1
|
Ho C, Luchetta J, Nash B, Festa LK, Johnson JA, Sacan A, Jackson JG, Sanz-Clemente A, Brandimarti R, Meucci O. CXCL12 Engages Cortical Inhibitory Neurons to Enhance Dendritic Spine Plasticity and Structured Network Activity. J Neurosci 2025; 45:e2213242025. [PMID: 40335156 PMCID: PMC12160403 DOI: 10.1523/jneurosci.2213-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The chemokine CXCL12 is a highly conserved peptide that regulates homeostatic processes in the brain throughout life. Recent work shows that CXCL12 increases dendritic spine density in cortical neurons, which requires activation of CXCL12's receptor CXCR4. This same pathway reverses cortical dendritic spine deficits and cognitive impairment in an animal model of neuroHIV. However, it remained unclear if CXCL12 simply preserved existing spines or also engaged spine plasticity processes that drove network-level adaptations. We therefore tested if CXCL12 could regulate dendritic spine turnover, maturation, clustering, and neuronal network activity in primary rat cortical neurons of either sex using live-cell imaging, confocal microscopy, and multielectrode arrays. Intriguingly, CXCL12-treated neurons formed significantly more new spines than controls, and this outcome was blocked by the CXCR4 antagonist AMD3100. CXCL12 also increased the density of thin spines expressing postsynaptic markers, including postsynaptic density protein 95 (PSD-95), phospho-PSD-95Ser295, and GluA1, and allowed neurons to better maintain synaptic PSD-95 puncta size. Thin spines were modestly closer together after CXCL12 treatment, suggesting a possible effect on anatomical spine clustering. These effects translated to structured network activity, as CXCL12 increased spike frequency within network bursts in multielectrode array cultures. Finally, a targeted knockdown of CXCR4 in inhibitory neurons, which mostly lack dendritic spines, prevented CXCL12 from increasing spine density on excitatory neurons. Overall, our findings suggest CXCL12/CXCR4 signaling engages inhibitory neurons along with multiple aspects of spine dynamics and remodeling to shape how broader neuronal networks function.
Collapse
Affiliation(s)
- Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Lindsay K Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - James A Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Joshua G Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Antonio Sanz-Clemente
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Renato Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
2
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
3
|
Qiang W, Deng WJ, Song SL, Pan LH. Identification and analysis correlation between hub genes and immune cell infiltration related to LPS-induced cognitive impairment. Heliyon 2024; 10:e37101. [PMID: 39286150 PMCID: PMC11403500 DOI: 10.1016/j.heliyon.2024.e37101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background The occurrence of immunity and inflammation outside the central nervous system frequently results in acute cognitive impairment among elderly patients. However, there is currently a lack of standardized methods for diagnosing acute cognitive impairment. The objective of our study was to identify potential mRNA biomarkers and investigate the pathogenesis of acute cognitive impairment in mice brains. Methods To analyze changes in hub genes associated with acute cognitive impairment, bioinformatics analysis was performed on the mouse brain injury data of sterile saline control group and lipopolysaccharide (LPS) induced experimental group in Gene Expression Omnibus (GEO). Functional analysis was conducted using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), which facilitated to identify some potential mRNA biomarkers for hub gene expression in mice brains. Additionally, the "CIBERSORT X″ R kit was employed to examine immune cell infiltrations of mice brains in LPS group and saline group. Results In the LPS and saline group, 102 significantly upregulated differentially expressed genes (DEGs) and 32 downregulated DEGs were identified. The pathway enrichment analysis using GO and KEGG revealed that these DEGs were mainly related to the regulation of cytokine, cytokine-cytokine receptor interaction, as well as protein interaction with cytokine and cytokine receptor. Immune cell infiltration analysis indicated potential involvement of M1 macrophages, NK cells resting, T cells CD4 memory, and T cells CD8 naive in the process of cognitive impairment. By constructing a protein-protein interaction (PPI) network, five hub genes (Cxcl10, Cxcl12, Cxcr3, Gbp2, and Ifih1) showed significant associations with immune cell types by using a threshold Spearman's rank correlation coefficient of R > 0.50 and p < 0.05. Conclusion The mRNA expression profile of the mice brain tissues in the LPS group differed from that in the normal saline group. These significantly expressed mRNAs may act an importance in the pathogenesis of acute cognitive impairment through mechanisms involving immunity and neuroinflammation.
