1
|
Carroll JN, Myers B, Vaaga CE. Repeated presentation of visual threats drives innate fear habituation and is modulated by threat history and acute stress exposure. Stress 2025; 28:2489942. [PMID: 40219787 PMCID: PMC12065417 DOI: 10.1080/10253890.2025.2489942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
To survive predation, animals must be able to detect and appropriately respond to predator threats in their environment. Such defensive behaviors are thought to utilize hard-wired neural circuits for threat detection, sensorimotor integration, and execution of ethologically-relevant behaviors. Despite being hard-wired, defensive behaviors (i.e. fear responses) are not fixed, but rather show remarkable flexibility, suggesting that extrinsic factors such as threat history, environmental contexts, and physiological state may alter innate defensive behavioral responses. The goal of the present study was to examine how extrinsic and intrinsic factors influence innate defensive behaviors in response to visual threats. In the absence of a protective shelter, our results indicate that mice showed robust freezing behavior following both looming (proximal) and sweeping (distal) threats, with increased behavioral vigor in response to looming stimuli, which represent a higher threat imminence. Repeated presentation of looming or sweeping stimuli at short inter-trial intervals resulted in robust habituation of freezing, which was accelerated at longer inter-trial intervals, regardless of contextual cues. Finally, prior stress history such as acute foot shock further disrupted innate freezing habituation, resulting in a delayed habituation phenotype, consistent with a heightened fear state. Together, our results indicate that extrinsic factors such as threat history, environmental familiarity, and stressors have robust and diverse effects on defensive behaviors, highlighting the behavioral flexibility in how mice respond to predator threats.
Collapse
Affiliation(s)
- Jordan N. Carroll
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
| | - Christopher E. Vaaga
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
- Department of Neurobiology, Northwestern University Evanston IL 60208
| |
Collapse
|
2
|
Hikosaka M, Parvez MSA, Yamawaki Y, Oe S, Liang Y, Wada Y, Hirahara Y, Koike T, Imai H, Oishi N, Schalbetter SM, Kumagai A, Yoshida M, Sakurai T, Kitada M, Meyer U, Narumiya S, Ohtsuki G. Maternal immune activation followed by peripubertal stress combinedly produce reactive microglia and confine cerebellar cognition. Commun Biol 2025; 8:296. [PMID: 40033126 PMCID: PMC11876345 DOI: 10.1038/s42003-025-07566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The functional alteration of microglia arises in brains exposed to external stress during early development. Pathophysiological findings of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder suggest cerebellar functional deficits. However, the link between stress-induced microglia reactivity and cerebellar dysfunction is missing. Here, we investigate the developmental immune environment in translational mouse models that combine two risk factors: maternal infection and repeated social defeat stress (2HIT). We find the synergy of inflammatory stress insults, leading to microglial increase specifically in the cerebellum of both sexes. Microglial turnover correlates with the Purkinje neuron loss in 2HIT mice. Highly multiplexed imaging-mass-cytometry identifies a cell transition to TREM2(+) stress-associated microglia in the cerebellum. Single-cell-proteomic clustering reveals IL-6- and TGFβ-signaling association with microglial cell transitions. Reduced excitability of remaining Purkinje cells, cerebellum-involved brain-wide functional dysconnectivity, and behavioral abnormalities indicate cerebellar cognitive dysfunctions in 2HIT animals, which are ameliorated by both systemic and cerebellum-specific microglia replacement.
Collapse
Affiliation(s)
- Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Md Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Yuan Liang
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Institute of Basic Theory in Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yayoi Wada
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Kyoto, Japan
- Innovation Research Center for Quantum Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Naoya Oishi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeshi Sakurai
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
3
|
Nishiyama H, Nishiyama N, Zemelman BV. Purkinje cell ablation and Purkinje cell-specific deletion of Tsc1 in the developing cerebellum strengthen cerebellothalamic synapses. J Physiol 2024; 602:6973-7001. [PMID: 39558452 DOI: 10.1113/jp285887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Cerebellar damage early in life often causes long-lasting motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviours. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is a major direct target of the cerebellar nuclei, conveying cerebellar signals to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The ablation of Purkinje cells in the developing cerebellum strengthened cerebellothalamic synapses and enhanced thalamic suprathreshold activities. Purkinje-cell specific deletion of tuberous sclerosis complex subunit 1 (Tsc1), an autism-associated gene for which the protein product negatively regulates the mammalian target of rapamycin, also strengthened cerebellothalamic synapses. However, this strengthening occurred only in homozygous deletion, whereas both homozygous and hemizygous deletion are known to cause autism-like behaviours. These results suggest that, although the cerebellothalamic projection is vulnerable to disturbances in the developing cerebellar cortex, other changes may also drive the behavioural consequences of early cerebellar perturbation. KEY POINTS: Cerebellar damage early in life often causes motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. Recent studies focus on how the developing cerebellum affects the formation and function of the cerebral cortex, the higher-order centre for all behaviours. However, the cerebellum does not directly connect to the cerebral cortex. Here, we studied the consequences of early cerebellar perturbation on the thalamus because it is a direct postsynaptic target of the cerebellum, sending cerebellar signals to the cerebral cortex. Loss of cerebellar Purkinje cells, which are commonly associated with various neurological disorders, strengthened cerebellothalamic synapses, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum. Purkinje cell-specific loss of tuberous sclerosis complex-1, a negative regulator of mammalian target of rapamycin, is an established mouse model of autism. This mouse model also showed strengthened cerebellothalamic synapses.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Naoko Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Boris V Zemelman
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Carroll JN, Myers B, Vaaga CE. Repeated presentation of visual threats drives innate fear habituation and is modulated by environmental and physiological factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618513. [PMID: 39463941 PMCID: PMC11507848 DOI: 10.1101/2024.10.15.618513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
To survive predation, animals must be able to detect and appropriately respond to predator threats in their environment. Such defensive behaviors are thought to utilize hard-wired neural circuits for threat detection, sensorimotor integration, and execution of ethologically relevant behaviors. Despite being hard-wired, defensive behaviors (i.e. fear responses) are not fixed, but rather show remarkable flexibility, suggesting that extrinsic factors such as threat history, environmental contexts, and physiological state may alter innate defensive behavioral responses. The goal of the present study was to examine how extrinsic and intrinsic factors influence innate defensive behaviors in response to visual threats. In the absence of a protective shelter, our results indicate that mice showed robust freezing behavior following both looming (proximal) and sweeping (distal) threats, with increased behavioral vigor in response to looming stimuli, which represent a higher threat imminence. Repeated presentation of looming or sweeping stimuli at short inter-trial intervals resulted in robust habituation of freezing, which was accelerated at longer inter-trial intervals, regardless of contextual cues. Finally, physiological factors such as acute stress further disrupted innate freezing habituation, resulting in a delayed habituation phenotype, consistent with a heightened fear state. Together, our results indicate that extrinsic factors such as threat history, environmental familiarity, and physiological stressors have robust and diverse effects on defensive behaviors, highlighting the behavioral flexibility in how mice respond to predator threats.
