-coupled receptor OXER1, pure 5-oxoETE is a potent leukocyte chemoattractant. Yet, its physiological function has remained elusive owing to the unusual OXER1 conservation pattern. OXER1 is conserved from fish to primates but not in rodents, precluding genetic loss-of-function studies in mouse. To determine its physiological role, we combine transcriptomic, lipidomic, and intravital imaging assays with genetic perturbations of the OXER1 ortholog hcar1-4 in zebrafish. Pseudomonas aeruginosa infection induces the synthesis of 5-oxoETE and its receptor, along with other inflammatory pathways. Hcar1-4 deletion attenuates neutrophil recruitment and decreases post-infection survival, which could be rescued by ectopic expression of hcar1-4 or human OXER1. By revealing 5-oxoETE as dominant lipid regulator of the early antimicrobial response in a non-rodent vertebrate, our work expands the current, rodent-centric view of early inflammation.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
22
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
23
|
Sipka T, Park SA, Ozbilgic R, Balas L, Durand T, Mikula K, Lutfalla G, Nguyen-Chi M. Macrophages undergo a behavioural switch during wound healing in zebrafish. Free Radic Biol Med 2022; 192:200-212. [PMID: 36162743 DOI: 10.1016/j.freeradbiomed.2022.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
In response to wound signals, macrophages are immediately recruited to the injury where they acquire distinct phenotypes and functions, playing crucial roles both in host defense and healing process. Although macrophage phenotypes have been intensively studied during wound healing, mostly using markers and expression profiles, the impact of the wound environment on macrophage shape and behaviour, and the underlying mechanisms deserve more in-depth investigation. Here, we sought to characterize the dynamics of macrophage recruitment and behaviour during aseptic wounding of the caudal fin fold of the zebrafish larva. Using a photo-conversion approach, we demonstrated that macrophages are recruited to the wounded fin fold as a single wave where they switch their phenotype. Intravital imaging of macrophage shape and trajectories revealed that wound-macrophages display a highly stereotypical set of behaviours and change their shape from amoeboid to elongated shape as wound healing proceeds. Using a pharmacological inhibitor of 15-lipoxygenase and protectin D1, a specialized pro-resolving lipid, we investigated the role of polyunsaturated fatty acid metabolism in macrophage behaviour. While inhibition of 15-lipoxygenase using PD146176 or Nordihydroguaiaretic acid (NDGA) decreases the switch from amoeboid to elongated shape, protectin D1 accelerates macrophage reverse migration and favours elongated morphologies. Altogether, our findings suggest that individual macrophages at the wound switch their phenotype leading to important changes in behaviour and shape to adapt to changing environment, and highlight the crucial role of lipid metabolism in the control of macrophage behaviour plasticity during inflammation in vivo.
Collapse
Affiliation(s)
- Tamara Sipka
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Seol Ah Park
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | - Laurence Balas
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Karol Mikula
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | | |
Collapse
|
24
|
Hui SP, Sugimoto K, Sheng DZ, Kikuchi K. Regulatory T cells regulate blastemal proliferation during zebrafish caudal fin regeneration. Front Immunol 2022; 13:981000. [PMID: 36059461 PMCID: PMC9429828 DOI: 10.3389/fimmu.2022.981000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
The role of T cells in appendage regeneration remains unclear. In this study, we revealed an important role for regulatory T cells (Tregs), a subset of T cells that regulate tolerance and tissue repair, in the epimorphic regeneration of zebrafish caudal fin tissue. Upon amputation, fin tissue-resident Tregs infiltrate into the blastema, a population of progenitor cells that produce new fin tissues. Conditional genetic ablation of Tregs attenuates blastemal cell proliferation during fin regeneration. Blastema-infiltrating Tregs upregulate the expression of igf2a and igf2b, and pharmacological activation of IGF signaling restores blastemal proliferation in Treg-ablated zebrafish. These findings further extend our understandings of Treg function in tissue regeneration and repair.
