1
|
Shahid S, Karade SS, Hasan SS, Yin R, Jiang L, Liu Y, Felbinger N, Kulakova L, Toth EA, Keck ZY, Foung SKH, Fuerst TR, Pierce BG, Mariuzza RA. Cryo-EM structures of HCV E2 glycoprotein bound to neutralizing and non-neutralizing antibodies determined using bivalent Fabs as fiducial markers. Commun Biol 2025; 8:825. [PMID: 40442315 PMCID: PMC12122859 DOI: 10.1038/s42003-025-08239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/15/2025] [Indexed: 06/02/2025] Open
Abstract
Global elimination of hepatitis C virus (HCV) will require an effective cross-genotype vaccine. The HCV E2 envelope glycoprotein is the main target of neutralizing antibodies but also contains epitopes that elicit non-neutralizing antibodies which may provide protection through Fc effector functions rather than direct neutralization. We determined cryo-EM structures of a broadly neutralizing antibody, a moderately neutralizing antibody, and a non-neutralizing antibody bound to E2 to resolutions of 3.8, 3.3, and 3.7 Å, respectively. Whereas the broadly neutralizing antibody targeted the front layer of E2 and the non-neutralizing antibody targeted the back layer, the moderately neutralizing antibody straddled both front and back layers, and thereby defined a new neutralizing epitope on E2. The small size of complexes between conventional (monovalent) Fabs and E2 (~110 kDa) presented a challenge for cryo-EM. Accordingly, we engineered bivalent versions of E2-specific Fabs that doubled the size of Fab-E2 complexes and conferred highly identifiable shapes to the complexes that facilitated particle selection and orientation for image processing. This study validates bivalent Fabs as new fiducial markers for cryo-EM analysis of small proteins such as HCV E2 and identifies a new target epitope for vaccine development.
Collapse
Affiliation(s)
- Salman Shahid
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Sharanbasappa S Karade
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Liqun Jiang
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Yanxin Liu
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Nathaniel Felbinger
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Liudmila Kulakova
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Eric A Toth
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas R Fuerst
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
2
|
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, Tune S, Cramer JT, Rosset S, Vollers SS, Bankwitz D, Ballmaier M, Böning H, Roth E, Khera T, Ahsendorf-Abidi HP, Dittrich-Breiholz O, Obleser J, Nassal M, Jäck HM, Pietschmann T, Correia BE, Krey T. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. SCIENCE ADVANCES 2024; 10:eado2600. [PMID: 39642219 PMCID: PMC11623273 DOI: 10.1126/sciadv.ado2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hepatitis C virus (HCV) infection causes ~290,000 annual human deaths despite the highly effective antiviral treatment available. Several viral immune evasion mechanisms have hampered the development of an effective vaccine against HCV, among them the remarkable conformational flexibility within neutralization epitopes in the HCV antigens. Here, we report the design of epitope-focused immunogens displaying two distinct HCV cross-neutralization epitopes. We show that these immunogens induce a pronounced, broadly neutralizing antibody response in laboratory and transgenic human antibody mice. Monoclonal human antibodies isolated from immunized human antibody mice specifically recognized the grafted epitopes and neutralized four diverse HCV strains. Our results highlight a promising strategy for developing HCV immunogens and provide an encouraging paradigm for targeting structurally flexible epitopes to improve the induction of neutralizing antibodies.
Collapse
Affiliation(s)
- Kumar Nagarathinam
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Maurice Labuhn
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Barbora Veselkova
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | | | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Dorothea Bankwitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting, Hannover Medical School, 30625 Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Thomas Krey
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| |
Collapse
|
3
|
Pierce BG, Felbinger N, Metcalf M, Toth EA, Ofek G, Fuerst TR. Hepatitis C Virus E1E2 Structure, Diversity, and Implications for Vaccine Development. Viruses 2024; 16:803. [PMID: 38793684 PMCID: PMC11125608 DOI: 10.3390/v16050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.
