1
|
Wilson MA, Sumera A, Taylor LW, Meftah S, McGeachan RI, Modebadze T, Jayasekera BAP, Cowie CJA, LeBeau FEN, Liaquat I, Durrant CS, Brennan PM, Booker SA. Phylogenetic divergence of GABA B receptor signaling in neocortical networks over adult life. Nat Commun 2025; 16:4194. [PMID: 40328769 PMCID: PMC12056048 DOI: 10.1038/s41467-025-59262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cortical circuit activity is controlled by GABA-mediated inhibition in a spatiotemporally restricted manner. GABAB receptor (GABABR) signalling exerts powerful slow inhibition that controls synaptic, dendritic and neuronal activity. But, how GABABRs contribute to circuit-level inhibition over the lifespan of rodents and humans is poorly understood. In this study, we quantitatively determined the functional contribution of GABABR signalling to pre- and postsynaptic domains in rat and human cortical principal cells. We find that postsynaptic GABABR differentially control pyramidal cell activity within the cortical column as a function of age in rodents, but minimally change over adult life in humans. Presynaptic GABABRs exert stronger inhibition in humans than rodents. Pre- and postsynaptic GABABRs contribute to co-ordination of local information processing in a layer- and species-dependent manner. Finally, we show that GABABR signalling is elevated in patients that have received the anti-seizure medication Levetiracetam. These data directly increase our knowledge of translationally relevant local circuit dynamics, with direct impact on understanding the role of GABABRs in the treatment of seizure disorders.
Collapse
Affiliation(s)
- Max A Wilson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Anna Sumera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Lewis W Taylor
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Tamara Modebadze
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - B Ashan P Jayasekera
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Christopher J A Cowie
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Imran Liaquat
- Department for Clinical Neuroscience, NHS Lothian, Royal Infirmary Edinburgh, Edinburgh, EH16 4SB, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Paul M Brennan
- Department for Clinical Neuroscience, NHS Lothian, Royal Infirmary Edinburgh, Edinburgh, EH16 4SB, UK
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
2
|
Bogaj K, Urban‐Ciecko J. Inhibition of BK channels by GABAb receptors enhances intrinsic excitability of layer 2/3 vasoactive intestinal polypeptide-expressing interneurons in mouse neocortex. J Physiol 2025; 603:1171-1196. [PMID: 39901494 PMCID: PMC11870045 DOI: 10.1113/jp286439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
GABAb receptors (GABAbRs) affect many signalling pathways, and hence the net effect of the activity of these receptors depends upon the specific ion channels that they are linked to, leading to different effects on specific neuronal populations. Typically, GABAbRs suppress neuronal activity in the cerebral cortex. Previously, we found that neocortical parvalbumin-expressing cells are strongly inhibited through GABAbRs, whereas somatostatin interneurons are immune to this modulation. Here, we employed in vitro whole-cell patch-clamp recordings to study whether GABAbRs modulate the activity of vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in layer (L) 2/3 of the mouse primary somatosensory cortex. Utilizing machine learning algorithms (hierarchical clustering and principal component analysis), we revealed that one VIP-IN cluster (about 68% of all VIP-INs) was sensitive to GABAbR activation. Paradoxically, when recordings were performed in standard conditions with high extracellular Ca2+ level, GABAbRs indirectly inhibited the activity of large conductance voltage- and calcium-activated potassium (BK) channels and reduced GABAaR-mediated inhibition, leading to an increase in intrinsic excitability of these interneurons. However, a classical inhibitory effect of GABAbRs on L2/3 VIP-INs was observed in modified artificial cerebrospinal fluid with physiological (low) Ca2+ concentration. Our results are essential for a deeper understanding of mechanisms underlying the modulation of cortical networks. KEY POINTS: Layer 2/3 vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in the mouse somatosensory cortex cluster into three electrophysiological types differentially sensitive to GABAb receptors (GABAbRs). The majority of VIP-INs (type 1, about 68% of all VIP-INs) are regulated through pre- and postsynaptic GABAbRs, while a subset of these interneurons (types 2 and 3) is controlled only presynaptically. The net effect of GABAbR activation on VIP-IN excitability depends on [Ca2+] in artificial cerebrospinal fluid. When [Ca2+] is high (2.5 mM), GABAbRs indirectly inhibit BK channels and reduce GABAaR inhibition leading to increased intrinsic excitability of type 1 VIP-INs. When [Ca2+] is low (1 mM), which is more physiological, BK channels do not regulate the intrinsic excitability of VIP-INs and thus postsynaptic GABAbRs canonically decrease the intrinsic excitability of type 1 VIP-INs.