Collapse
Affiliation(s)
- Subhra P. Hui
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India
- *Correspondence: Subhra P. Hui, ; Kazu Kikuchi,
| | - Kotaro Sugimoto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Delicia Z. Sheng
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, University of New South Wales, Kensington, NSW, Australia
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- *Correspondence: Subhra P. Hui, ; Kazu Kikuchi,
| |
Collapse
|
25
|
Li J, Wen W, Zhang S, Zhou C, Feng Y, Li X. The Expression and Function of lincRNA-154324 and the Adjoining Protein-Coding Gene vmp1 in the Caudal Fin Regeneration of Zebrafish. Int J Mol Sci 2022; 23:ijms23168944. [PMID: 36012210 PMCID: PMC9409064 DOI: 10.3390/ijms23168944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Caudal fin regeneration is regulated by a variety of mechanisms, but the role of long non-coding RNA (lncRNA) has rarely been studied. The present study aimed to describe the landscape of lncRNAs during caudal fin regeneration using whole transcriptome sequencing, and then to conduct a functional study on the target lncRNAs using real-time fluorescent quantitative PCR (RT-qPCR), in situ hybridization, and the CRISPR/Cas9 method for lncRNA gene knockout. The results of the transcriptome sequencing showed that a total of 381 lncRNAs were differentially expressed, among which ENSDART00000154324 (lincRNA-154324) was found to be highly related to caudal fin regeneration, and thus it was chosen as the target lncRNA for the subsequent functional study. The results regarding the temporal and spatial expression of lincRNA-154324 and the gene knockout results from CRISPR/Cas9 indicated that lincRNA-154324 is involved in the caudal fin regeneration of zebrafish. Importantly, we serendipitously discovered that the cis correlation coefficient between lincRNA-154324 and its neighboring gene vacuole membrane protein 1 (vmp1) is extremely high, and they are essential for the process of caudal fin regeneration. Moreover, studies have found that vmp1 plays an important role in protein secretion, organelle formation, multicellular development, and autophagy. Collectively, our result may provide a framework for the identification and analysis of lncRNAs involved in the regeneration of the zebrafish caudal fin.
Collapse
Affiliation(s)
- Jing Li
- The School of Medical Humanities, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wenjun Wen
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Shuqiang Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Chune Zhou
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: or
| |
Collapse
|
26
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
27
|
Bohaud C, Johansen MD, Varga B, Contreras-Lopez R, Barthelaix A, Hamela C, Sapède D, Cloitre T, Gergely C, Jorgensen C, Kremer L, Djouad F. Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Front Immunol 2022; 13:838425. [PMID: 35401552 PMCID: PMC8987025 DOI: 10.3389/fimmu.2022.838425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.
Collapse
Affiliation(s)
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Dora Sapède
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- *Correspondence: Farida Djouad,
| |
Collapse
|
28
|
Gence L, Fernezelian D, Bringart M, Veeren B, Christophe A, Brion F, Meilhac O, Bascands JL, Diotel N. Hypericum lanceolatum Lam. Medicinal Plant: Potential Toxicity and Therapeutic Effects Based on a Zebrafish Model. Front Pharmacol 2022; 13:832928. [PMID: 35359845 PMCID: PMC8963451 DOI: 10.3389/fphar.2022.832928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Hypericum lanceolatum Lam. (H. lanceolatum) is a traditional medicinal plant from Reunion Island used for its pleiotropic effects mainly related to its antioxidant activity. The present work aimed to 1) determine the potential toxicity of the plant aqueous extract in vivo and 2) investigate its putative biological properties using several zebrafish models of oxidative stress, regeneration, estrogenicity, neurogenesis and metabolic disorders. First, we characterized the polyphenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified chlorogenic acid isomers, quercetin and kaempferol derivatives as the major compounds. We then evaluated for the first time the toxicity of an aqueous extract of H. lanceolatum and determined a maximum non-toxic concentration (MNTC) in zebrafish eleutheroembryos from 0 to 96 hpf following OECD (Organization for Economic Cooperation and Development) guidelines. This MNTC test was also determined on hatched eleutheroembryos after 2 days of treatment (from 3 to 5 dpf). In our study, the anti-estrogenic effects of H. lanceolatum are supported by the data from the EASZY assay. In a tail amputation model, we showed that H. lanceolatum at its MNTC displays antioxidant properties, favors immune cell