Collapse
Affiliation(s)
- Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathaniel Felbinger
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew Metcalf
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
| | - Gilad Ofek
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Poddar S, Roy R, Kar P. The conformational dynamics of Hepatitis C Virus E2 glycoprotein with the increasing number of N-glycosylation unraveled by molecular dynamics simulations. J Biomol Struct Dyn 2024:1-16. [PMID: 38393644 DOI: 10.1080/07391102.2024.2319679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
The Hepatitis C Virus (HCV), responsible for causing hepatitis and a significant contributor to liver disorders, presents a challenge for treatment due to its high genetic variability. Despite efforts, there is still no effective medication available for this virus. One of the promising targets for drug development involves targeting glycoprotein E2. However, our understanding of the dynamic behavior of E2 and its associated glycans remains limited. In this study, we investigated the dynamic characteristics of E2 with varying degrees of glycosylation using all-atom molecular dynamics simulations. We also explored glycan's interactions with the protein and among themselves. An overall increase in correlation between the vital protein regions was observed with an increase in glycan number. The protein dynamics is followed by the analysis of glycan dynamics, where the flexibility of the individual glycans was analyzed in their free and bound state, which revealed a decrease in their fluctuation in some cases. Furthermore, we generated the free energy landscape of individual N-glycan linkages in both free and bound states and observed both increases and decreases in flexibility, which can be attributed to the formation and breakage of hydrogen bonds with amino acids. Finally, we found that for a high glycosylation system, glycans interact with glycoprotein and form hydrogen bonds among themselves. Moreover, the hydrogen bond profiles of a given glycan can vary when influenced by other glycans. In summary, our study provides valuable insights into the dynamics of the core region of HCV E2 glycoprotein and its associated glycans.
Collapse
Affiliation(s)
- Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
5
|
Toth EA, Andrianov AK, Fuerst TR. Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine. Rev Med Virol 2023; 33:e2474. [PMID: 37565536 PMCID: PMC10626635 DOI: 10.1002/rmv.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Globally, more than 58 million people are chronically infected with Hepatitis C virus (HCV) with 1.5 million new infections occurring each year. An effective vaccine for HCV is therefore a major unmet medical and public health need. Since HCV rapidly accumulates mutations, vaccines must elicit the production of broadly neutralising antibodies (bnAbs) in a reproducible fashion. Decades of research have generated a number of HCV vaccine candidates. Based on the available data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice, but robust induction of humoral and cellular responses leading to virus neutralisation has not yet been achieved. One issue that has arisen in developing an HCV vaccine (and many other vaccines as well) is the platform used for antigen delivery. The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited immunogenicity, as seen for HCV, and thus multiple formats must be examined in order to elicit a robust anti-HCV immune response. Nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both arms of the immune system. This review discusses the potential for development of a nanoparticle-based HCV E1E2 vaccine, with an emphasis on the potential benefits of such an approach along with the major challenges facing the incorporation of E1E2 into nanoparticulate delivery systems and how those challenges can be addressed.
Collapse
Affiliation(s)
- Eric A. Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander K. Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Thomas R. Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Ströh LJ, Krey T. Structural insights into hepatitis C virus neutralization. Curr Opin Virol 2023; 60:101316. [DOI: 10.1016/j.coviro.2023.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023]
|
7
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
8
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
9
|
Kumar A, Rohe TC, Elrod EJ, Khan AG, Dearborn AD, Kissinger R, Grakoui A, Marcotrigiano J. Regions of hepatitis C virus E2 required for membrane association. Nat Commun 2023; 14:433. [PMID: 36702826 PMCID: PMC9879980 DOI: 10.1038/s41467-023-36183-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C virus (HCV) uses a hybrid entry mechanism. Current structural data suggest that upon exposure to low pH and Cluster of Differentiation 81 (CD81), the amino terminus of envelope glycoprotein E2 becomes ordered and releases an internal loop with two invariant aromatic residues into the host membrane. Here, we present the structure of an amino-terminally truncated E2 with the membrane binding loop in a bent conformation and the aromatic side chains sequestered. Comparison with three previously reported E2 structures with the same Fab indicates that this internal loop is flexible, and that local context influences the exposure of hydrophobic residues. Biochemical assays show that the amino-terminally truncated E2 lacks the baseline membrane-binding capacity of the E2 ectodomain. Thus, the amino terminal region is a critical determinant for both CD81 and membrane interaction. These results provide new insights into the HCV entry mechanism.
Collapse
Affiliation(s)
- Ashish Kumar
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiana C Rohe
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth J Elrod
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Abdul G Khan
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Altaira D Dearborn
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan Kissinger
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Butt F, Shahid M, Hassan M, Tawakkal F, Amin I, Afzal S, Bhatti R, Nawaz R, Idrees M. A review on hepatitis C virus: role of viral and host-cellular factors in replication and existing therapeutic strategies. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Hepatitis C virus, a member of Flaviviridae is a single-stranded positive-sense RNA virus infecting 62–79 million people around the globe. This blood-borne virus is one of the leading causes of liver diseases worldwide. This review aims to identify novel potential genes linked to cellular host factors, as well as revise the roles of each gene in hepatitis C Virus infection. This review also aims to provide a comprehensive insight into therapeutic advancements against HCV.