Collapse
Affiliation(s)
- Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Joanna Urban‐Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
3
|
Martín‐Belmonte A, Aguado C, Alfaro‐Ruiz R, Kulik A, de la Ossa L, Moreno‐Martínez AE, Alberquilla S, García‐Carracedo L, Fernández M, Fajardo‐Serrano A, Aso E, Shigemoto R, Martín ED, Fukazawa Y, Ciruela F, Luján R. Nanoarchitecture of Ca V2.1 channels and GABA B receptors in the mouse hippocampus: Impact of APP/PS1 pathology. Brain Pathol 2025; 35:e13279. [PMID: 38887180 PMCID: PMC11835447 DOI: 10.1111/bpa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels play a crucial role in regulating neurotransmitter release, thus contributing to synaptic plasticity and to processes such as learning and memory. Despite their recognized importance in neural function, there is limited information on their potential involvement in neurodegenerative conditions such as Alzheimer's disease (AD). Here, we aimed to explore the impact of AD pathology on the density and nanoscale compartmentalization of CaV2.1 channels in the hippocampus in association with GABAB receptors. Histoblotting experiments showed that the density of CaV2.1 channel was significantly reduced in the hippocampus of APP/PS1 mice in a laminar-dependent manner. CaV2.1 channel was enriched in the active zone of the axon terminals and was present at a very low density over the surface of dendritic tree of the CA1 pyramidal cells, as shown by quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL). In APP/PS1 mice, the density of CaV2.1 channel in the active zone was significantly reduced in the strata radiatum and lacunosum-moleculare, while it remained unaltered in the stratum oriens. The decline in Cav2.1 channel density was found to be associated with a corresponding impairment in the GABAergic synaptic function, as evidenced by electrophysiological experiments carried out in the hippocampus of APP/PS1 mice. Remarkably, double SDS-FRL showed a co-clustering of CaV2.1 channel and GABAB1 receptor in nanodomains (~40-50 nm) in wild type mice, while in APP/PS1 mice this nanoarchitecture was absent. Together, these findings suggest that the AD pathology-induced reduction in CaV2.1 channel density and CaV2.1-GABAB1 de-clustering may play a role in the synaptic transmission alterations shown in the AD hippocampus. Therefore, uncovering these layer-dependent changes in P/Q calcium currents associated with AD pathology can benefit the development of future strategies for AD management.
Collapse
Affiliation(s)
- Alejandro Martín‐Belmonte
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Carolina Aguado
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Rocío Alfaro‐Ruiz
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Akos Kulik
- Institute for Physiology II, Medical FacultyUniversity of FreiburgFreiburgGermany
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería InformáticaUniversidad de Castilla‐La ManchaAlbaceteSpain
| | - Ana Esther Moreno‐Martínez
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Samuel Alberquilla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Lucía García‐Carracedo
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Miriam Fernández
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Ana Fajardo‐Serrano
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Rafael Luján
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| |
Collapse
|
4
|
Naumann LB, Hertäg L, Müller J, Letzkus JJ, Sprekeler H. Layer-specific control of inhibition by NDNF interneurons. Proc Natl Acad Sci U S A 2025; 122:e2408966122. [PMID: 39841147 PMCID: PMC11789034 DOI: 10.1073/pnas.2408966122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected. We first confirm experimentally that in the auditory cortex, synapses from somatostatin-expressing (SOM) onto NDNF neurons are indeed modulated by ambient Gamma-aminobutyric acid (GABA). Shifting to a computational model, we then show that this mechanism introduces a distinct mutual inhibition motif between NDNF interneurons and the synaptic outputs of SOM interneurons. This motif can control inhibition in a layer-specific way and introduces competition between NDNF and SOM interneurons for dendritic inhibition onto pyramidal cells on different timescales. NDNF interneurons can thereby control cortical information flow by redistributing dendritic inhibition from fast to slow timescales and by gating different sources of dendritic inhibition.