Collapse
Affiliation(s)
- Jordan N. Carroll
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
| | - Christopher E. Vaaga
- Department of Biomedical Sciences, Colorado State University Fort Collins CO 80523
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University Fort Collins CO 80523
- Department of Neurobiology, Northwestern University Evanston IL 60208
| |
Collapse
|
6
|
McAfee SS, Robinson G, Gajjar A, Phillips NS, Zhang S, Zou Stinnett P, Sitaram R, Raches D, Conklin HM, Khan RB, Scoggins MA. Secondary cerebro-cerebellar and intra-cerebellar dysfunction in cerebellar mutism syndrome. Neuro Oncol 2024; 26:1700-1711. [PMID: 38581226 PMCID: PMC11376456 DOI: 10.1093/neuonc/noae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Cerebellar mutism syndrome (CMS) is characterized by deficits of speech, movement, and affect that can occur following tumor removal from the posterior fossa. The role of cerebro-cerebellar tract injuries in the etiology of CMS remains unclear, with recent studies suggesting that cerebro-cerebellar dysfunction may be related to chronic, rather than transient, symptomatology. METHODS We measured functional connectivity between the cerebellar cortex and functional nodes throughout the brain using fMRI acquired after tumor removal but prior to adjuvant therapy in a cohort of 70 patients diagnosed with medulloblastoma. Surgical lesions were mapped to the infratentorial anatomy, and connectivity with cerebral cortex was tested for statistical dependence on extent of cerebellar outflow pathway injury. RESULTS CMS diagnosis was associated with an increase in connectivity between the right cerebellar and left cerebral hemisphere, maximally between cerebellum and ventromedial prefrontal cortex (VM-PFC). Connectivity dependence on cerebellar outflow was significant for some speech nodes but not for VM-PFC, suggesting altered input to the cerebellum. Connectivity between posterior regions of cerebellar cortex and ipsilateral dentate nuclei was abnormal in CMS participants, maximally within the right cerebellar hemisphere. CONCLUSIONS The functional abnormalities we identified are notably upstream of where causal surgical injury is thought to occur, indicating a secondary phenomenon. The VM-PFC is involved in several functions that may be relevant to the symptomatology of CMS, including emotional control and motor learning. We hypothesize that these abnormalities may reflect maladaptive learning within the cerebellum consequent to disordered motor and limbic function by the periaqueductal gray and other critical midbrain targets.
Collapse
Affiliation(s)
- Samuel S McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Nicholas S Phillips
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Silu Zhang
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ping Zou Stinnett
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranganatha Sitaram
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Darcy Raches
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Raja B Khan
- Division of Neurology, Department of Pediatrics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew A Scoggins
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Enogieru AB, Iyoha EN. Role of Nitric Oxide, TNF-α and Caspase-3 in Lead Acetate-Exposed Rats Pretreated with Aqueous Rosmarinus officinalis Leaf Extract. Biol Trace Elem Res 2024; 202:4021-4031. [PMID: 38012512 DOI: 10.1007/s12011-023-03974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Lead (Pb) toxicity is a worldwide significant public health challenge causing several neurological disorders. Reports indicate that plants rich in antioxidants, such as Rosmarinus officinalis (RO), can counteract Pb accumulation and its toxicity in the brain. Due to a dearth of literature evidence demonstrating the protective activity of RO against Pb toxicity, this study investigated such activity in Wistar rats. Thirty-six Wistar rats were allocated into six groups (n=6), namely I (control), II (lead acetate [Pb]; 100 mg/kg b.w.), III (100 mg/kg of RO and 100 mg/kg of Pb), IV (200 mg/kg of RO and 100 mg/kg of Pb), V (100 mg/kg b.w. of RO) and VI (200 mg/kg b.w. of RO). After 28 days, neurobehavioural, antioxidant, lipid peroxidation, apoptotic and inflammatory activities as well as the histology of the cerebellum were evaluated. Body weight, locomotion and exploration as well as antioxidant enzymes were significantly (p < 0.05) decreased in Pb-exposed rats when compared to control. Conversely, lipid peroxidation, nitric oxide, tumour necrosis factor-alpha and caspase-3 activities were significantly (p < 0.05) upregulated in the Pb-exposed rats when compared to control. These parameters were, however, significantly (p<0.05) attenuated in the RO-pretreated rats when compared to Pb-exposed rats. Cerebellar histology of the Pb-exposed rats showed severe degeneration of the Purkinje cells whereas the RO-pretreated rats showed better cerebellar architecture. These findings demonstrate that the neuroprotective activity of RO is facilitated via its effective antioxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Adaze Bijou Enogieru
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria.