recruitment and tissue regeneration. Our results also highlighted its beneficial effects in metabolic disorders. Indeed, H. lanceolatum efficiently reduces lipid accumulation and body mass index in overfed larva- and adult-models, respectively. In addition, we show that H. lanceolatum did not improve fasting blood glucose levels in a hyperglycemic zebrafish model but surprisingly inhibited neurogenesis impairment observed in diabetic conditions. In conclusion, our study highlights the antioxidant, pro-regenerative, anti-lipid accumulation and pro-neurogenic effects of H. lanceolatum in vivo and supports the use of this traditional medicinal plant as a potential alternative in the prevention and/or treatment of metabolic disorders.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Matthieu Bringart
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Armelle Christophe
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - François Brion
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| | - Nicolas Diotel
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| |
Collapse
|
29
|
Robertson TF, Huttenlocher A. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent. Immunol Rev 2022; 306:258-270. [PMID: 35023170 PMCID: PMC8855992 DOI: 10.1111/imr.13061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
The ability to directly observe leukocyte behavior in vivo has dramatically expanded our understanding of the immune system. Zebrafish are particularly amenable to the high-resolution imaging of leukocytes during both homeostasis and inflammation. Due to its natural transparency, intravital imaging in zebrafish does not require any surgical manipulation. As a result, zebrafish are particularly well-suited for the long-term imaging required to observe the temporal and spatial events during the onset and resolution of inflammation. Here, we review major insights about neutrophil and macrophage function gained from real-time imaging of zebrafish. We discuss neutrophil reverse migration, the process whereby neutrophils leave sites of tissue damage and resolve local inflammation. Further, we discuss the current tools available for investigating immune function in zebrafish and how future studies that simultaneously image multiple leukocyte subsets can be used to further dissect mechanisms that regulate both the onset and resolution of inflammation.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
30
|
Thrikawala S, Niu M, Keller NP, Rosowski EE. Cyclooxygenase production of PGE2 promotes phagocyte control of A. fumigatus hyphal growth in larval zebrafish. PLoS Pathog 2022; 18:e1010040. [PMID: 35333905 PMCID: PMC8986117 DOI: 10.1371/journal.ppat.1010040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/06/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Invasive aspergillosis is a common opportunistic infection, causing >50% mortality in infected immunocompromised patients. The specific molecular mechanisms of the innate immune system that prevent pathogenesis of invasive aspergillosis in immunocompetent individuals are not fully understood. Here, we used a zebrafish larva-Aspergillus infection model to identify cyclooxygenase (COX) enzyme signaling as one mechanism that promotes host survival. Larvae exposed to the pan-COX inhibitor indomethacin succumb to infection at a significantly higher rate than control larvae. COX signaling is both macrophage- and neutrophil-mediated. However, indomethacin treatment has no effect on phagocyte recruitment. Instead, COX signaling promotes phagocyte-mediated inhibition of germination and invasive hyphal growth. Increased germination and invasive hyphal growth is also observed in infected F0 crispant larvae with mutations in genes encoding for COX enzymes (ptgs2a/b). Protective COX-mediated signaling requires the receptor EP2 and exogenous prostaglandin E2 (PGE2) rescues indomethacin-induced decreased immune control of fungal growth. Collectively, we find that COX signaling activates the PGE2-EP2 pathway to increase control A. fumigatus hyphal growth by phagocytes in zebrafish larvae.
Collapse
Affiliation(s)
- Savini Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
31
|
Schiavo RK, Tamplin OJ. Vascular endothelial growth factor c regulates hematopoietic stem cell fate in the dorsal aorta. Development 2022; 149:dev199498. [PMID: 34919128 PMCID: PMC8917412 DOI: 10.1242/dev.199498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.
Collapse
|
32
|
Miskolci V, Tweed KE, Lasarev MR, Britt EC, Walsh AJ, Zimmerman LJ, McDougal CE, Cronan MR, Fan J, Sauer JD, Skala MC, Huttenlocher A. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. eLife 2022; 11:66080. [PMID: 35200139 PMCID: PMC8871371 DOI: 10.7554/elife.66080] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα- macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair.