Collapse
Affiliation(s)
| | - Loreen Hertäg
- Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin10587, Germany
- Bernstein Center for Computational Neuroscience, Berlin10115, Germany
| | - Jennifer Müller
- Institute for Physiology, Faculty of Medicine, University of Freiburg, Freiburg79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg79104, Germany
- Faculty of Biology, University Freiburg, Freiburg79104, Germany
| | - Johannes J. Letzkus
- Institute for Physiology, Faculty of Medicine, University of Freiburg, Freiburg79104, Germany
- BrainLinks-BrainTools, Institute for Machine-Brain Interfacing Technology, University of Freiburg, Freiburg79104, Germany
- Center for Basics in NeuroModulation, University of Freiburg, Freiburg79104, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin10587, Germany
- Bernstein Center for Computational Neuroscience, Berlin10115, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin10587, Germany
| |
Collapse
|
5
|
Degro CE, Vida I, Booker SA. Postsynaptic GABA B-receptor mediated currents in diverse dentate gyrus interneuron types. Hippocampus 2024; 34:551-562. [PMID: 39138952 DOI: 10.1002/hipo.23628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
The processing of rich synaptic information in the dentate gyrus (DG) relies on a diverse population of inhibitory GABAergic interneurons to regulate cellular and circuit activity, in a layer-specific manner. Metabotropic GABAB-receptors (GABABRs) provide powerful inhibition to the DG circuit, on timescales consistent with behavior and learning, but their role in controlling the activity of interneurons is poorly understood with respect to identified cell types. We hypothesize that GABABRs display cell type-specific heterogeneity in signaling strength, which will have direct ramifications for signal processing in DG networks. To test this, we perform in vitro whole-cell patch-clamp recordings from identified DG principal cells and interneurons, followed by GABABR pharmacology, photolysis of caged GABA, and extracellular stimulation of endogenous GABA release to classify the cell type-specific inhibitory potential. Based on our previous classification of DG interneurons, we show that postsynaptic GABABR-mediated currents are present on all interneuron types albeit at different amplitudes, dependent largely on soma location and synaptic targets. GABABRs were coupled to inwardly-rectifying K+ channels that strongly reduced the excitability of those interneurons where large currents were observed. These data provide a systematic characterization of GABABR signaling in the rat DG to provide greater insight into circuit dynamics.
Collapse
Affiliation(s)
- Claudius E Degro
- Institute for Integrative Neuroanatomy, Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Sam A Booker
- Institute for Integrative Neuroanatomy, Charité-Universitätmedizin Berlin, Berlin, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Watson TC, Booker SA. Somatostatin Interneurons Recruit Pre- and Postsynaptic GABA B Receptors in the Adult Mouse Dentate Gyrus. eNeuro 2024; 11:ENEURO.0115-24.2024. [PMID: 39084907 PMCID: PMC11334949 DOI: 10.1523/eneuro.0115-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABAA receptors (GABAAR) and slow, metabotropic GABAB receptors (GABABR), respectively. GABABRs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABABR signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABABRs to drive greater inhibition in DGCs than GABAARs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABABR signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABABRs, as has been shown in neocortical circuits. Together, these data reveal that GABABR signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.
Collapse
Affiliation(s)
- Thomas C Watson
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
7
|
Kanayama H, Tominaga T, Tominaga Y, Kato N, Yoshimura H. Action of GABA B receptor on local network oscillation in somatosensory cortex of oral part: focusing on NMDA receptor. J Physiol Sci 2024; 74:16. [PMID: 38475711 PMCID: PMC10935845 DOI: 10.1186/s12576-024-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABAB receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application. Oscillations comprised a non-NMDA receptor-dependent initial phase and a later NMDA receptor-dependent oscillatory phase, with the oscillator located in the upper layer of the OSC. Baclofen was applied to investigate the actions of GABAB receptors. The later NMDA receptor-dependent oscillatory phase completely disappeared, but the initial phase did not. These results suggest that GABAB receptors mainly act on NMDA receptor, in which metabotropic actions of GABAB receptors may contribute to the attenuation of NMDA receptor activities. A regulatory system for network oscillation involving GABAB receptors may be present in the OSC.
Collapse
Affiliation(s)
- Hiroyuki Kanayama
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
- Department of Oral and Maxillofacial Surgery, National Hospital Organization Osaka National Hospital, Osaka, 540-0006, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Shido, Kagawa, 769-2123, Japan
| | - Yoko Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Shido, Kagawa, 769-2123, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Uchinada-Cho, Ishikawa, 920-0293, Japan
| | - Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| |
Collapse
|
8
|
Hainmueller T, Cazala A, Huang LW, Bartos M. Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat Commun 2024; 15:714. [PMID: 38267409 PMCID: PMC10808551 DOI: 10.1038/s41467-024-44882-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The hippocampus is the brain's center for episodic memories. Its subregions, the dentate gyrus and CA1-3, are differentially involved in memory encoding and recall. Hippocampal principal cells represent episodic features like movement, space, and context, but less is known about GABAergic interneurons. Here, we performed two-photon calcium imaging of parvalbumin- and somatostatin-expressing interneurons in the dentate gyrus and CA1-3 of male mice exploring virtual environments. Parvalbumin-interneurons increased activity with running-speed and reduced it in novel environments. Somatostatin-interneurons in CA1-3 behaved similar to parvalbumin-expressing cells, but their dentate gyrus counterparts increased activity during rest and in novel environments. Congruently, chemogenetic silencing of dentate parvalbumin-interneurons had prominent effects in familiar contexts, while silencing somatostatin-expressing cells increased similarity of granule cell representations between novel and familiar environments. Our data indicate unique roles for parvalbumin- and somatostatin-positive interneurons in the dentate gyrus that are distinct from those in CA1-3 and may support routing of novel information.