Methods
For this review article, 190 articles were searched via PubMed Central, Bio-One, National Academy of Science, Google Scholar, and Worldwide Science. 0ut of these 190 studies, 55 articles were selected for this review. The inclusion of articles was done on the criteria of high citation and Q1 ranking.
Results
The information gathered from previously published articles highlighted a critical link between host-cellular factors that are important for HCV infection.
Conclusion
Although many advancements in HCV treatment have been made like DAAs and HTAs, the development of a completely effective HCV therapy is still a challenge. Further research on combinations of DAAs and HTAs can help in developing a better therapeutic alternative. Keywords: Hepatitis C virus, Replication cycle, Non-structural proteins, Host-cellular factors, Treatment strategies
Collapse
|
11
|
Bozhanova NG, Flyak AI, Brown BP, Ruiz SE, Salas J, Rho S, Bombardi RG, Myers L, Soto C, Bailey JR, Crowe JE, Bjorkman PJ, Meiler J. Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Nat Commun 2022; 13:3178. [PMID: 35676279 PMCID: PMC9177688 DOI: 10.1038/s41467-022-30865-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Despite recent success in hepatitis C virus (HCV) treatment using antivirals, an HCV vaccine is still needed to prevent reinfections in treated patients, to avert the emergence of drug-resistant strains, and to provide protection for people with no access to the antiviral therapeutics. The early production of broadly neutralizing antibodies (bNAbs) associates with HCV clearance. Several potent bNAbs bind a conserved HCV glycoprotein E2 epitope using an unusual heavy chain complementarity determining region 3 (HCDR3) containing an intra-loop disulfide bond. Isolation of additional structurally-homologous bNAbs would facilitate the recognition of key determinants of such bNAbs and guide rational vaccine design. Here we report the identification of new antibodies containing an HCDR3 disulfide bond motif using computational screening with the Rosetta software. Using the newly-discovered and already-known members of this antibody family, we review the required HCDR3 amino acid composition and propose determinants for the bent versus straight HCDR3 loop conformation observed in these antibodies.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Benjamin P Brown
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stormy E Ruiz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jordan Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Semi Rho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC, 04103, Germany.
| |
Collapse
|
12
|
Weber T, Potthoff J, Bizu S, Labuhn M, Dold L, Schoofs T, Horning M, Ercanoglu MS, Kreer C, Gieselmann L, Vanshylla K, Langhans B, Janicki H, Ströh LJ, Knops E, Nierhoff D, Spengler U, Kaiser R, Bjorkman PJ, Krey T, Bankwitz D, Pfeifer N, Pietschmann T, Flyak AI, Klein F. Analysis of antibodies from HCV elite neutralizers identifies genetic determinants of broad neutralization. Immunity 2022; 55:341-354.e7. [PMID: 34990590 PMCID: PMC10089621 DOI: 10.1016/j.immuni.2021.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.
Collapse
Affiliation(s)
- Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Julian Potthoff
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Bizu
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Maurice Labuhn
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany
| | - Leona Dold
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marcel Horning
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Rolf Kaiser
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, 23562 Luebeck, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Dorothea Bankwitz
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Pietschmann
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
13
|
Structural insights into hepatitis C virus receptor binding and entry. Nature 2021; 598:521-525. [PMID: 34526719 PMCID: PMC8542614 DOI: 10.1038/s41586-021-03913-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) infection is a causal agent of chronic liver disease, cirrhosis and hepatocellular carcinoma in humans, and afflicts more than 70 million people worldwide. The HCV envelope glycoproteins E1 and E2 are responsible for the binding of the virus to the host cell, but the exact entry process remains undetermined1. The majority of broadly neutralizing antibodies block interaction between HCV E2 and the large extracellular loop (LEL) of the cellular receptor CD81 (CD81-LEL)2. Here we show that low pH enhances the binding of CD81-LEL to E2, and we determine the crystal structure of E2 in complex with an antigen-binding fragment (2A12) and CD81-LEL (E2-2A12-CD81-LEL); E2 in complex with 2A12 (E2-2A12); and CD81-LEL alone. After binding CD81, residues 418-422 in E2 are displaced, which allows for the extension of an internal loop consisting of residues 520-539. Docking of the E2-CD81-LEL complex onto a membrane-embedded, full-length CD81 places the residues Tyr529 and Trp531 of E2 proximal to the membrane. Liposome flotation assays show that low pH and CD81-LEL increase the interaction of E2 with membranes, whereas structure-based mutants of Tyr529, Trp531 and Ile422 in the amino terminus of E2 abolish membrane binding. These data support a model in which acidification and receptor binding result in a conformational change in E2 in preparation for membrane fusion.