Collapse
Affiliation(s)
- Wang Qiang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Wen Juan Deng
- Department of Radiology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Shu Ling Song
- Department of Radiology, Guangxi Medical University Cancer Hospital, Guangxi, China
- The Fourth People's Hospital of Nanning, Guangxi, China
| | - Ling Hui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi, China
| |
Collapse
|
4
|
Plaitakis A, Sidiropoulou K, Kotzamani D, Litso I, Zaganas I, Spanaki C. Evolution of Glutamate Metabolism via GLUD2 Enhances Lactate-Dependent Synaptic Plasticity and Complex Cognition. Int J Mol Sci 2024; 25:5297. [PMID: 38791334 PMCID: PMC11120665 DOI: 10.3390/ijms25105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Human evolution is characterized by rapid brain enlargement and the emergence of unique cognitive abilities. Besides its distinctive cytoarchitectural organization and extensive inter-neuronal connectivity, the human brain is also defined by high rates of synaptic, mainly glutamatergic, transmission, and energy utilization. While these adaptations' origins remain elusive, evolutionary changes occurred in synaptic glutamate metabolism in the common ancestor of humans and apes via the emergence of GLUD2, a gene encoding the human glutamate dehydrogenase 2 (hGDH2) isoenzyme. Driven by positive selection, hGDH2 became adapted to function upon intense excitatory firing, a process central to the long-term strengthening of synaptic connections. It also gained expression in brain astrocytes and cortical pyramidal neurons, including the CA1-CA3 hippocampal cells, neurons crucial to cognition. In mice transgenic for GLUD2, theta-burst-evoked long-term potentiation (LTP) is markedly enhanced in hippocampal CA3-CA1 synapses, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA receptor currents. D-lactate blocked LTP enhancement, implying that glutamate metabolism via hGDH2 potentiates L-lactate-dependent glia-neuron interaction, a process essential to memory consolidation. The transgenic (Tg) mice exhibited increased dendritic spine density/synaptogenesis in the hippocampus and improved complex cognitive functions. Hence, enhancement of neuron-glia communication, via GLUD2 evolution, likely contributed to human cognitive advancement by potentiating synaptic plasticity and inter-neuronal connectivity.
Collapse
Affiliation(s)
- Andreas Plaitakis
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Kyriaki Sidiropoulou
- Department of Biology, University of Crete, Voutes, 71003 Heraklion, Crete, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), 70013 Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Ionela Litso
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Ioannis Zaganas
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
- Neurology Department, PaGNI University General Hospital of Heraklion, 71500 Heraklion, Crete, Greece
| | - Cleanthe Spanaki
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
- Neurology Department, PaGNI University General Hospital of Heraklion, 71500 Heraklion, Crete, Greece
| |
Collapse
|
5
|
Lee H, Kang H, Moon C, Youn B. PAK3 downregulation induces cognitive impairment following cranial irradiation. eLife 2023; 12:RP89221. [PMID: 38131292 PMCID: PMC10746143 DOI: 10.7554/elife.89221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Cranial irradiation is used for prophylactic brain radiotherapy as well as the treatment of primary brain tumors. Despite its high efficiency, it often induces unexpected side effects, including cognitive dysfunction. Herein, we observed that mice exposed to cranial irradiation exhibited cognitive dysfunction, including altered spontaneous behavior, decreased spatial memory, and reduced novel object recognition. Analysis of the actin cytoskeleton revealed that ionizing radiation (IR) disrupted the filamentous/globular actin (F/G-actin) ratio and downregulated the actin turnover signaling pathway p21-activated kinase 3 (PAK3)-LIM kinase 1 (LIMK1)-cofilin. Furthermore, we found that IR could upregulate microRNA-206-3 p (miR-206-3 p) targeting PAK3. As the inhibition of miR-206-3 p through antagonist (antagomiR), IR-induced disruption of PAK3 signaling is restored. In addition, intranasal administration of antagomiR-206-3 p recovered IR-induced cognitive impairment in mice. Our results suggest that cranial irradiation-induced cognitive impairment could be ameliorated by regulating PAK3 through antagomiR-206-3 p, thereby affording a promising strategy for protecting cognitive function during cranial irradiation, and promoting quality of life in patients with radiation therapy.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