Collapse
Affiliation(s)
- Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| | - Aurore Cazala
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Li-Wen Huang
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
Villalobos N. Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors. Int J Mol Sci 2024; 25:1340. [PMID: 38279339 PMCID: PMC10816949 DOI: 10.3390/ijms25021340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México 11340, Mexico;
- Sección de Estudios Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
10
|
Strong CE, Zhang J, Carrasco M, Kundu S, Boutin M, Vishwasrao HD, Liu J, Medina A, Chen YC, Wilson K, Lee EM, Ferrer M. Functional brain region-specific neural spheroids for modeling neurological diseases and therapeutics screening. Commun Biol 2023; 6:1211. [PMID: 38017066 PMCID: PMC10684574 DOI: 10.1038/s42003-023-05582-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
3D spheroids have emerged as powerful drug discovery tools given their high-throughput screening (HTS) compatibility. Here, we describe a method for generating functional neural spheroids by cell-aggregation of differentiated human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes at cell type compositions mimicking specific regions of the human brain. Recordings of intracellular calcium oscillations were used as functional assays, and the utility of this spheroids system was shown through disease modeling, drug testing, and formation of assembloids to model neurocircuitry. As a proof of concept, we generated spheroids incorporating neurons with Alzheimer's disease-associated alleles, as well as opioid use disorder modeling spheroids induced by chronic treatment of a mu-opioid receptor agonist. We reversed baseline functional deficits in each pilot disease model with clinically approved treatments and showed that assembloid activity can be chemogenetically manipulated. Here, we lay the groundwork for brain region-specific neural spheroids as a robust functional assay platform for HTS studies.
Collapse
Affiliation(s)
- Caroline E Strong
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jiajing Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Martin Carrasco
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Srikanya Kundu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Molly Boutin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angelica Medina
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Emily M Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
11
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
12
|
Villalobos N, Magdaleno-Madrigal VM. Pallidal GABA B receptors: involvement in cortex beta dynamics and thalamic reticular nucleus activity. J Physiol Sci 2023; 73:14. [PMID: 37328793 PMCID: PMC10717573 DOI: 10.1186/s12576-023-00870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The external globus pallidus (GP) firing rate synchronizes the basal ganglia-thalamus-cortex network controlling GABAergic output to different nuclei. In this context, two findings are significant: the activity and GABAergic transmission of the GP modulated by GABA B receptors and the presence of the GP-thalamic reticular nucleus (RTn) pathway, the functionality of which is unknown. The functional participation of GABA B receptors through this network in cortical dynamics is feasible because the RTn controls transmission between the thalamus and cortex. To analyze this hypothesis, we used single-unit recordings of RTn neurons and electroencephalograms of the motor cortex (MCx) before and after GP injection of the GABA B agonist baclofen and the antagonist saclofen in anesthetized rats. We found that GABA B agonists increase the spiking rate of the RTn and that this response decreases the spectral density of beta frequency bands in the MCx. Additionally, injections of GABA B antagonists decreased the firing activity of the RTn and reversed the effects in the power spectra of beta frequency bands in the MCx. Our results proved that the GP modulates cortical oscillation dynamics through the GP-RTn network via tonic modulation of RTn activity.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, 11340, México City, México.
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, 11340, Mexico City, Mexico.
| | - Victor Manuel Magdaleno-Madrigal
- Laboratorio de Neuromodulación Experimental, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
- Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, México City, México
| |
Collapse
|
13
|
Kanigowski D, Bogaj K, Barth AL, Urban-Ciecko J. Somatostatin-expressing interneurons modulate neocortical network through GABAb receptors in a synapse-specific manner. Sci Rep 2023; 13:8780. [PMID: 37258641 DOI: 10.1038/s41598-023-35890-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The firing activity of somatostatin-expressing inhibitory neurons (SST-INs) can suppress network activity via both GABAa and GABAb receptors (Rs). Although SST-INs do not receive GABAaR input from other SST-INs, it is possible that SST-IN-released GABA could suppress the activity of SST-INs themselves via GABAbRs, providing a negative feedback loop. Here we characterized the influence of GABAbR modulation on SST-IN activity in layer 2/3 of the somatosensory cortex in mice. We compared this to the effects of GABAbR activation on parvalbumin-expressing interneurons (PV-INs). Using in vitro whole-cell patch clamp recordings, pharmacological and optogenetic manipulations, we found that the firing activity of SST-INs suppresses excitatory drive to themselves via presynaptic GABAbRs. Postsynaptic GABAbRs did not influence SST-IN spontaneous activity or intrinsic excitability. Although GABAbRs at pre- and postsynaptic inputs to PV-INs are modestly activated during cortical network activity in vitro, the spontaneous firing of SST-INs was not the source of GABA driving this GABAbR activation. Thus, SST-IN firing regulates excitatory synaptic strength through presynaptic GABAbRs at connections between pyramidal neurons (Pyr-Pyr) and synapses between pyramidal neurons and SST-INs (Pyr-SST), but not Pyr-PV and PV-Pyr synapses. Our study indicates that two main types of neocortical inhibitory interneurons are differentially modulated by SST-IN-mediated GABA release.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
| | - Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland.