| | - Etinosa Nathan Iyoha
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
8
|
Dvorzhak A, Brecht M, Schmitz D. Social play behavior is driven by glycine-dependent mechanisms. Curr Biol 2024; 34:3654-3664.e6. [PMID: 39053464 DOI: 10.1016/j.cub.2024.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Social play is pervasive in juvenile mammals, yet it is poorly understood in terms of its underlying brain mechanisms. Specifically, we do not know why young animals are most playful and why most adults cease to social play. Here, we analyze the synaptic mechanisms underlying social play. We found that blocking the rat periaqueductal gray (PAG) interfered with social play. Furthermore, an age-related decrease of neural firing in the PAG is associated with a decrease in synaptic release of glycine. Most importantly, modulation of glycine concentration-apparently acting on the glycinergic binding site of the N-methyl-D-aspartate (NMDA) receptor-not only strongly modulates social play but can also reverse the age-related decline in social play. In conclusion, we demonstrate that social play critically depends on the neurotransmitter glycine within the PAG.
Collapse
Affiliation(s)
- Anton Dvorzhak
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, 10117 Berlin, Germany
| | - Michael Brecht
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neuroscience, 10117 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
9
|
Endepols H, Apetz N, Vieth L, Lesser C, Schulte-Holtey L, Neumaier B, Drzezga A. Cerebellar Metabolic Connectivity during Treadmill Walking before and after Unilateral Dopamine Depletion in Rats. Int J Mol Sci 2024; 25:8617. [PMID: 39201305 PMCID: PMC11354914 DOI: 10.3390/ijms25168617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Compensatory changes in brain connectivity keep motor symptoms mild in prodromal Parkinson's disease. Studying compensation in patients is hampered by the steady progression of the disease and a lack of individual baseline controls. Furthermore, combining fMRI with walking is intricate. We therefore used a seed-based metabolic connectivity analysis based on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in a unilateral 6-OHDA rat model. At baseline and in the chronic phase 6-7 months after lesion, rats received an intraperitoneal injection of [18F]FDG and spent 50 min walking on a horizontal treadmill, followed by a brain PET-scan under anesthesia. High activity was found in the cerebellar anterior vermis in both conditions. At baseline, the anterior vermis showed hardly any stable connections to the rest of the brain. The (future) ipsilesional cerebellar hemisphere was not particularly active during walking but was extensively connected to many brain areas. After unilateral dopamine depletion, rats still walked normally without obvious impairments. The ipsilesional cerebellar hemisphere increased its activity, but narrowed its connections down to the vestibulocerebellum, probably aiding lateral stability. The anterior vermis established a network involving the motor cortex, hippocampus and thalamus. Adding those regions to the vermis network of (previously) automatic control of locomotion suggests that after unilateral dopamine depletion considerable conscious and cognitive effort has to be provided to achieve stable walking.
Collapse
Affiliation(s)
- Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Nadine Apetz
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Lukas Vieth
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Christoph Lesser
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Léon Schulte-Holtey
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
10
|
Chen C, Niehaus JK, Dinc F, Huang KL, Barnette AL, Tassou A, Shuster SA, Wang L, Lemire A, Menon V, Ritola K, Hantman AW, Zeng H, Schnitzer MJ, Scherrer G. Neural circuit basis of placebo pain relief. Nature 2024; 632:1092-1100. [PMID: 39048016 PMCID: PMC11358037 DOI: 10.1038/s41586-024-07816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.
Collapse
Affiliation(s)
- Chong Chen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Dinc
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Karen L Huang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander L Barnette
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Andrew Shuster
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Kimberly Ritola
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W Hantman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mark J Schnitzer
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Gruver KM, Jiao JWY, Fields E, Song S, Sjöström PJ, Watt AJ. Structured connectivity in the output of the cerebellar cortex. Nat Commun 2024; 15:5563. [PMID: 38982047 PMCID: PMC11233638 DOI: 10.1038/s41467-024-49339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
The spatial organization of a neuronal circuit is critically important for its function since the location of neurons is often associated with function. In the cerebellum, the major output of the cerebellar cortex are synapses made from Purkinje cells onto neurons in the cerebellar nuclei, yet little has been known about the spatial organization of these synapses. We explored this question using whole-cell electrophysiology and optogenetics in acute sagittal cerebellar slices to produce spatial connectivity maps of cerebellar cortical output in mice. We observed non-random connectivity where Purkinje cell inputs clustered in cerebellar transverse zones: while many nuclear neurons received inputs from a single zone, several multi-zonal connectivity motifs were also observed. Single neurons receiving input from all four zones were overrepresented in our data. These findings reveal that the output of the cerebellar cortex is spatially structured and represents a locus for multimodal integration in the cerebellum.