Collapse
Affiliation(s)
- Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Kelsey E Tweed
- Morgridge Institute for ResearchMadisonUnited States,Department of Biomedical Engineering, University of Wisconsin-MadisonMadisonUnited States
| | - Michael R Lasarev
- Department of Biostatistics & Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| | - Emily C Britt
- Morgridge Institute for ResearchMadisonUnited States,Department of Nutritional Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - Alex J Walsh
- Morgridge Institute for ResearchMadisonUnited States
| | - Landon J Zimmerman
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Courtney E McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of MedicineDurhamUnited States
| | - Jing Fan
- Morgridge Institute for ResearchMadisonUnited States,Department of Nutritional Sciences, University of Wisconsin-MadisonMadisonUnited States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Melissa C Skala
- Morgridge Institute for ResearchMadisonUnited States,Department of Biomedical Engineering, University of Wisconsin-MadisonMadisonUnited States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States,Department of Pediatrics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
33
|
Wurster S, Ruiz OE, Tatara AM, Kontoyiannis DP, Eisenhoffer GT. Protocol for fungal infection following the induction of epithelial cell loss in larval zebrafish. STAR Protoc 2021; 2:100963. [PMID: 34849488 PMCID: PMC8609045 DOI: 10.1016/j.xpro.2021.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epithelia provide the first line of defense against foreign pathogens, and disruption of tissue homeostasis frequently allows for opportunistic infections. Here we provide a protocol for induction of epithelial cell loss in zebrafish larvae, followed by infection with fungal pathogens. Details are provided for monitoring larval survival after infection, assessment of fungal burden, and prophylactic treatment with antifungal compounds. Limitations of the protocol include potential antifungal toxicity and high fungal inoculums to induce lethal infection with some pathogenic fungal species. For complete details on the use and execution of this protocol, please refer to Wurster et al. (2021).
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Oscar E. Ruiz
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander M. Tatara
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T. Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
34
|
Balkrishna A, Lochab S, Joshi M, Srivastava J, Varshney A. Divya-Herbal-Peya Decoction Harmonizes the Inflammatory Response in Lipopolysaccharide-Induced Zebrafish Model. J Exp Pharmacol 2021; 13:937-955. [PMID: 34880683 PMCID: PMC8648330 DOI: 10.2147/jep.s328864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Divya-Herbal-Peya (DHP) is a plant-based decoction containing fourteen herbs in precise quantities; usually prescribed by the practitioners in Ayurveda to alleviate stress and minimize the exasperating symptoms of recurring infections. Our study aims to provide an experimental validation to the immunomodulatory properties of DHP. Methods Physico-chemical analysis of DHP was performed to evaluate the presence of secondary metabolites. The phytochemicals were then identified and quantitated through HPTLC, UHPLC, and GC-MS techniques. To address the scientific rationale behind DHP, lipopolysaccharide (LPS) was intraperitoneally injected in adult zebrafish to develop inflammatory response. Following LPS-induction, abnormality in locomotory behaviour was determined by evaluating the relative swim velocity and the rate of turning in experimental zebrafish. Pathophysiological effects were determined through opercular frequency, behavioural fever, and caudal fin damage. LPS-mediated inflammation was measured of pro-inflammatory cytokines, TNFα, IL-6, and IL-1β expression in the serum of study animals, by RT-PCR. Results Our study phytochemically characterized and ascertained the presence of glycyrrhizin, rosmarinic acid, gingerol, cinnamic acid, protocatechuic acid, gallic acid, ellagic acid, piperine and cinnamaldehyde in DHP decoction. LPS induced aberrant locomotory patterns, behavioural fever and caudal fin damage in zebrafish. A significant increase in gene expression levels of pro-inflammatory cytokines, TNFα, IL-6, and IL-1β was also determined. However, these locomotory deviations and behavioural fever were negligible in zebrafish groups pre-administered either with DHP in a dose dependent manner or dexamethasone (DEX). The altered opercular rate, caudal fin damage and elevated transcription levels of pro-inflammatory genes upon LPS-induction were averted in groups pre-treated with DHP and DEX. Conclusion DHP prophylactically prevented the LPS-induced abnormal behaviour and inflammation-related pathophysiology in zebrafish. Immunomodulatory properties of DHP may not have therapeutic intervention, but do confer nutraceutical health benefits against mild infections.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, 249405, Uttarakhand, India.,Patanjali Yog Peeth (UK) Trust, Glasgow, G41 1AU, UK
| | - Savita Lochab
- Department of Biology, Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Monali Joshi
- Department of Chemistry, Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Jyotish Srivastava
- Department of Chemistry, Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, 249405, Uttarakhand, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Liao X, Lan Y, Shao R, Liu J, Liang S, Yin Z, Gudmundsson GH, Bergman P, Wan M. Vitamin D Enhances Neutrophil Generation and Function in Zebrafish (Danio rerio). J Innate Immun 2021; 14:229-242. [PMID: 34564076 DOI: 10.1159/000519183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Vitamin D (VD) is a major regulator of calcium metabolism in many living organisms. In addition, VD plays a key role in regulating innate and adaptive immunity in vertebrates. Neutrophils constitute an important part of the first line of defense against invading microbes; however, the potential effect of VD on neutrophils remains elusive. Thus, in this study zebrafish in different developmental stages were utilized to identify the potential role of VD in the basal homeostasis and functions of neutrophils. Our results showed that addition of exogenous VD3 promoted granulopoiesis in zebrafish larvae. Reciprocally, neutrophil abundance in the intestine of adult zebrafish with a cyp2r1 mutant, lacking the capacity to 25-hydroxylate VD, was reduced. Moreover, VD-mediated granulopoiesis was still observed in gnotobiotic zebrafish larvae, indicating that VD regulates neutrophil generation independent of the microbiota during early development. In contrast, VD was incapable to influence granulopoiesis in adult zebrafish when the commensal bacteria were depleted by antibiotic treatment, suggesting that VD might modulate neutrophil activity via different mechanisms depending on the developmental stage. In addition, we found that VD3 augmented the expression of il-8 and neutrophil recruitment to the site of caudal fin amputation. Finally, VD3 treatment significantly decreased bacterial counts and mortality in zebrafish infected with Edwardsiella tarda (E. tarda) in a neutrophil-dependent manner. Combined, these findings demonstrate that VD regulates granulopoiesis and neutrophil function in zebrafish immunity.