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Alabi A, Vanderelst D, Minai AA. Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields. Neural Netw 2023; 161:116-128. [PMID: 36745937 DOI: 10.1016/j.neunet.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
The discovery of place cells and other spatially modulated neurons in the hippocampal complex of rodents has been crucial to elucidating the neural basis of spatial cognition. More recently, the replay of neural sequences encoding previously experienced trajectories has been observed during consummatory behavior-potentially with implications for rapid learning, quick memory consolidation, and behavioral planning. Several promising models for robotic navigation and reinforcement learning have been proposed based on these and previous findings. Most of these models, however, use carefully engineered neural networks, and sometimes require long learning periods. In this paper, we present a self-organizing model incorporating place cells and replay, and demonstrate its utility for rapid one-shot learning in non-trivial environments with obstacles.
Collapse
Affiliation(s)
- Adedapo Alabi
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Dieter Vanderelst
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Ali A Minai
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
15
|
Hameed MQ, Hodgson N, Lee HHC, Pascual-Leone A, MacMullin PC, Jannati A, Dhamne SC, Hensch TK, Rotenberg A. N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cereb Cortex 2023; 33:4070-4084. [PMID: 36130098 PMCID: PMC10068300 DOI: 10.1093/cercor/bhac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Nathaniel Hodgson
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Andres Pascual-Leone
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Paul C MacMullin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Ali Jannati
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Sameer C Dhamne
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
16
|
Yang Y, Booker SA, Clegg JM, Quintana-Urzainqui I, Sumera A, Kozic Z, Dando O, Martin Lorenzo S, Herault Y, Kind PC, Price DJ, Pratt T. Identifying foetal forebrain interneurons as a target for monogenic autism risk factors and the polygenic 16p11.2 microdeletion. BMC Neurosci 2023; 24:5. [PMID: 36658491 PMCID: PMC9850541 DOI: 10.1186/s12868-022-00771-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2+/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. METHODS We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2+/- rat cerebral cortex and hippocampus at post-natal day (P) 21. RESULTS We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2+/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. LIMITATIONS The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2+/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. CONCLUSIONS We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2+/- rats.
Collapse
Affiliation(s)
- Yifei Yang
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Department of Brain Sciences, Imperial College London, London, W12 0NN, United Kingdom
| | - Sam A Booker
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - James M Clegg
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | - Anna Sumera
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Sandra Martin Lorenzo
- CNRS, Université de Strasbourg, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Yann Herault
- CNRS, Université de Strasbourg, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Peter C Kind
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom. .,Centre for Discovery Brain Sciences, The University of Edinburgh, 15 George Square, Edinburgh, EH8 9XD, United Kingdom.
| |
Collapse
|
17
|
Marileo AM, Gavilán J, San Martín VP, Lara CO, Sazo A, Muñoz-Montesino C, Castro PA, Burgos CF, Leiva-Salcedo E, Aguayo LG, Moraga-Cid G, Fuentealba J, Yévenes GE. Modulation of GABA A receptors and of GABAergic synapses by the natural alkaloid gelsemine. Front Mol Neurosci 2023; 15:1083189. [PMID: 36733271 PMCID: PMC9887029 DOI: 10.3389/fnmol.2022.1083189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.
Collapse
Affiliation(s)
- Ana M. Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Javiera Gavilán
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Cesar O. Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Elías Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis G. Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile,*Correspondence: Gonzalo E. Yévenes, ✉
| |
Collapse
|
18
|
Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane. Nat Commun 2023; 14:34. [PMID: 36596803 PMCID: PMC9810740 DOI: 10.1038/s41467-022-35708-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
The γ-aminobutyric acid type B (GABAB) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABAB receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABAB receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABAB receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABAB1 subunit and modulate the kinetics of Gαi protein activation in response to GABA stimulation.