Collapse
Affiliation(s)
- Kim M Gruver
- Department of Biology, McGill University, Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jenny W Y Jiao
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Sen Song
- Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Per Jesper Sjöström
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
12
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
13
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Caragea VM, Méndez-Couz M, Manahan-Vaughan D. Dopamine receptors of the rodent fastigial nucleus support skilled reaching for goal-directed action. Brain Struct Funct 2024; 229:609-637. [PMID: 37615757 PMCID: PMC10978667 DOI: 10.1007/s00429-023-02685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023]
Abstract
The dopaminergic (DA) system regulates both motor function, and learning and memory. The cerebellum supports motor control and the acquisition of procedural memories, including goal-directed behavior, and is subjected to DA control. Its fastigial nucleus (FN) controls and interprets body motion through space. The expression of dopamine receptors has been reported in the deep cerebellar nuclei of mice. However, the presence of dopamine D1-like (D1R) and D2-like (D2R) receptors in the rat FN has not yet been verified. In this study, we first confirmed that DA receptors are expressed in the FN of adult rats and then targeted these receptors to explore to what extent the FN modulates goal-directed behavior. Immunohistochemical assessment revealed expression of both D1R and D2R receptors in the FN, whereby the medial lateral FN exhibited higher receptor expression compared to the other FN subfields. Bilateral treatment of the FN with a D1R antagonist, prior to a goal-directed pellet-reaching task, significantly impaired task acquisition and decreased task engagement. D2R antagonism only reduced late performance post-acquisition. Once task acquisition had occurred, D1R antagonism had no effect on successful reaching, although it significantly decreased reaching speed, task engagement, and promoted errors. Motor coordination and ambulation were, however, unaffected as neither D1R nor D2R antagonism altered rotarod latencies or distance and velocity in an open field. Taken together, these results not only reveal a novel role for the FN in goal-directed skilled reaching, but also show that D1R expressed in FN regulate this process by modulating motivation for action.
Collapse
Affiliation(s)
- Violeta-Maria Caragea
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Marta Méndez-Couz
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
15
|
Zhao H, Liu J, Shao Y, Feng X, Zhao B, Sun L, Liu Y, Zeng L, Li XM, Yang H, Duan S, Yu YQ. Control of defensive behavior by the nucleus of Darkschewitsch GABAergic neurons. Natl Sci Rev 2024; 11:nwae082. [PMID: 38686177 PMCID: PMC11057443 DOI: 10.1093/nsr/nwae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Jinrong Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Binhan Zhao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
16
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Lee J, Kim SH, Jang DC, Jang M, Bak MS, Shim HG, Lee YS, Kim SJ. Intrinsic plasticity of Purkinje cell serves homeostatic regulation of fear memory. Mol Psychiatry 2024; 29:247-256. [PMID: 38017229 DOI: 10.1038/s41380-023-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Two forms of plasticity, synaptic and intrinsic, are neural substrates for learning and memory. Abnormalities in homeostatic plasticity cause severe neuropsychiatric diseases, such as schizophrenia and autism. This suggests that the balance between synaptic transmission and intrinsic excitability is important for physiological function in the brain. Despite the established role of synaptic plasticity between parallel fiber (PF) and Purkinje cell (PC) in fear memory, its relationship with intrinsic plasticity is not well understood. Here, patch clamp recording revealed depression of intrinsic excitability in PC following auditory fear conditioning (AFC). Depressed excitability balanced long-term potentiation of PF-PC synapse to serve homeostatic regulation of PF-evoked PC firing. We then optogenetically manipulated PC excitability during the early consolidation period resulting in bidirectional regulation of fear memory. Fear conditioning-induced synaptic plasticity was also regulated following optogenetic manipulation. These results propose intrinsic plasticity in PC as a novel mechanism of fear memory and elucidate that decreased intrinsic excitability in PC counterbalances PF-PC synaptic potentiation to maintain fear memory in a normal range.
Collapse
Affiliation(s)
- Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
18
|
Streng ML. The bidirectional relationship between the cerebellum and seizure networks: a double-edged sword. Curr Opin Behav Sci 2023; 54:101327. [PMID: 38800711 PMCID: PMC11126210 DOI: 10.1016/j.cobeha.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epilepsy is highly prevalent and notoriously pharmacoresistant. New therapeutic interventions are urgently needed, both for preventing the seizures themselves as well as negative outcomes and comorbidities associated with chronic epilepsy. While the cerebellum is not traditionally associated with epilepsy or seizures, research over the past decade has outlined the cerebellum as a brain region that is uniquely suited for both therapeutic needs. This review discusses our current understanding of the cerebellum as a key node within seizure networks, capable of both attenuating seizures in several animal models, and conversely, prone to altered structure and function in chronic epilepsy. Critical next steps are to advance therapeutic modulation of the cerebellum more towards translation, and to provide a more comprehensive characterization of how the cerebellum is impacted by chronic epilepsy, in order to subvert negative outcomes.
Collapse
Affiliation(s)
- M L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
20
|
McAfee SS, Robinson G, Gajjar A, Zhang S, Bag AK, Raches D, Conklin HM, Khan RB, Scoggins MA. Cerebellar mutism is linked to midbrain volatility and desynchronization from speech cortices. Brain 2023; 146:4755-4765. [PMID: 37343136 PMCID: PMC10629755 DOI: 10.1093/brain/awad209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Cerebellar mutism syndrome is a disorder of speech, movement and affect that can occur after tumour removal from the posterior fossa. Projections from the fastigial nuclei to the periaqueductal grey area were recently implicated in its pathogenesis, but the functional consequences of damaging these projections remain poorly understood. Here, we examine functional MRI data from patients treated for medulloblastoma to identify functional changes in key brain areas that comprise the motor system for speech, which occur along the timeline of acute speech impairment in cerebellar mutism syndrome. One hundred and twenty-four participants, all with medulloblastoma, contributed to the study: 45 with cerebellar mutism syndrome, 11 patients with severe postoperative deficits other than mutism, and 68 without either (asymptomatic). We first performed a data-driven parcellation to spatially define functional nodes relevant to the cohort that align with brain regions critical for the motor control of speech. We then estimated functional connectivity between these nodes during the initial postoperative imaging sessions to identify functional deficits associated with the acute phase of the disorder. We further analysed how functional connectivity changed over time within a subset of participants that had suitable imaging acquired over the course of recovery. Signal dispersion was also measured in the periaqueductal grey area and red nuclei to estimate activity in midbrain regions considered key targets of the cerebellum with suspected involvement in cerebellar mutism pathogenesis. We found evidence of periaqueductal grey dysfunction in the acute phase of the disorder, with abnormal volatility and desynchronization with neocortical language nodes. Functional connectivity with periaqueductal grey was restored in imaging sessions that occurred after speech recovery and was further shown to be increased with left dorsolateral prefrontal cortex. The amygdalae were also broadly hyperconnected with neocortical nodes in the acute phase. Stable connectivity differences between groups were broadly present throughout the cerebrum, and one of the most substantial differences-between Broca's area and the supplementary motor area-was found to be inversely related to cerebellar outflow pathway damage in the mutism group. These results reveal systemic changes in the speech motor system of patients with mutism, centred on limbic areas tasked with the control of phonation. These findings provide further support for the hypothesis that periaqueductal grey dysfunction (following cerebellar surgical injury) contributes to the transient postoperative non-verbal episode commonly observed in cerebellar mutism syndrome but highlights a potential role of intact cerebellocortical projections in chronic features of the disorder.