Collapse
|
14
|
Frumento N, Flyak AI, Bailey JR. Mechanisms of HCV resistance to broadly neutralizing antibodies. Curr Opin Virol 2021; 50:23-29. [PMID: 34329953 PMCID: PMC8500940 DOI: 10.1016/j.coviro.2021.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) block infection by genetically diverse hepatitis C virus (HCV) isolates by targeting relatively conserved epitopes on the HCV envelope glycoproteins, E1 and E2. Many amino acid substitutions conferring resistance to these bNAbs have been characterized, identifying multiple mechanisms of bNAb escape. Some resistance substitutions follow the expected mechanism of directly disrupting targeted epitopes. Interestingly, other resistance substitutions fall in E2 domains distant from bNAb-targeted epitopes. These substitutions, which can confer broad resistance to multiple bNAbs, act by less clearly defined mechanisms. Some modulate binding of HCV to cell surface receptors, while others may induce conformational changes in the E2 protein. In this review, we discuss mechanisms of HCV bNAb resistance and implications for HCV vaccine development.
Collapse
Affiliation(s)
- Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
A conserved epitope III on hepatitis C virus E2 protein has alternate conformations facilitating cell binding or virus neutralization. Proc Natl Acad Sci U S A 2021; 118:2104242118. [PMID: 34260404 PMCID: PMC8285954 DOI: 10.1073/pnas.2104242118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epitope III, a highly conserved amino acid motif of 524APTYSW529 on the hepatitis C virus (HCV) E2 glycoprotein, resides in the critical loop that binds to the host receptor CD81, thus making it one of the most important antibody targets for blocking HCV infections. Here, we have determined the X-ray crystal structure of epitope III at a 2.0-Å resolution when it was captured by a site-specific neutralizing antibody, monoclonal antibody 1H8 (mAb1H8). The snapshot of this complex revealed that epitope III has a relatively rigid structure when confined in the binding grooves of mAb1H8, which confers the residue specificity at both ends of the epitope. Such a high shape complementarity is reminiscent of the "lock and key" mode of action, which is reinforced by the incompatibility of an antibody binding with an epitope bearing specific mutations. By subtly positioning the side chains on the three residues of Tyr527, Ser528, and Trp529 while preserving the spatial rigidity of the rest, epitope III in this cocrystal complex adopts a unique conformation that is different from previously described E2 structures. With further analyses of molecular docking and phage display-based peptide interactions, we recognized that it is the arrangements of two separate sets of residues within epitope III that create these discrete conformations for the epitope to interact selectively with either mAb1H8 or CD81. These observations thus raise the possibility that local epitope III conformational dynamics, in conjunction with sequence variations, may act as a regulatory mechanism to coordinate "mAb1H8-like" antibody-mediated immune defenses with CD81-initiated HCV infections.
Collapse
|
16
|
Sevvana M, Keck Z, Foung SK, Kuhn RJ. Structural perspectives on HCV humoral immune evasion mechanisms. Curr Opin Virol 2021; 49:92-101. [PMID: 34091143 DOI: 10.1016/j.coviro.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms of hepatitis C virus (HCV) persistence and pathogenesis are poorly understood. The design of an effective HCV vaccine is challenging despite a robust humoral immune response against closely related strains of HCV. This is primarily because of the huge genetic diversity of HCV and the molecular evolution of various virus escape mechanisms. These mechanisms are steered by the presence of a high mutational rate in HCV, structural plasticity of the immunodominant regions on the virion surface of diverse HCV genotypes, and constant amino acid substitutions on key structural components of HCV envelope glycoproteins. Here, we review the molecular basis of neutralizing antibody (nAb)-mediated immune response against diverse HCV variants, HCV-steered humoral immune evasion strategies and explore the essential structural elements to consider for designing a universal HCV vaccine. Structural perspectives on key escape pathways mediated by a point mutation within the epitope, allosteric modulation of the epitope by distant mutations and glycan shift on envelope glycoproteins will be highlighted (abstract graphic).