Collapse
|
19
|
Shen W, Li Z, Tang Y, Han P, Zhu F, Dong J, Ma T, Zhao K, Zhang X, Xie Y, Zeng LH. Somatostatin interneurons inhibit excitatory transmission mediated by astrocytic GABA B and presynaptic GABA B and adenosine A 1 receptors in the hippocampus. J Neurochem 2022; 163:310-326. [PMID: 35775994 DOI: 10.1111/jnc.15662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
GABAergic network activity has been established to be involved in numerous physiological processes and pathological conditions. Extensive studies have corroborated that GABAergic network activity regulates excitatory synaptic networks by activating presynaptic GABAB receptors (GABAB Rs). It is well documented that astrocytes express GABAB Rs and respond to GABAergic network activity. However, little is known about whether astrocytic GABAB Rs regulate excitatory synaptic transmission mediated by GABAergic network activity. To address this issue, we combined whole-cell recordings, optogenetics, calcium imaging, and pharmacological approaches to specifically activate hippocampal somatostatin-expressing interneurons (SOM-INs), a type of interneuron that targets pyramidal cell dendrites, while monitoring excitatory synaptic transmission in CA1 pyramidal cells. We found that optogenetic stimulation of SOM-INs increases astrocyte Ca2+ signaling via the activation of astrocytic GABAB Rs and GAT-3. SOM-INs depress excitatory neurotransmission by activating presynaptic GABAB Rs and astrocytic GABAB Rs, the latter inducing the release of ATP/adenosine. In turn, adenosine inhibits excitatory synaptic transmission by activating presynaptic adenosine A1 receptors (A1 Rs). Overall, our results reveal a novel mechanism that SOM-INs activation-induced synaptic depression is partially mediated by the activation of astrocytic GABAB Rs.
Collapse
Affiliation(s)
- Weida Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Zijing Li
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yejiao Tang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Pufan Han
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Feng Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jingyin Dong
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Tianyu Ma
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Kai Zhao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Xin Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Asgarihafshejani A, Honoré È, Michon FX, Laplante I, Lacaille JC. Long-term potentiation at pyramidal cell to somatostatin interneuron synapses controls hippocampal network plasticity and memory. iScience 2022; 25:104259. [PMID: 35521524 PMCID: PMC9062215 DOI: 10.1016/j.isci.2022.104259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Hippocampal somatostatin (SOM) cells are dendrite-projecting inhibitory interneurons. CA1 SOM cells receive major excitatory inputs from pyramidal cells (PC-SOM synapses) which show mGluR1a- and mTORC1-mediated long-term potentiation (LTP). PC-SOM synapse LTP contributes to CA1 network metaplasticity and memory consolidation, but whether it is sufficient to regulate these processes remains unknown. Here we used optogenetic stimulation of CA1 pyramidal cells and whole-cell recordings in slices to show that optogenetic theta-burst stimulation (TBSopto) produces LTP at PC-SOM synapses. At the network level, we found that TBSopto differentially regulates metaplasticity of pyramidal cell inputs: enhancing LTP at Schaffer collateral synapses and depressing LTP at temporo-ammonic synapses. At the behavioral level, we uncovered that in vivo TBSopto regulates learning-induced LTP at PC-SOM synapses, as well as contextual fear memory. Thus, LTP of PC-SOM synapses is a long-term feedback mechanism controlling pyramidal cell synaptic plasticity, sufficient to regulate memory consolidation. Optogenetic theta-burst (TBSopto) induces LTP at PC-SOM synapses TBSopto differentially regulates metaplasticity of pyramidal cell inputs In vivo TBSopto regulates PC-SOM plasticity and contextual fear memory PC-SOM synapse LTP grants durable feedback control of network plasticity and memory
Collapse
Affiliation(s)
- Azam Asgarihafshejani
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ève Honoré
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - François-Xavier Michon
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| |
Collapse
|
21
|
Kaplanian A, Vinos M, Skaliora I. GABAb- and GABAa- mediated regulation of Up and Down states across development. J Physiol 2022; 600:2401-2427. [PMID: 35365894 DOI: 10.1113/jp282736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Slow oscillations (SOs), the EEG hallmark of non-REM sleep, and their cellular counterpart, Up-and-Down states (UDSs), are considered the default activity of the cerebral cortex and reflect the underlying neural connectivity. GABAb- and GABAa- receptor-mediated inhibition play a major role in regulating UDS activity. Although SOs and UDSs exhibit significant alterations as a function of age, it is unknown how developmental changes in inhibition contribute to the developmental profile of this activity. In this study, we reveal for the first time, age-dependent effects of GABAb and GABAa signalling on UDSs. We also document the differential subunit composition of postsynaptic GABAa receptors in young and adult animals, highlighting the α1-subunit as a major component of the age-differentiated regulation of UDSs. These findings help clarify the mechanisms that underlie the maturation of cortical network activity, and enhance our understanding regarding the emergence of neurodevelopmental disorders. ABSTRACT Slow oscillations, the hallmark of non-REM sleep, and their cellular counterpart, Up-and-Down states (UDSs), are considered a signature of cortical dynamics that reflect the intrinsic network organization. Although previous studies have explored the role of inhibition in regulating UDSs, little is known about whether this role changes with maturation. This is surprising since both slow oscillations and UDSs exhibit significant age-dependent alterations. To elucidate the developmental impact of GABAb and GABAa receptors on