- Department of Biological Sciences, Pusan National UniversityBusanRepublic of Korea
- Nuclear Science Research Institute, Pusan National UniversityBusanRepublic of Korea
| |
Collapse
|
6
|
Bhattacherjee A, Zhang C, Watson BR, Djekidel MN, Moffitt JR, Zhang Y. Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain. Nat Neurosci 2023; 26:1880-1893. [PMID: 37845544 PMCID: PMC10620082 DOI: 10.1038/s41593-023-01455-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The prefrontal cortex (PFC) is a complex brain region that regulates diverse functions ranging from cognition, emotion and executive action to even pain processing. To decode the cellular and circuit organization of such diverse functions, we employed spatially resolved single-cell transcriptome profiling of the adult mouse PFC. Results revealed that PFC has distinct cell-type composition and gene-expression patterns relative to neighboring cortical areas-with neuronal excitability-regulating genes differently expressed. These cellular and molecular features are further segregated within PFC subregions, alluding to the subregion-specificity of several PFC functions. PFC projects to major subcortical targets through combinations of neuronal subtypes, which emerge in a target-intrinsic fashion. Finally, based on these features, we identified distinct cell types and circuits in PFC underlying chronic pain, an escalating healthcare challenge with limited molecular understanding. Collectively, this comprehensive map will facilitate decoding of discrete molecular, cellular and circuit mechanisms underlying specific PFC functions in health and disease.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mohamed Nadhir Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
8
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Irollo E, Nash B, Luchetta J, Brandimarti R, Meucci O. The Endolysosomal Transporter DMT1 is Required for Morphine Regulation of Neuronal Ferritin Heavy Chain. J Neuroimmune Pharmacol 2023; 18:495-508. [PMID: 37661197 PMCID: PMC10577102 DOI: 10.1007/s11481-023-10082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
NeuroHIV and other neurologic disorders present with altered iron metabolism in central nervous system neurons. Many people with HIV also use opioids, which can worsen neuroHIV symptoms by further dysregulating neuronal iron metabolism. Our previous work demonstrated that the μ-opioid agonist morphine causes neuronal endolysosomes to release their iron stores, and neurons respond by upregulating ferritin heavy chain (FHC), an iron storage protein associated with cognitive impairment in neuroHIV. Here, we investigated if this process required divalent metal transporter 1 (DMT1), a well-known iron transporter expressed on endolysosomes. We first optimized conditions to detect DMT1 isoforms (DMT1 1B ± iron responsive element) using fluorescently labeled rat DMT1 constructs expressed in HEK-293 cells. We also expressed these constructs in primary rat cortical neurons to compare their expression and subcellular distribution with endogenous DMT1 isoforms. We found endogenous DMT1 isoforms in the cytoplasm that colocalized with lysosomal-associated protein 1 (LAMP1), a marker of endolysosomes. Next, we blocked endogenous DMT1 isoforms using ebselen, a potent pharmacological inhibitor of DMT1 iron transport. Ebselen pre-treatment blocked morphine's ability to upregulate FHC protein, suggesting this pathway requires DMT1 iron transport from endolysosomes. This was further validated using viral-mediated genetic silencing of DMT1±IRE in cortical neurons, which also blocked FHC upregulation in the presence of morphine. Overall, our work demonstrates that the μ-opioid agonist morphine utilizes the endolysosomal iron transporter DMT1 to modulate neuronal cellular iron metabolism, upregulate FHC protein, and contribute to cognitive decline in neuroHIV. Morphine requires DMT1 to upregulate neuronal FHC. Cortical neurons treated with morphine release their endolysosomal iron stores to the cytoplasm and upregulate FHC, an iron storage protein associated with dendritic spine deficits and cognitive impairment in neuroHIV. This pathway requires the endolysosomal iron transporter DMT1, as pharmacological and genetic inhibitors of the transporter completely block morphine's ability to upregulate FHC. Created with BioRender.com .
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | - Renato Brandimarti
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Via Marsala, 49, Bologna, BO, 40126, Italy
| | - Olimpia Meucci
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA.
- Department of Microbiology & Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA.