Collapse
Affiliation(s)
- Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jiayu Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Bohaud C, Contreras-Lopez R, De La Cruz J, Terraza-Aguirre C, Wei M, Djouad F, Jorgensen C. Pro-regenerative Dialogue Between Macrophages and Mesenchymal Stem/Stromal Cells in Osteoarthritis. Front Cell Dev Biol 2021; 9:718938. [PMID: 34604219 PMCID: PMC8485936 DOI: 10.3389/fcell.2021.718938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA), the most common degenerative and inflammatory joint disorder, is multifaceted. Indeed, OA characteristics include cartilage degradation, osteophytes formation, subchondral bone changes, and synovium inflammation. The difficulty in discovering new efficient treatments for OA patients up to now comes from the adoption of monotherapy approaches targeting either joint tissue repair/catabolism or inflammation to address the diverse components of OA. When satisfactory, these approaches only provide short-term beneficial effects, since they only result in the repair and not the full structural and functional reconstitution of the damaged tissues. In the present review, we will briefly discuss the current therapeutic approaches used to repair the damaged OA cartilage. We will highlight the results obtained with cell-based products in clinical trials and demonstrate how the current strategies result in articular cartilage repair showing restricted early-stage clinical improvements. In order to identify novel therapeutic targets and provide to OA patients long-term clinical benefits, herein, we will review the basis of the regenerative process. We will focus on macrophages and their ambivalent roles in OA development and tissue regeneration, and review the therapeutic strategies to target the macrophage response and favor regeneration in OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, France
| |
Collapse
|
37
|
Allanki S, Strilic B, Scheinberger L, Onderwater YL, Marks A, Günther S, Preussner J, Kikhi K, Looso M, Stainier DYR, Reischauer S. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration. SCIENCE ADVANCES 2021; 7:eabg6497. [PMID: 34516874 PMCID: PMC8442930 DOI: 10.1126/sciadv.abg6497] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/16/2021] [Indexed: 05/02/2023]
Abstract
Damage-induced fibrotic scarring limits tissue regeneration in mammals and is a leading cause of morbidity. In contrast, species like zebrafish can regenerate damaged tissues without excessive fibrosis. However, whether specific signaling pathways can both limit fibrosis and promote regeneration is unclear. Here, we show that interleukin-11 (Il-11)/Stat3 signaling has such a dual function. Zebrafish lacking Il-11 receptor function display severely compromised heart, fin, and scale regeneration. Deep phenotyping and transcriptional analysis of adult hearts and fins show that Il-11 signaling drives cellular reprogramming to orchestrate global and tissue-specific regenerative programs and broadly antagonizes hallmarks of adult mammalian scarring. Mechanistically, our data indicate that IL-11 signaling in endothelial cells antagonizes profibrotic transforming growth factor–β signaling and endothelial-to-mesenchymal transition, limiting scarring and promoting cardiomyocyte repopulation, after injury. Overall, our findings position damage-induced Il-11/Stat3 signaling in a key role limiting fibrosis and promoting regeneration, revealing novel targets for regenerative therapies.