Collapse
Affiliation(s)
- Samuel S McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Silu Zhang
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Asim K Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Darcy Raches
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Raja B Khan
- Division of Neurology, Department of Pediatrics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthew A Scoggins
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
21
|
Nishiyama H, Nishiyama N, Zemelman BV. Loss of Purkinje cells in the developing cerebellum strengthens the cerebellothalamic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564864. [PMID: 37961231 PMCID: PMC10635038 DOI: 10.1101/2023.11.01.564864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cerebellar damage early in life often causes long-lasting motor, social, and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviors. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviors. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is the direct postsynaptic target of the cerebellum, sending cerebellar outputs to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The hemizygous deletion of the tuberous sclerosis complex-1 ( Tsc1 ) gene in the Purkinje cell-known to cause Purkinje cell hypoactivity and autistic behaviors-did not alter cerebellothalamic synapses or intrinsic membrane properties of thalamic neurons. However, the ablation of Purkinje cells in the developing cerebellum strengthened the cerebellothalamic synapses and enhanced thalamic suprathreshold activities. These results suggest that the cerebellothalamic circuit is resistant to moderate perturbation in the developing cerebellum, such as the reduced firing rate of Purkinje cells, and that autistic behaviors are not necessarily linked to thalamic abnormality. Still, Purkinje cell loss alters the thalamic circuit, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum.
Collapse
|
22
|
Chen CH, Newman LN, Stark AP, Bond KE, Zhang D, Nardone S, Vanderburg CR, Nadaf NM, Yao Z, Mutume K, Flaquer I, Lowell BB, Macosko EZ, Regehr WG. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain. Nat Neurosci 2023; 26:1929-1941. [PMID: 37919612 PMCID: PMC11348979 DOI: 10.1038/s41593-023-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.
Collapse
Affiliation(s)
- Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Leannah N Newman
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Amanda P Stark
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Katherine E Bond
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Dawei Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Stefano Nardone
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles R Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kefiloe Mutume
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Zang Y, De Schutter E. Recent data on the cerebellum require new models and theories. Curr Opin Neurobiol 2023; 82:102765. [PMID: 37591124 DOI: 10.1016/j.conb.2023.102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
The cerebellum has been a popular topic for theoretical studies because its structure was thought to be simple. Since David Marr and James Albus related its function to motor skill learning and proposed the Marr-Albus cerebellar learning model, this theory has guided and inspired cerebellar research. In this review, we summarize the theoretical progress that has been made within this framework of error-based supervised learning. We discuss the experimental progress that demonstrates more complicated molecular and cellular mechanisms in the cerebellum as well as new cell types and recurrent connections. We also cover its involvement in diverse non-motor functions and evidence of other forms of learning. Finally, we highlight the need to explain these new experimental findings into an integrated cerebellar model that can unify its diverse computational functions.
Collapse
Affiliation(s)
- Yunliang Zang
- Academy of Medical Engineering and Translational Medicine, Medical Faculty, Tianjin University, Tianjin 300072, China; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan. https://twitter.com/DeschutterOIST
| |
Collapse
|
24
|
Lefler Y, Branco T. How the brain plays musical statues. Nat Neurosci 2023; 26:1482-1484. [PMID: 37550512 DOI: 10.1038/s41593-023-01400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Affiliation(s)
- Yaara Lefler
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK.
| |
Collapse
|
25
|
Goñi-Erro H, Selvan R, Caggiano V, Leiras R, Kiehn O. Pedunculopontine Chx10 + neurons control global motor arrest in mice. Nat Neurosci 2023; 26:1516-1528. [PMID: 37501003 PMCID: PMC10471498 DOI: 10.1038/s41593-023-01396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Arrest of ongoing movements is an integral part of executing motor programs. Behavioral arrest may happen upon termination of a variety of goal-directed movements or as a global motor arrest either in the context of fear or in response to salient environmental cues. The neuronal circuits that bridge with the executive motor circuits to implement a global motor arrest are poorly understood. We report the discovery that the activation of glutamatergic Chx10-derived neurons in the pedunculopontine nucleus (PPN) in mice arrests all ongoing movements while simultaneously causing apnea and bradycardia. This global motor arrest has a pause-and-play pattern with an instantaneous interruption of movement followed by a short-latency continuation from where it was paused. Mice naturally perform arrest bouts with the same combination of motor and autonomic features. The Chx10-PPN-evoked arrest is different to ventrolateral periaqueductal gray-induced freezing. Our study defines a motor command that induces a global motor arrest, which may be recruited in response to salient environmental cues to allow for a preparatory or arousal state, and identifies a locomotor-opposing role for rostrally biased glutamatergic neurons in the PPN.