- Center for Neuroimmunology & CNS Therapeutics, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
10
|
Yasmin N, Collier AD, Karatayev O, Abdulai AR, Yu B, Fam M, Khalizova N, Leibowitz SF. Subpopulations of hypocretin/orexin neurons differ in measures of their cell proliferation, dynorphin co-expression, projections, and response to embryonic ethanol exposure. Sci Rep 2023; 13:8448. [PMID: 37231149 PMCID: PMC10213024 DOI: 10.1038/s41598-023-35432-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous studies in animals demonstrate that embryonic exposure to ethanol (EtOH) at low-moderate doses stimulates neurogenesis and increases the number of hypothalamic neurons expressing the peptide, hypocretin/orexin (Hcrt). A recent study in zebrafish showed that this effect on the Hcrt neurons in the anterior hypothalamus (AH) is area specific, evident in the anterior (aAH) but not posterior (pAH) part of this region. To understand specific factors that may determine the differential sensitivity to EtOH of these Hcrt subpopulations, we performed additional measures in zebrafish of their cell proliferation, co-expression of the opioid dynorphin (Dyn), and neuronal projections. In association with the increase in Hcrt neurons in the aAH but not pAH, EtOH significantly increased only in the aAH the proliferation of Hcrt neurons and their number lacking Dyn co-expression. The projections of these subpopulations differed markedly in their directionality, with those from the pAH primarily descending to the locus coeruleus and those from the aAH ascending to the subpallium, and they were both stimulated by EtOH, which induced specifically the most anterior subpallium-projecting Hcrt neurons to become ectopically expressed beyond the aAH. These differences between the Hcrt subpopulations suggest they are functionally distinct in their regulation of behavior.
Collapse
Affiliation(s)
- Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Abdul R Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Yasmin N, Collier AD, Abdulai AR, Karatayev O, Yu B, Fam M, Leibowitz SF. Role of Chemokine Cxcl12a in Mediating the Stimulatory Effects of Ethanol on Embryonic Development of Subpopulations of Hypocretin/Orexin Neurons and Their Projections. Cells 2023; 12:1399. [PMID: 37408233 PMCID: PMC10216682 DOI: 10.3390/cells12101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Studies in zebrafish and rats show that embryonic ethanol exposure at low-moderate concentrations stimulates hypothalamic neurons expressing hypocretin/orexin (Hcrt) that promote alcohol consumption, effects possibly involving the chemokine Cxcl12 and its receptor Cxcr4. Our recent studies in zebrafish of Hcrt neurons in the anterior hypothalamus (AH) demonstrate that ethanol exposure has anatomically specific effects on Hcrt subpopulations, increasing their number in the anterior AH (aAH) but not posterior AH (pAH), and causes the most anterior aAH neurons to become ectopically expressed further anterior in the preoptic area (POA). Using tools of genetic overexpression and knockdown, our goal here was to determine whether Cxcl12a has an important function in mediating the specific effects of ethanol on these Hcrt subpopulations and their projections. The results demonstrate that the overexpression of Cxcl12a has stimulatory effects similar to ethanol on the number of aAH and ectopic POA Hcrt neurons and the long anterior projections from ectopic POA neurons and posterior projections from pAH neurons. They also demonstrate that knockdown of Cxcl12a blocks these effects of ethanol on the Hcrt subpopulations and projections, providing evidence supporting a direct role of this specific chemokine in mediating ethanol's stimulatory effects on embryonic development of the Hcrt system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
12
|
Brandimarti R, Irollo E, Meucci O. The US9-Derived Protein gPTB9TM Modulates APP Processing Without Targeting Secretase Activities. Mol Neurobiol 2023; 60:1811-1825. [PMID: 36576708 PMCID: PMC9984340 DOI: 10.1007/s12035-022-03153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Alteration of neuronal protein processing is often associated with neurological disorders and is highly dependent on cellular protein trafficking. A prime example is the amyloidogenic processing of amyloid precursor protein (APP) in intracellular vesicles, which plays a key role in age-related cognitive impairment. Most approaches to correct this altered processing aim to limit enzymatic activities that lead to toxic products, such as protein cleavage by β-secretase and the resulting amyloid β production. A viable alternative is to direct APP to cellular compartments where non-amyloidogenic mechanisms are favored. To this end, we exploited the molecular properties of the herpes simplex virus 1 (HSV-1) transport protein US9 to guide APP interaction with preferred endogenous targets. Specifically, we generated a US9 chimeric construct that facilitates APP processing through the non-amyloidogenic pathway and tested it in primary cortical neurons. In addition to reducing amyloid β production, our approach controls other APP-dependent biochemical steps that lead to neuronal deficits, including phosphorylation of APP and tau proteins. Notably, it also promotes the release of neuroprotective soluble αAPP. In contrast to other neuroprotective strategies, these US9-driven effects rely on the activity of endogenous neuronal proteins, which lends itself well to the study of fundamental mechanisms of APP processing/trafficking. Overall, this work introduces a new method to limit APP misprocessing and its cellular consequences without directly targeting secretase activity, offering a novel tool to reduce cognitive decline in pathologies such as Alzheimer's disease and HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Renato Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo,14, 40126, Bologna, Italy