Collapse
Affiliation(s)
- Srinivas Allanki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Lilly Scheinberger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yeszamin L. Onderwater
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Preussner
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| |
Collapse
|
38
|
Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother 2021; 142:111946. [PMID: 34339915 DOI: 10.1016/j.biopha.2021.111946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of diabetic wounds (DWs) is always challenging for the medical community because of its multifaceted pathophysiology. Due to practical and ethical considerations, direct studies of therapeutic interventions on human subjects are limited. Thus, it is ideal for performing studies on animals having less genetic and biological variability. An ideal DW model should progress toward reproducibility, quantifiable interpretation, therapeutic significance, and effective translation into clinical use. In the last couple of decades, various animal models were developed to examine the complex cellular and biochemical process of skin restoration in DW healing. Also, these models were used to assess the potency of developed active pharmaceutical ingredients and formulations. However, many animal models lack studying mechanisms that can appropriately restate human DW, stay a huge translational challenge. This review discusses the available animal models with their significance in DW experiments and their limitations, focusing on levels of proof of effectiveness in selecting appropriate models to restate the human DW to improve clinical outcomes. Although numerous newer entities and combinatory formulations are very well appreciated preclinically for DW management, they fail in clinical trials, which may be due to improper selection of the appropriate model. The major future challenge could be developing a model that resembles the human DW environment, can potentiate translational research in DW care.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Mantosh Kumar Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | | |
Collapse
|
39
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Bohaud C, Johansen MD, Jorgensen C, Ipseiz N, Kremer L, Djouad F. The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707824. [PMID: 34367168 PMCID: PMC8334857 DOI: 10.3389/fimmu.2021.707824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
The future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days. Recent studies have also emphasized the crucial role of distinct macrophage subpopulations in tissue regeneration, contributing to the early phases of inflammation and promoting tissue repair and regeneration in late stages once inflammation is resolved. However, while most studies were conducted under non-infectious conditions, this situation does not necessarily reflect all the complexities of the interactions associated with injury often involving entry of pathogenic microorganisms. There is emerging evidence that the presence of infectious pathogens can largely influence and modulate the host immune response and the regenerative processes, which is sometimes more representative of the true complexities underlying regenerative mechanics. Herein, we present the current knowledge regarding the paths involved in the repair of non-infected and infected wounds using the zebrafish model.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | |
Collapse
|
41
|
Houseright RA, Miskolci V, Mulvaney O, Bortnov V, Mosher DF, Rindy J, Bennin DA, Huttenlocher A. Myeloid-derived growth factor regulates neutrophil motility in interstitial tissue damage. J Cell Biol 2021; 220:212198. [PMID: 34047769 PMCID: PMC8167897 DOI: 10.1083/jcb.202103054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil recruitment to tissue damage is essential for host defense but can also impede tissue repair. The cues that differentially regulate neutrophil responses to tissue damage and infection remain unclear. Here, we report that the paracrine factor myeloid-derived growth factor (MYDGF) is induced by tissue damage and regulates neutrophil motility to damaged, but not infected, tissues in zebrafish larvae. Depletion of MYDGF impairs wound healing, and this phenotype is rescued by depleting neutrophils. Live imaging and photoconversion reveal impaired neutrophil reverse migration and inflammation resolution in mydgf mutants. We found that persistent neutrophil inflammation in tissues of mydgf mutants was dependent on the HIF-1α pathway. Taken together, our data suggest that MYDGF is a damage signal that regulates neutrophil interstitial motility and inflammation through a HIF-1α pathway in response to tissue damage.
Collapse
Affiliation(s)
- Ruth A Houseright
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Oscar Mulvaney
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Julie Rindy
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - David A Bennin
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
42
|
Shimizu Y, Kiyooka M, Ohshima T. Transcriptome Analyses Reveal IL6/Stat3 Signaling Involvement in Radial Glia Proliferation After Stab Wound Injury in the Adult Zebrafish Optic Tectum. Front Cell Dev Biol 2021; 9:668408. [PMID: 33996824 PMCID: PMC8119998 DOI: 10.3389/fcell.2021.668408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
Adult zebrafish have many neurogenic niches and a high capacity for central nervous system regeneration compared to mammals, including humans and rodents. The majority of radial glia (RG) in the zebrafish optic tectum are quiescent under physiological conditions; however, stab wound injury induces their proliferation and differentiation into newborn neurons. Although previous studies have functionally analyzed the molecular mechanisms of RG proliferation and differentiation and have performed single-cell transcriptomic analyses around the peak of RG proliferation, the cellular response and changes in global gene expression during the early stages of tectum regeneration remain poorly understood. In this study, we performed histological analyses which revealed an increase in isolectin B4+ macrophages prior to the induction of RG proliferation. Moreover, transcriptome and pathway analyses based on differentially expressed genes identified various enriched pathways, including apoptosis, the innate immune system, cell proliferation, cytokine signaling, p53 signaling, and IL6/Jak-Stat signaling. In particular, we found that Stat3 inhibition suppressed RG proliferation after stab wound injury and that IL6 administration into cerebroventricular fluid activates RG proliferation without causing injury. Together, the findings of these transcriptomic and functional analyses reveal that IL6/Stat3 signaling is an initial trigger of RG activation during optic tectum regeneration.