UDS activity, we conducted simultaneous LFP and intracellular recordings ex vivo, in brain slices of young and adult male mice, using selective blockers, CGP and non-saturating concentration of gabazine, respectively. Blockade of both GABAb- and GABAa- signalling showed age-differentiated functions. CGP caused an increase in Down state duration in young animals, but a decrease in adults. Gabazine evoked Spike-and-Wave-Discharges in both ages; however, while young networks became completely epileptic, adults maintained the ability to generate UDSs. Furthermore, voltage clamp recordings of mIPSCs revealed that gabazine selectively blocks phasic currents, particularly involving postsynaptic mechanisms. The latter exhibit clear maturational changes, suggesting a different subunit composition of GABAa receptors in young vs. adult animals. Indeed, subsequent LFP recordings under diazepam (nanomolar or micromolar concentrations) revealed that mechanisms engaging the drug's classical-binding-site, mediated by α1-subunit containing GABAa receptors, have a bigger contribution in Up state initiation in young networks compared to adults. Taken together, these findings help clarify the mechanisms that underlie the maturation of cortical network activity and enhance our understanding regarding the emergence of neurodevelopmental disorders. Abstract figure legend GABAb receptors' participation in Up state termination mechanisms is well-conserved across development. However, regulation of Down-to-Up transitions is age-dependent; GABAb receptors promote them in young while preventing them in adults. Up state maintenance is determined by age-dependent synaptic GABAa receptors' subunit composition and kinetics; α1-GABAa receptors dominate in young while non-α1-GABAa receptors dominate in adults. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ani Kaplanian
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of Biology, University of Patras, Rio, 26504, Greece
| | - Michael Vinos
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of History and Philosophy of Science, University of Athens, Athens, 15771, Greece
| | - Irini Skaliora
- Center for Basic Research, Biomedical Research Foundation of Academy of Athens (BRFAA), Athens, 11527, Greece.,Department of History and Philosophy of Science, University of Athens, Athens, 15771, Greece
| |
Collapse
|
22
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
23
|
Birey F, Li MY, Gordon A, Thete MV, Valencia AM, Revah O, Paşca AM, Geschwind DH, Paşca SP. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell 2021; 29:248-264.e7. [PMID: 34990580 DOI: 10.1016/j.stem.2021.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Defects in interneuron migration can disrupt the assembly of cortical circuits and lead to neuropsychiatric disease. Using forebrain assembloids derived by integration of cortical and ventral forebrain organoids, we have previously discovered a cortical interneuron migration defect in Timothy syndrome (TS), a severe neurodevelopmental disease caused by a mutation in the L-type calcium channel (LTCC) Cav1.2. Here, we find that acute pharmacological modulation of Cav1.2 can regulate the saltation length, but not the frequency, of interneuron migration in TS. Interestingly, the defect in saltation length is related to aberrant actomyosin and myosin light chain (MLC) phosphorylation, while the defect in saltation frequency is driven by enhanced γ-aminobutyric acid (GABA) sensitivity and can be restored by GABA-A receptor antagonism. Finally, we describe hypersynchronous hCS network activity in TS that is exacerbated by interneuron migration. Taken together, these studies reveal a complex role of LTCC function in human cortical interneuron migration and strategies to restore deficits in the context of disease.
Collapse
Affiliation(s)
- Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mayuri V Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Alfredo M Valencia
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Anca M Paşca
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA 94305, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Lack of Hyperinhibition of Oriens Lacunosum-Moleculare Cells by Vasoactive Intestinal Peptide-Expressing Cells in a Model of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0299-21.2021. [PMID: 34819310 PMCID: PMC8721516 DOI: 10.1523/eneuro.0299-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy remains a common disorder with no cure and inadequate treatments, potentially because of an incomplete understanding of how seizures start. CA1 pyramidal cells and many inhibitory interneurons increase their firing rate in the seconds-minutes before a spontaneous seizure in epileptic rats. However, some interneurons fail to do so, including those identified as putative interneurons with somata in oriens and axons targeting lacunosum-moleculare (OLM cells). Somatostatin-containing cells, including OLM cells, are the primary target of inhibitory vasoactive intestinal polypeptide and calretinin-expressing (VIP/CR) bipolar interneuron-selective interneurons, type 3 (ISI-3). The objective of this study was to test the hypothesis that in epilepsy inhibition of OLM cells by ISI-3 is abnormally increased, potentially explaining the failure of OLM recruitment when needed most during the ramp up of activity preceding a seizure. Stereological quantification of VIP/CR cells in a model of temporal lobe epilepsy demonstrated that they survive in epileptic mice, despite a reduction in their somatostatin-expressing (Som) cell targets. Paired recordings of unitary IPSCs (uIPSCs) from ISI-3 to OLM cells did not show increased connection probability or increased connection strength, and failure rate was unchanged. When miniature postsynaptic currents in ISI-3 were compared, only mIPSC frequency was increased in epileptic hippocampi. Nevertheless, spontaneous and miniature postsynaptic potentials were unchanged in OLM cells of epileptic mice. These results are not consistent with the hypothesis of hyperinhibition from VIP/CR bipolar cells impeding recruitment of OLM cells in advance of a seizure.