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N.15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
13
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia Proliferation Underlies Synaptic Dysfunction in the Prefrontal Cortex: Implications for the Pathogenesis of HIV-1-Associated Neurocognitive and Affective Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524942. [PMID: 36711456 PMCID: PMC9882316 DOI: 10.1101/2023.01.20.524942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the predominant cell type expressing HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of a combined RNAscope multiplex fluorescent and immunostaining assay revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV innoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1+ and Ki67+ relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and post synaptic density protein 95 (PSD-95), markers of pre-synaptic and post-synaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounts for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
|
14
|
McLaurin KA, Cranston MN, Li H, Mactutus CF, Harrod SB, Booze RM. Synaptic dysfunction is associated with alterations in the initiation of goal-directed behaviors: Implications for HIV-1-associated apathy. Exp Neurol 2022; 357:114174. [PMID: 35863502 PMCID: PMC9990912 DOI: 10.1016/j.expneurol.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023]
Abstract
Individuals living with human immunodeficiency virus type 1 (HIV-1) exhibit an increased prevalence of neuropsychiatric comorbities (e.g., apathy) relative to their seronegative counterparts. Given the profound functional consequences associated with apathy, characterizing the multidimensional neuropsychiatric syndrome, and associated neural mechanisms, following chronic HIV-1 viral protein exposure remains a critical need. HIV-1-associated apathy was examined by quantifying goal-directed behaviors, indexed using voluntary wheel running, during the diurnal and nocturnal cycle. Apathetic behaviors in the HIV-1 transgenic (Tg) rat were characterized by a profound decrease in the number of running bouts during both the diurnal and nocturnal cycle, supporting a prominent deficit in the self-initiation of spontaneous behaviors. Additionally, HIV-1 Tg animals exhibited a decreased reinforcing efficacy of voluntary wheel running during the nocturnal cycle. Following the completion of voluntary wheel running, synaptic dysfunction in medium spiny neurons (MSNs) of the nucleus accumbens core (NAcc) was examined as a potential neural mechanism underlying HIV-1-associated apathy. HIV-1 Tg animals displayed prominent synaptic dysfunction in MSNs of the NAcc, characterized by enhanced dendritic branching complexity and a population shift towards an immature dendritic spine phenotype relative to control animals. Synaptic dysfunction, which accounted for 42.0% to 68.5% of the variance in the number of running bouts, was strongly associated with the self-initiation of spontaneous behaviors. Establishment of the relationship between synaptic dysfunction and apathy affords a key target for the development of novel therapeutics and cure strategies for affective alterations associated with HIV-1.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael N Cranston
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Steven B Harrod
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
15
|
McLaurin KA, Li H, Mactutus CF, Harrod SB, Booze RM. Disrupted Decision-Making: EcoHIV Inoculation in Cocaine Dependent Rats. Int J Mol Sci 2022; 23:9100. [PMID: 36012364 PMCID: PMC9409394 DOI: 10.3390/ijms23169100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
Independently, chronic cocaine use and HIV-1 viral protein exposure induce neuroadaptations in the frontal-striatal circuit as evidenced by both clinical and preclinical studies; how the frontal-striatal circuit responds to HIV-1 infection following chronic drug use, however, has remained elusive. After establishing experience with both sucrose and cocaine self-administration, a pretest-posttest experimental design was utilized to evaluate preference judgment, a simple form of decision-making dependent upon the integrity of frontal-striatal circuit function. During the pretest assessment, male rats exhibited a clear preference for cocaine, whereas female animals preferred sucrose. Two posttest evaluations (3 days and 6 weeks post inoculation) revealed that, independent of biological sex, inoculation with chimeric HIV (EcoHIV), but not saline, disrupted decision-making. Prominent structural alterations in the frontal-striatal circuit were evidenced by synaptodendritic alterations in pyramidal neurons in the medial prefrontal cortex. Thus, the EcoHIV rat affords a valid animal model to critically investigate how the frontal-striatal circuit responds to HIV-1 infection following chronic drug use.