Collapse
Affiliation(s)
- Yuki Shimizu
- Functional Biomolecular Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Mariko Kiyooka
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan.,Graduate School of Advanced Science and Engineering, Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
43
|
López-Cuevas P, Cross SJ, Martin P. Modulating the Inflammatory Response to Wounds and Cancer Through Infection. Front Cell Dev Biol 2021; 9:676193. [PMID: 33996835 PMCID: PMC8120001 DOI: 10.3389/fcell.2021.676193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
The zebrafish (Danio rerio) has recently emerged as an excellent model to study cancer biology and the tumour microenvironment, including the early inflammatory response to both wounding and early cancer growth. Here, we use high-resolution confocal imaging of translucent zebrafish larvae, with novel automated tracking and cell:cell interaction software, to investigate how innate immune cells behave and interact with repairing wounds and early cancer (pre-neoplastic) cells expressing a mutant active human oncogene (HRASG12V). We show that bacterial infections, delivered either systemically or locally, induce a change in the number and behaviour of neutrophils and macrophages recruited to acute wounds and to pre-neoplastic cells, and that infection can modify cellular interactions in ways that lead to a significant delay in wound healing and a reduction in the number of pre-neoplastic cells. Besides offering insights as to how Coley’s toxins and other cancer bacteriotherapies may function to reduce cancer burden, our study also highlights novel software tools that can be easily adapted to investigate cellular behaviours and interactions in other zebrafish models.
Collapse
Affiliation(s)
- Paco López-Cuevas
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen J Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
44
|
Infection of zebrafish larvae with human norovirus and evaluation of the in vivo efficacy of small-molecule inhibitors. Nat Protoc 2021; 16:1830-1849. [PMID: 33837302 DOI: 10.1038/s41596-021-00499-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
We have recently established that human norovirus (HuNoV) replicates efficiently in zebrafish larvae after inoculation of a clinical sample into the yolk, providing a simple and robust in vivo system in which to study HuNoV. In this Protocol Extension, we present a detailed description of virus inoculation by microinjection, subsequent daily monitoring and harvesting of larvae, followed by viral RNA quantification. This protocol can be used to study viral replication of genogroup (G)I and GII HuNoVs in vivo within 3-4 d. Additionally, we describe how to evaluate the in vivo antiviral effect and toxicity of small molecules using HuNoV-infected zebrafish larvae, in multi-well plates and without the need for specific formulations. This constitutes a great advantage for drug discovery efforts, as no specific antivirals or vaccines currently exist to treat or prevent norovirus gastroenteritis.
Collapse
|
45
|
Sipka T, Peroceschi R, Hassan-Abdi R, Groß M, Ellett F, Begon-Pescia C, Gonzalez C, Lutfalla G, Nguyen-Chi M. Damage-Induced Calcium Signaling and Reactive Oxygen Species Mediate Macrophage Activation in Zebrafish. Front Immunol 2021; 12:636585. [PMID: 33841419 PMCID: PMC8032883 DOI: 10.3389/fimmu.2021.636585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Immediately after a wound, macrophages are activated and change their phenotypes in reaction to danger signals released from the damaged tissues. The cues that contribute to macrophage activation after wounding in vivo are still poorly understood. Calcium signaling and Reactive Oxygen Species (ROS), mainly hydrogen peroxide, are conserved early wound signals that emanate from the wound and guide neutrophils within tissues up to the wound. However, the role of these signals in the recruitment and the activation of macrophages is elusive. Here we used the transparent zebrafish larva as a tractable vertebrate system to decipher the signaling cascade necessary for macrophage recruitment and activation after the injury of the caudal fin fold. By using transgenic reporter lines to track pro-inflammatory activated macrophages combined with high-resolutive microscopy, we tested the role of Ca²⁺ and ROS signaling in macrophage activation. By inhibiting intracellular Ca²⁺ released from the ER stores, we showed that macrophage recruitment and activation towards pro-inflammatory phenotypes are impaired. By contrast, ROS are only necessary for macrophage activation independently on calcium. Using genetic depletion of neutrophils, we showed that neutrophils are not essential for macrophage recruitment and activation. Finally, we identified Src family kinases, Lyn and Yrk and NF-κB as key regulators of macrophage activation in vivo, with Lyn and ROS presumably acting in the same signaling pathway. This study describes a molecular mechanism by which early wound signals drive macrophage polarization and suggests unique therapeutic targets to control macrophage activity during diseases.