Collapse
Affiliation(s)
- Haizea Goñi-Erro
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raghavendra Selvan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vittorio Caggiano
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Meta AI Research, New York, NY, USA
| | - Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Stanley AT, Post MR, Lacefield C, Sulzer D, Miniaci MC. Norepinephrine release in the cerebellum contributes to aversive learning. Nat Commun 2023; 14:4852. [PMID: 37563141 PMCID: PMC10415399 DOI: 10.1038/s41467-023-40548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The modulation of dopamine release from midbrain projections to the striatum has long been demonstrated in reward-based learning, but the synaptic basis of aversive learning is far less characterized. The cerebellum receives axonal projections from the locus coeruleus, and norepinephrine release is implicated in states of arousal and stress, but whether aversive learning relies on plastic changes in norepinephrine release in the cerebellum is unknown. Here we report that in mice, norepinephrine is released in the cerebellum following an unpredicted noxious event (a foot-shock) and that this norepinephrine release is potentiated powerfully with fear acquisition as animals learn that a previously neutral stimulus (tone) predicts the aversive event. Importantly, both chemogenetic and optogenetic inhibition of the locus coeruleus-cerebellum pathway block fear memory without impairing motor function. Thus, norepinephrine release in the cerebellum is modulated by experience and underlies aversive learning.
Collapse
Affiliation(s)
- Adrien T Stanley
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Michael R Post
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Clay Lacefield
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
27
|
Liu X, He J, Jiang W, Wen S, Xiao Z. The Roles of Periaqueductal Gray and Dorsal Raphe Nucleus Dopaminergic Systems in the Mechanisms of Thermal Hypersensitivity and Depression in Mice. THE JOURNAL OF PAIN 2023; 24:1213-1228. [PMID: 36796500 DOI: 10.1016/j.jpain.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Depression and thermal hypersensitivity share pathogenic features and symptomology, but their pathophysiologic interactions have not been fully elucidated. Dopaminergic systems in the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus have been implicated in these conditions due to their antinociception and antidepression effects, although their specific roles and underlying mechanisms remain obscure. In this study, chronic unpredictable mild stress (CMS) was used to induce depression-like behaviors and thermal hypersensitivity in C57BL/6J (wild-type) or dopamine transporter promoter mice to establish a mouse model of pain and depression comorbidity. Microinjections of quinpirole, a dopamine D2 receptor agonist, up-regulated D2 receptor expression in dorsal raphe nucleus and reduced depressive behaviors and thermal hypersensitivity with CMS, while dorsal raphe nucleus injections of JNJ-37822681, an antagonist of D2 receptors, had the reciprocal effect on dopamine D2 receptor expression and behaviors. Moreover, using a chemical genetics approach to activate or inhibit dopaminergic neurons in vlPAG ameliorated or exacerbated depression-like behaviors and thermal hypersensitivity, respectively, in dopamine transporter promoter-Cre CMS mice. Collectively these results demonstrated the specific role of vlPAG and dorsal raphe nucleus dopaminergic systems in the regulation of pain and depression comorbidity in mice. PERSPECTIVE: The current study provides insights into the complex mechanisms underlying thermal hypersensitivity induced by depression, and the findings suggest that pharmacological and chemogenetic modulation of dopaminergic systems in the vlPAG and dorsal raphe nucleus may be a promising therapeutic strategy to simultaneously mitigate pain and depression.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Jiang
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
28
|
Streng ML, Froula JM, Krook-Magnuson E. The cerebellum's understated role and influences in the epilepsies. Neurobiol Dis 2023; 183:106160. [PMID: 37209926 DOI: 10.1016/j.nbd.2023.106160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Approximately 1 in 26 people will develop epilepsy in their lifetime, but current treatment options leave as many as half of all epilepsy patients with uncontrolled seizures. In addition to the burden of the seizures themselves, chronic epilepsy can be associated with cognitive deficits, structural changes, and devastating negative outcomes such as sudden unexpected death in epilepsy (SUDEP). Thus, major challenges in epilepsy research surround the need to both develop new therapeutic targets for intervention as well as shed light on the mechanisms by which chronic epilepsy can lead to comorbidities and negative outcomes. Despite not being traditionally associated with epilepsy or seizures, the cerebellum has emerged as not only a brain region that can serve as an important target for seizure control, but one that may also be profoundly impacted by chronic epilepsy. Here, we discuss targeting the cerebellum for potential therapeutic intervention and discuss pathway insights gained from recent optogenetic studies. We then review observations of cerebellar alterations during seizures and in chronic epilepsy, as well as the potential for the cerebellum to be a seizure focus. Cerebellar alterations in epilepsy may be critical to patient outcomes, highlighting the need for a more comprehensive understanding and appreciation of the cerebellum in the epilepsies.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Jessica M Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
29
|
Paci E, Lumb BM, Apps R, Lawrenson CL, Moran RJ. Dynamic causal modeling reveals increased cerebellar- periaqueductal gray communication during fear extinction. Front Syst Neurosci 2023; 17:1148604. [PMID: 37266394 PMCID: PMC10229824 DOI: 10.3389/fnsys.2023.1148604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction The extinction of fear memories is an important component in regulating defensive behaviors, contributing toward adaptive processes essential for survival. The cerebellar medial nucleus (MCN) has bidirectional connections with the ventrolateral periaqueductal gray (vlPAG) and is implicated in the regulation of multiple aspects of fear, such as conditioned fear learning and the expression of defensive motor outputs. However, it is unclear how communication between the MCN and vlPAG changes during conditioned fear extinction. Methods We use dynamic causal models (DCMs) to infer effective connectivity between the MCN and vlPAG during auditory cue-conditioned fear retrieval and extinction in the rat. DCMs determine causal relationships between neuronal sources by using neurobiologically motivated models to reproduce the dynamics of post-synaptic potentials generated by synaptic connections within and between brain regions. Auditory event related potentials (ERPs) during the conditioned tone offset were recorded simultaneously from MCN and vlPAG and then modeled to identify changes in the strength of the synaptic inputs between these brain areas and the relationship to freezing behavior across extinction trials. The DCMs were structured to model evoked responses to best represent conditioned tone offset ERPs and were adapted to represent PAG and cerebellar circuitry. Results With the use of Parametric Empirical Bayesian (PEB) analysis we found that the strength of the information flow, mediated through enhanced synaptic efficacy from MCN to vlPAG was inversely related to freezing during extinction, i.e., communication from MCN to vlPAG increased with extinction. Discussion The results are consistent with the cerebellum contributing to predictive processes that underpin fear extinction.