Collapse
Affiliation(s)
| | | | | | | | - Rosemarie M. Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
16
|
Riviere-Cazaux C, Cornell J, Shen Y, Zhou M. The role of CCR5 in HIV-associated neurocognitive disorders. Heliyon 2022; 8:e09950. [PMID: 35865985 PMCID: PMC9294194 DOI: 10.1016/j.heliyon.2022.e09950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
While combination antiretroviral therapy (cART) has successfully increased the lifespan of individuals infected with HIV, a significant portion of this population remains affected by HIV-associated neurocognitive disorder (HAND). C-C chemokine receptor 5 (CCR5) has been well studied in immune response and as a co-receptor for HIV infection. HIV-infected (HIV+) patients experienced mild to significant amelioration of cognitive function when treated with different CCR5 antagonists, including maraviroc and cenicriviroc. Consistent with clinical results, Ccr5 knockout or knockdown rescued cognitive deficits in HIV animal models, with mechanisms of reduced microgliosis and neuroinflammation. Pharmacologic inhibition of CCR5 directly improved cerebral and hippocampal neuronal plasticity and cognitive function. By summarizing the animal and human studies of CCR5 in HIV-associated cognitive deficits, this review aims to provide an overview of the mechanistic role of CCR5 in HAND pathophysiology. This review also discusses the addition of CCR5 antagonists, such as maraviroc, to cART for targeted prevention and treatment of cognitive impairments in patients infected with HIV.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jessica Cornell
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Corresponding author.
| |
Collapse
|
17
|
Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain. Viruses 2022; 14:v14061268. [PMID: 35746739 PMCID: PMC9230035 DOI: 10.3390/v14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (>12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals.
Collapse
|
18
|
Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacol Rep 2021; 73:1595-1625. [PMID: 34498203 PMCID: PMC8599319 DOI: 10.1007/s43440-021-00323-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence highlights chemokines as key mediators of the bidirectional crosstalk between neurons and glial cells aimed at preserving brain functioning. The multifaceted role of these immune proteins in the CNS is mirrored by the complexity of the mechanisms underlying its biological function, including biased signaling. Neurons, only in concert with glial cells, are essential players in the modulation of brain homeostatic functions. Yet, attempts to dissect these complex multilevel mechanisms underlying coordination are still lacking. Therefore, the purpose of this review is to summarize the current knowledge about mechanisms underlying chemokine regulation of neuron-glia crosstalk linking molecular, cellular, network, and behavioral levels. Following a brief description of molecular mechanisms by which chemokines interact with their receptors and then summarizing cellular patterns of chemokine expression in the CNS, we next delve into the sequence and mechanisms of chemokine-regulated neuron-glia communication in the context of neuroprotection. We then define the interactions with other neurotransmitters, neuromodulators, and gliotransmitters. Finally, we describe their fine-tuning on the network level and the behavioral relevance of their modulation. We believe that a better understanding of the sequence and nature of events that drive neuro-glial communication holds promise for the development of new treatment strategies that could, in a context- and time-dependent manner, modulate the action of specific chemokines to promote brain repair and reduce the neurological impairment.