Collapse
Affiliation(s)
- Tamara Sipka
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Martin Groß
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Felix Ellett
- Bateson Centre and Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.,BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
46
|
Safian D, Wiegertjes GF, Pollux BJA. The Fish Family Poeciliidae as a Model to Study the Evolution and Diversification of Regenerative Capacity in Vertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.613157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The capacity of regenerating a new structure after losing an old one is a major challenge in the animal kingdom. Fish have emerged as an interesting model to study regeneration due to their high and diverse regenerative capacity. To date, most efforts have focused on revealing the mechanisms underlying fin regeneration, but information on why and how this capacity evolves remains incomplete. Here, we propose the livebearing fish family Poeciliidae as a promising new model system to study the evolution of fin regeneration. First, we review the current state of knowledge on the evolution of regeneration in the animal kingdom, with a special emphasis on fish fins. Second, we summarize recent advances in our understanding of the mechanisms behind fin regeneration in fish. Third, we discuss potential evolutionary pressures that may modulate the regenerative capacity of fish fins and propose three new theories for how natural and sexual selection can lead to the evolution of fin regeneration: (1) signaling-driven fin regeneration, (2) predation-driven fin regeneration, and (3) matrotrophy-suppressed fin regeneration. Finally, we argue that fish from the family Poeciliidae are an excellent model system to test these theories, because they comprise of a large variety of species in a well-defined phylogenetic framework that inhabit very different environments and display remarkable variation in reproductive traits, allowing for comparative studies of fin regeneration among closely related species, among populations within species or among individuals within populations. This new model system has the potential to shed new light on the underlying genetic and molecular mechanisms driving the evolution and diversification of regeneration in vertebrates.
Collapse
|
47
|
Li J, Sultan Y, Sun Y, Zhang S, Liu Y, Li X. Expression analysis of Hsp90α and cytokines in zebrafish caudal fin regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103922. [PMID: 33186559 DOI: 10.1016/j.dci.2020.103922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Zebrafish (Danio rerio) is an ideal model organism for exploring the ability and mechanism of tissue regeneration in the vertebrate. However, the specific cellular and molecular mechanism of caudal fin regeneration in zebrafish remains largely unclear. Therefore, we first confirmed the crucial period of fin regeneration in adult zebrafish by morphological and histological analysis. Then we performed RNA-Seq analysis of the caudal fin regeneration at three key stages, which provided some clues for exploring the mechanism of caudal fin regeneration. Moreover, we also determined the expressions of inflammatory cytokines IL-1β, IL-6, IL-8, IL-10, TGF-β, and the immune-related pathway JAK2α and STAT1b in the caudal fin of zebrafish following fin amputation by quantitative real time PCR (qPCR). Particularly, Hsp90α expression at mRNA and protein level determined by qPCR and Western blotting, respectively, and whole-mount in situ hybridization of Hsp90α were also performed in this study. The results showed that inflammatory cytokines were mainly expressed in the early period of caudal fin regeneration (1-3 days post amputation, dpa), indicating that fish immune system was involved in the fin regeneration. Furthermore, the high expression of Hsp90α in the vicinity of blastema and blood vessels of the regenerating fin suggests that Hsp90α may play a role in the initiation and promotion of caudal fin regeneration. Overall, our results provide a framework for further understanding the cellular and molecular mechanism in caudal fin regeneration.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China; Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yaoyi Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shuqiang Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
48
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
49
|
Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol 2021; 8:620984. [PMID: 33520995 PMCID: PMC7843790 DOI: 10.3389/fcell.2020.620984] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.
Collapse
|
50
|
Kennard A, Prinz C, Labuz E, Theriot J. Wounding Zebrafish Larval Epidermis by Laceration. Bio Protoc 2021; 11:e4260. [DOI: 10.21769/bioprotoc.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/02/2022] Open
|