Collapse
Affiliation(s)
- Elena Paci
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bridget M. Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Charlotte L. Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rosalyn J. Moran
- Department of Neuroimaging, King’s College London, London, United Kingdom
| |
Collapse
|
30
|
Urrutia Desmaison JD, Sala RW, Ayyaz A, Nondhalee P, Popa D, Léna C. Cerebellar control of fear learning via the cerebellar nuclei-Multiple pathways, multiple mechanisms? Front Syst Neurosci 2023; 17:1176668. [PMID: 37229350 PMCID: PMC10203220 DOI: 10.3389/fnsys.2023.1176668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Fear learning is mediated by a large network of brain structures and the understanding of their roles and interactions is constantly progressing. There is a multitude of anatomical and behavioral evidence on the interconnection of the cerebellar nuclei to other structures in the fear network. Regarding the cerebellar nuclei, we focus on the coupling of the cerebellar fastigial nucleus to the fear network and the relation of the cerebellar dentate nucleus to the ventral tegmental area. Many of the fear network structures that receive direct projections from the cerebellar nuclei are playing a role in fear expression or in fear learning and fear extinction learning. We propose that the cerebellum, via its projections to the limbic system, acts as a modulator of fear learning and extinction learning, using prediction-error signaling and regulation of fear related thalamo-cortical oscillations.
Collapse
|
31
|
McPherson KB, Bouchet CA, Coutens B, Ingram SL. Persistent inflammation selectively activates opioid-sensitive phasic-firing neurons within the vlPAG. J Neurophysiol 2023; 129:1237-1248. [PMID: 37073984 PMCID: PMC10202481 DOI: 10.1152/jn.00016.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
The ventrolateral periaqueductal gray (vlPAG) is a key brain area within the descending pain modulatory pathway and an important target for opioid-induced analgesia. The vlPAG contains heterogeneous neurons with respect to neurotransmitter content, receptor and channel expression, and in vivo response to noxious stimuli. This study characterizes intrinsic membrane properties of vlPAG neurons to identify neuron types that respond to inflammation and determine whether the pain-responsive neurons are inhibited by opioids. Surveying 382 neurons identified four neuron types with distinct intrinsic firing patterns: Phasic (48%), Tonic (33%), Onset (10%), and Random (9%). Mu-opioid receptor (MOR) expression was determined by the ability of a selective MOR agonist (DAMGO) to activate G protein-coupled inwardly rectifying potassium channel (GIRK) currents. Opioid-sensitive neurons were observed within each neuron type. Opioid sensitivity did not correlate with other intrinsic firing features, including low-threshold spiking that has been previously proposed to identify opioid-sensitive GABAergic neurons in the vlPAG of mice. Complete Freund's adjuvant (CFA)-induced acute inflammation (2 h) had no effect on vlPAG neuron firing patterns. However, persistent inflammation (5-7 days) selectively activated Phasic neurons through a significant reduction in their firing threshold. Opioid-sensitive neurons were strongly activated compared with the opioid-insensitive Phasic neurons. Overall, this study provides a framework to further identify neurons activated by persistent inflammation so that they may be targeted for future pain therapies.NEW & NOTEWORTHY Intrinsic firing properties define four distinct vlPAG neuron populations, and a subset of each population expresses MORs coupled to GIRK channels. Persistent, but not acute, inflammation selectively activates opioid-sensitive Phasic vlPAG neurons. Although the vlPAG is known to contribute to the descending inhibition of pain, the activation of a single physiologically defined neuron type in the presence of persistent inflammation represents a mechanism by which the vlPAG participates in descending facilitation of pain.
Collapse
Affiliation(s)
- Kylie B McPherson
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States
- The Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Courtney A Bouchet
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States
- The Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Basile Coutens
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
32
|
Hwang KD, Baek J, Ryu HH, Lee J, Shim HG, Kim SY, Kim SJ, Lee YS. Cerebellar nuclei neurons projecting to the lateral parabrachial nucleus modulate classical fear conditioning. Cell Rep 2023; 42:112291. [PMID: 36952344 DOI: 10.1016/j.celrep.2023.112291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Multiple brain regions are engaged in classical fear conditioning. Despite evidence for cerebellar involvement in fear conditioning, the mechanisms by which cerebellar outputs modulate fear learning and memory remain unclear. We identify a population of deep cerebellar nucleus (DCN) neurons with monosynaptic glutamatergic projections to the lateral parabrachial nucleus (lPBN) (DCN→lPBN neurons) in mice. While optogenetic suppression of DCN→lPBN neurons impairs auditory fear memory, activation of DCN→lPBN neurons elicits freezing behavior only after auditory fear conditioning. Moreover, auditory fear conditioning potentiates DCN-lPBN synapses, and subsequently, auditory cue activates lPBN neurons after fear conditioning. Furthermore, DCN→lPBN neuron activation can replace the auditory cue but not footshock in fear conditioning. These findings demonstrate that cerebellar nuclei modulate auditory fear conditioning via transmitting conditioned stimuli signals to the lPBN. Collectively, our findings suggest that the DCN-lPBN circuit is a part of neuronal substrates within interconnected brain regions underscoring auditory fear memory.