Collapse
|
19
|
Sil S, Periyasamy P, Thangaraj A, Niu F, Chemparathy DT, Buch S. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 2021; 18:459-474. [PMID: 34427869 DOI: 10.1007/s11904-021-00570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
20
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
21
|
Denton AR, Mactutus CF, Lateef AU, Harrod SB, Booze RM. Chronic SSRI treatment reverses HIV-1 protein-mediated synaptodendritic damage. J Neurovirol 2021; 27:403-421. [PMID: 34003469 PMCID: PMC8504184 DOI: 10.1007/s13365-021-00960-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
HIV-1 infection affects approximately 37 million individuals, and approximately 50% of seropositive individuals will develop symptoms of clinical depression and/or apathy. Dysfunctions of both serotonergic and dopaminergic neurotransmission have been implicated in the pathogenesis of motivational alterations. The present study evaluated the efficacy of a SSRI (escitalopram) in the HIV-1 transgenic (Tg) rat. Behavioral, neurochemical, and neuroanatomical outcomes with respect to HIV-1 and sex were evaluated to determine the efficacy of chronic escitalopram treatment. Escitalopram treatment restored function in each of the behavioral tasks that were sensitive to HIV-1-induced impairments. Further, escitalopram treatment restored HIV-1-mediated synaptodendritic damage in the nucleus accumbens; treatment with escitalopram significantly increased dendritic proliferation in HIV-1 Tg rats. However, restoration did not consistently occur with the neurochemical analysis in the HIV-1 rat. Taken together, these results suggest a role for SSRI therapies in repairing long-term HIV-1 protein-mediated neuronal damage and restoring function.
Collapse
Affiliation(s)
- Adam R Denton
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Charles F Mactutus
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Almeera U Lateef
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Steven B Harrod
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Rosemarie M Booze
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
22
|
Li H, McLaurin KA, Illenberger JM, Mactutus CF, Booze RM. Microglial HIV-1 Expression: Role in HIV-1 Associated Neurocognitive Disorders. Viruses 2021; 13:924. [PMID: 34067600 PMCID: PMC8155894 DOI: 10.3390/v13050924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The persistence of HIV-1 viral reservoirs in the brain, despite treatment with combination antiretroviral therapy (cART), remains a critical roadblock for the development of a novel cure strategy for HIV-1. To enhance our understanding of viral reservoirs, two complementary studies were conducted to (1) evaluate the HIV-1 mRNA distribution pattern and major cell type expressing HIV-1 mRNA in the HIV-1 transgenic (Tg) rat, and (2) validate our findings by developing and critically testing a novel biological system to model active HIV-1 infection in the rat. First, a restricted, region-specific HIV-1 mRNA distribution pattern was observed in the HIV-1 Tg rat. Microglia were the predominant cell type expressing HIV-1 mRNA in the HIV-1 Tg rat. Second, we developed and critically tested a novel biological system to model key aspects of HIV-1 by infusing F344/N control rats with chimeric HIV (EcoHIV). In vitro, primary cultured microglia were treated with EcoHIV revealing prominent expression within 24 h of infection. In vivo, EcoHIV expression was observed seven days after stereotaxic injections. Following EcoHIV infection, microglia were the major cell type expressing HIV-1 mRNA, results that are consistent with observations in the HIV-1 Tg rat. Within eight weeks of infection, EcoHIV rats exhibited neurocognitive impairments and synaptic dysfunction, which may result from activation of the NogoA-NgR3/PirB-RhoA signaling pathway and/or neuroinflammation. Collectively, these studies enhance our understanding of HIV-1 viral reservoirs in the brain and offer a novel biological system to model HIV-associated neurocognitive disorders and associated comorbidities (i.e., drug abuse) in rats.
Collapse
Affiliation(s)
| | | | | | | | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA; (H.L.); (K.A.M.); (J.M.I.); (C.F.M.)
| |
Collapse
|
23
|
Semaphorin3F Drives Dendritic Spine Pruning Through Rho-GTPase Signaling. Mol Neurobiol 2021; 58:3817-3834. [PMID: 33856648 DOI: 10.1007/s12035-021-02373-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spines of cortical pyramidal neurons are initially overproduced then remodeled substantially in the adolescent brain to achieve appropriate excitatory balance in mature circuits. Here we investigated the molecular mechanism of developmental spine pruning by Semaphorin 3F (Sema3F) and its holoreceptor complex, which consists of immunoglobulin-class adhesion molecule NrCAM, Neuropilin-2 (Npn2), and PlexinA3 (PlexA3) signaling subunits. Structure-function studies of the NrCAM-Npn2 interface showed that NrCAM stabilizes binding between Npn2 and PlexA3 necessary for Sema3F-induced spine pruning. Using a mouse neuronal culture system, we identified a dual signaling pathway for Sema3F-induced pruning, which involves activation of Tiam1-Rac1-PAK1-3 -LIMK1/2-Cofilin1 and RhoA-ROCK1/2-Myosin II in dendritic spines. Inhibitors of actin remodeling impaired spine collapse in the cortical neurons. Elucidation of these pathways expands our understanding of critical events that sculpt neuronal networks and may provide insight into how interruptions to these pathways could lead to spine dysgenesis in diseases such as autism, bipolar disorder, and schizophrenia.