Collapse
Affiliation(s)
- Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47904, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47904, USA
| | - Zhenyong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Kh Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47904, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47904, USA.
| |
Collapse
|
17
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
18
|
From Structural Studies to HCV Vaccine Design. Viruses 2021; 13:v13050833. [PMID: 34064532 PMCID: PMC8147963 DOI: 10.3390/v13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.
Collapse
|
19
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
20
|
Chen F, Tzarum N, Lin X, Giang E, Velázquez-Moctezuma R, Augestad EH, Nagy K, He L, Hernandez M, Fouch ME, Grinyó A, Chavez D, Doranz BJ, Prentoe J, Stanfield RL, Lanford R, Bukh J, Wilson IA, Zhu J, Law M. Functional convergence of a germline-encoded neutralizing antibody response in rhesus macaques immunized with HCV envelope glycoproteins. Immunity 2021; 54:781-796.e4. [PMID: 33675683 PMCID: PMC8046733 DOI: 10.1016/j.immuni.2021.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/14/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.
Collapse
Affiliation(s)
- Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elias H Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | - Deborah Chavez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX 788227, USA
| | | | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert Lanford
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX 788227, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Jiang Zhu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Ströh LJ, Krey T. HCV Glycoprotein Structure and Implications for B-Cell Vaccine Development. Int J Mol Sci 2020; 21:ijms21186781. [PMID: 32947858 PMCID: PMC7555785 DOI: 10.3390/ijms21186781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the approval of highly efficient direct-acting antivirals in the last decade Hepatitis C virus (HCV) remains a global health burden and the development of a vaccine would constitute an important step towards the control of HCV. The high genetic variability of the viral glycoproteins E1 and E2, which carry the main neutralizing determinants, together with their intrinsic structural flexibility, the high level of glycosylation that shields conserved neutralization epitopes and immune evasion using decoy epitopes renders the design of an efficient vaccine challenging. Recent structural and functional analyses have highlighted the role of the CD81 receptor binding site on E2, which overlaps with those neutralization epitopes within E2 that have been structurally characterized to date. This CD81 binding site consists of three distinct segments including “epitope I”, “epitope II” and the “CD81 binding loop”. In this review we summarize the structural features of the HCV glycoproteins that have been derived from X-ray structures of neutralizing and non-neutralizing antibody fragments complexed with either recombinant E2 or epitope-derived linear peptides. We focus on the current understanding how neutralizing antibodies interact with their cognate antigen, the structural features of the respective neutralization epitopes targeted by nAbs and discuss the implications for informed vaccine design.
Collapse
Affiliation(s)
- Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)451–3101-3101
| |
Collapse
|
22
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
23
|
Burke MJ, Stockley PG, Boyes J. Broadly Neutralizing Bovine Antibodies: Highly Effective New Tools against Evasive Pathogens? Viruses 2020; 12:v12040473. [PMID: 32331321 PMCID: PMC7232318 DOI: 10.3390/v12040473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Potent antibody-mediated neutralization is critical for an organism to combat the vast array of pathogens it will face during its lifetime. Due to the potential genetic diversity of some viruses, such as HIV-1 and influenza, standard neutralizing antibodies are often ineffective or easily evaded as their targets are masked or rapidly mutated. This has thwarted efforts to both prevent and treat HIV-1 infections and means that entirely new formulations are required to vaccinate against influenza each year. However, some rare antibodies isolated from infected individuals confer broad and potent neutralization. A subset of these broadly neutralizing antibodies possesses a long complementarity-determining 3 region of the immunoglobulin heavy chain (CDR H3). This feature generates unique antigen binding site configurations that can engage conserved but otherwise inaccessible epitope targets thus neutralizing many viral variants. Remarkably, ultralong CDR H3s are a common feature of the cow antibody repertoire and are encoded by a single variable, diversity, joining (VDJ) recombination that is extensively diversified prior to antigen exposure. Recently, it was shown that cows rapidly generate a broadly neutralizing response upon exposure to HIV-1 and this is primarily mediated by these novel ultralong antibody types. This review summarises the current knowledge of these unusual CDR H3 structures and discusses their known and potential future uses.
Collapse
Affiliation(s)
- Matthew J. Burke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
| | - Peter G. Stockley
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Correspondence:
| |
Collapse
|