Collapse
|
25
|
Altered corticostriatal synchronization associated with compulsive-like behavior in APP/PS1 mice. Exp Neurol 2021; 344:113805. [PMID: 34242631 DOI: 10.1016/j.expneurol.2021.113805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Mild behavioral impairment (MBI), which can include compulsive behavior, is an early sign of Alzheimer's disease (AD), but its underlying neural mechanisms remain unclear. Here, we show that 3-5-month-old APP/PS1 mice display obsessive-compulsive disorder (OCD)-like behavior. The number of parvalbumin-positive (PV) interneurons and level of high gamma (γhigh) oscillation are significantly decreased in the striatum of AD mice. This is accompanied by enhanced β-γhigh coupling and firing rates of putative striatal projection neurons (SPNs), indicating decorrelation between PV interneurons and SPNs. Local field potentials (LFPs) simultaneously recorded in prefrontal cortex (PFC) and striatum (Str) demonstrate a decrease in γhigh-band coherent activity and spike-field coherence in corticostriatal circuits of APP/PS1 mice. Furthermore, levels of GABAB receptor (GABABR), but not GABAA receptor (GABAAR), and glutamatergic receptors, were markedly reduced, in line with presymptomatic AD-related behavioral changes. These findings suggest that MBI occurs as early as 3-5 months in APP/PS1 mice and that altered corticostriatal synchronization may play a role in mediating the behavioral phenotypes observed.
Collapse
|
26
|
Honoré E, Khlaifia A, Bosson A, Lacaille JC. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory. Front Neural Circuits 2021; 15:687558. [PMID: 34149368 PMCID: PMC8206813 DOI: 10.3389/fncir.2021.687558] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
A distinctive feature of the hippocampal structure is the diversity of inhibitory interneurons. These complex inhibitory interconnections largely contribute to the tight modulation of hippocampal circuitry, as well as to the formation and coordination of neuronal assemblies underlying learning and memory. Inhibitory interneurons provide more than a simple transitory inhibition of hippocampal principal cells (PCs). The synaptic plasticity of inhibitory neurons provides long-lasting changes in the hippocampal network and is a key component of memory formation. The dendrite targeting interneurons expressing the peptide somatostatin (SOM) are particularly interesting in this regard because they display unique long-lasting synaptic changes leading to metaplastic regulation of hippocampal networks. In this article, we examine the actions of the neuropeptide SOM on hippocampal cells, synaptic plasticity, learning, and memory. We address the different subtypes of hippocampal SOM interneurons. We describe the long-term synaptic plasticity that takes place at the excitatory synapses of SOM interneurons, its singular induction and expression mechanisms, as well as the consequences of these changes on the hippocampal network, learning, and memory. We also review evidence that astrocytes provide cell-specific dynamic regulation of inhibition of PC dendrites by SOM interneurons. Finally, we cover how, in mouse models of Alzheimer’s disease (AD), dysfunction of plasticity of SOM interneuron excitatory synapses may also contribute to cognitive impairments in brain disorders.
Collapse
Affiliation(s)
- Eve Honoré
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Abdessattar Khlaifia
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Anthony Bosson
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
27
|
Booker SA, Harada H, Elgueta C, Bank J, Bartos M, Kulik A, Vida I. Presynaptic GABA B receptors functionally uncouple somatostatin interneurons from the active hippocampal network. eLife 2020; 9:51156. [PMID: 32073397 PMCID: PMC7060044 DOI: 10.7554/elife.51156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Information processing in cortical neuronal networks relies on properly balanced excitatory and inhibitory neurotransmission. A ubiquitous motif for maintaining this balance is the somatostatin interneuron (SOM-IN) feedback microcircuit. Here, we investigated the modulation of this microcircuit by presynaptic GABAB receptors (GABABRs) in the rodent hippocampus. Whole-cell recordings from SOM-INs revealed that both excitatory and inhibitory synaptic inputs are strongly inhibited by GABABRs, while optogenetic activation of the interneurons shows that their inhibitory output is also strongly suppressed. Electron microscopic analysis of immunogold-labelled freeze-fracture replicas confirms that GABABRs are highly expressed presynaptically at both input and output synapses of SOM-INs. Activation of GABABRs selectively suppresses the recruitment of SOM-INs during gamma oscillations induced in vitro. Thus, axonal GABABRs are positioned to efficiently control the input and output synapses of SOM-INs and can functionally uncouple them from local network with implications for rhythmogenesis and the balance of entorhinal versus intrahippocampal afferents.
Collapse
Affiliation(s)
- Sam A Booker
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harumi Harada
- Institute for Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Bank
- Institute for Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Akos Kulik
- Institute for Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|