Collapse
|
24
|
Smith LK, Babcock IW, Minamide LS, Shaw AE, Bamburg JR, Kuhn TB. Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS One 2021; 16:e0248309. [PMID: 33705493 PMCID: PMC7951892 DOI: 10.1371/journal.pone.0248309] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Nearly 50% of individuals with long-term HIV infection are affected by the onset of progressive HIV-associated neurocognitive disorders (HAND). HIV infiltrates the central nervous system (CNS) early during primary infection where it establishes persistent infection in microglia (resident macrophages) and astrocytes that in turn release inflammatory cytokines, small neurotoxic mediators, and viral proteins. While the molecular mechanisms underlying pathology in HAND remain poorly understood, synaptodendritic damage has emerged as a hallmark of HIV infection of the CNS. Here, we report that the HIV viral envelope glycoprotein gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclusions (rods) in cultured mouse hippocampal neurons via a signaling pathway common to other neurodegenerative stimuli including oligomeric, soluble amyloid-β and proinflammatory cytokines. Previous studies showed that synaptic function is impaired preferentially in the distal proximity of rods within dendrites. Our studies demonstrate gp120 binding to either chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation, and signaling through this pathway requires active NADPH oxidase presumably through the formation of superoxide (O2-) and the expression of cellular prion protein (PrPC). These findings link gp120-mediated oxidative stress to the generation of rods, which may underlie early synaptic dysfunction observed in HAND.
Collapse
Affiliation(s)
- Lisa K. Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Isaac W. Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas B. Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Morphological features of large layer V pyramidal neurons in cortical motor-related areas of macaque monkeys: analysis of basal dendrites. Sci Rep 2021; 11:4171. [PMID: 33603042 PMCID: PMC7893167 DOI: 10.1038/s41598-021-83680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
In primates, large layer V pyramidal neurons located in the frontal motor-related areas send a variety of motor commands to the spinal cord, giving rise to the corticospinal tract, for execution of skilled motor behavior. However, little is known about the morphological diversity of such pyramidal neurons among the areas. Here we show that the structure of basal dendrites of the large layer V pyramidal neurons in the dorsal premotor cortex (PMd) is different from those in the other areas, including the primary motor cortex, the supplementary motor area, and the ventral premotor cortex. In the PMd, not only the complexity (arborization) of basal dendrites, i.e., total dendritic length and branching number, was poorly developed, but also the density of dendritic spines was so low, as compared to the other motor-related areas. Regarding the distribution of the three dendritic spine types identified, we found that thin-type (more immature) spines were prominent in the PMd in comparison with stubby- and mushroom-type (more mature) spines, while both thin- and stubby-type spines were in the other areas. The differential morphological features of basal dendrites might reflect distinct patterns of motor information processing within the large layer V pyramidal neurons in individual motor-related areas.
Collapse
|
26
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
27
|
A novel chemotactic factor derived from the extracellular matrix protein decorin recruits mesenchymal stromal cells in vitro and in vivo. PLoS One 2020; 15:e0235784. [PMID: 32658899 PMCID: PMC7357784 DOI: 10.1371/journal.pone.0235784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Soft tissue is composed of cells surrounded by an extracellular matrix that is made up of a diverse array of intricately organized proteins. These distinct components work in concert to maintain homeostasis and respond to tissue damage. During tissue repair, extracellular matrix proteins and their degradation products are known to influence physiological processes such as angiogenesis and inflammation. In this study we developed a discovery platform using a decellularized extracellular matrix biomaterial to identify new chemotrophic factors derived from the extracellular matrix. An in vitro culture of RAW.264 macrophage cells with the biomaterial ovine forestomach matrix led to the identification of a novel ~12 kDa chemotactic factor, termed ‘MayDay’, derived from the N-terminal 31–188 sequence of decorin. The recombinant MayDay protein was shown to be a chemotactic agent for mesenchymal stromal cells in vitro and in vivo. We hypothesize that the macrophage-induced cleavage of decorin, via MMP-12, leads to the release of the chemotactic molecule MayDay, that in turn recruits cells to the site of damaged tissue.
Collapse
|