Collapse
Affiliation(s)
- Kyoung-Doo Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun-Hee Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun Yong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.
| |
Collapse
|
33
|
Doubliez A, Nio E, Senovilla-Sanz F, Spatharioti V, Apps R, Timmann D, Lawrenson CL. The cerebellum and fear extinction: evidence from rodent and human studies. Front Syst Neurosci 2023; 17:1166166. [PMID: 37152612 PMCID: PMC10160380 DOI: 10.3389/fnsys.2023.1166166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
The role of the cerebellum in emotional control has gained increasing interest, with studies showing it is involved in fear learning and memory in both humans and rodents. This review will focus on the contributions of the cerebellum to the extinction of learned fear responses. Extinction of fearful memories is critical for adaptive behaviour, and is clinically relevant to anxiety disorders such as post-traumatic stress disorder, in which deficits in extinction processes are thought to occur. We present evidence that supports cerebellar involvement in fear extinction, from rodent studies that investigate molecular mechanisms and functional connectivity with other brain regions of the known fear extinction network, to fMRI studies in humans. This evidence is considered in relation to the theoretical framework that the cerebellum is involved in the formation and updating of internal models of the inner and outer world by detecting errors between predicted and actual outcomes. In the case of fear conditioning, these internal models are thought to predict the occurrence of an aversive unconditioned stimulus (US), and when the aversive US is unexpectedly omitted during extinction learning the cerebellum uses prediction errors to update the internal model. Differences between human and rodent studies are highlighted to help inform future work.
Collapse
Affiliation(s)
- Alice Doubliez
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Enzo Nio
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Fernando Senovilla-Sanz
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Vasiliki Spatharioti
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Charlotte L. Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
da Silva GN, Seiffert N, Tovote P. Cerebellar contribution to the regulation of defensive states. Front Syst Neurosci 2023; 17:1160083. [PMID: 37064160 PMCID: PMC10102664 DOI: 10.3389/fnsys.2023.1160083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Despite fine tuning voluntary movement as the most prominently studied function of the cerebellum, early human studies suggested cerebellar involvement emotion regulation. Since, the cerebellum has been associated with various mood and anxiety-related conditions. Research in animals provided evidence for cerebellar contributions to fear memory formation and extinction. Fear and anxiety can broadly be referred to as defensive states triggered by threat and characterized by multimodal adaptations such as behavioral and cardiac responses integrated into an intricately orchestrated defense reaction. This is mediated by an evolutionary conserved, highly interconnected network of defense-related structures with functional connections to the cerebellum. Projections from the deep cerebellar nucleus interpositus to the central amygdala interfere with retention of fear memory. Several studies uncovered tight functional connections between cerebellar deep nuclei and pyramis and the midbrain periaqueductal grey. Specifically, the fastigial nucleus sends direct projections to the ventrolateral PAG to mediate fear-evoked innate and learned freezing behavior. The cerebellum also regulates cardiovascular responses such as blood pressure and heart rate-effects dependent on connections with medullary cardiac regulatory structures. Because of the integrated, multimodal nature of defensive states, their adaptive regulation has to be highly dynamic to enable responding to a moving threatening stimulus. In this, predicting threat occurrence are crucial functions of calculating adequate responses. Based on its role in prediction error generation, its connectivity to limbic regions, and previous results on a role in fear learning, this review presents the cerebellum as a regulator of integrated cardio-behavioral defensive states.
Collapse
Affiliation(s)
- Gabriela Neubert da Silva
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Nina Seiffert
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Philip Tovote
- Defense Circuits Lab, Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Philip Tovote,
| |
Collapse
|
35
|
Frontera JL, Sala RW, Georgescu IA, Baba Aissa H, d'Almeida MN, Popa D, Léna C. The cerebellum regulates fear extinction through thalamo-prefrontal cortex interactions in male mice. Nat Commun 2023; 14:1508. [PMID: 36932068 PMCID: PMC10023697 DOI: 10.1038/s41467-023-36943-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Fear extinction is a form of inhibitory learning that suppresses the expression of aversive memories and plays a key role in the recovery of anxiety and trauma-related disorders. Here, using male mice, we identify a cerebello-thalamo-cortical pathway regulating fear extinction. The cerebellar fastigial nucleus (FN) projects to the lateral subregion of the mediodorsal thalamic nucleus (MD), which is reciprocally connected with the dorsomedial prefrontal cortex (dmPFC). The inhibition of FN inputs to MD in male mice impairs fear extinction in animals with high fear responses and increases the bursting of MD neurons, a firing pattern known to prevent extinction learning. Indeed, this MD bursting is followed by high levels of the dmPFC 4 Hz oscillations causally associated with fear responses during fear extinction, and the inhibition of FN-MD neurons increases the coherence of MD bursts and oscillations with dmPFC 4 Hz oscillations. Overall, these findings reveal a regulation of fear-related thalamo-cortical dynamics by the cerebellum and its contribution to fear extinction.
Collapse
Affiliation(s)
- Jimena L Frontera
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Romain W Sala
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Ioana A Georgescu
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Hind Baba Aissa
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Marion N d'Almeida
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
36
|
Integrated cardio-behavioral responses to threat define defensive states. Nat Neurosci 2023; 26:447-457. [PMID: 36759559 PMCID: PMC9991919 DOI: 10.1038/s41593-022-01252-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
Fear and anxiety are brain states that evolved to mediate defensive responses to threats. The defense reaction includes multiple interacting behavioral, autonomic and endocrine adjustments, but their integrative nature is poorly understood. In particular, although threat has been associated with various cardiac changes, there is no clear consensus regarding the relevance of these changes for the integrated defense reaction. Here we identify rapid microstates that are associated with specific behaviors and heart rate dynamics, which are affected by long-lasting macrostates and reflect context-dependent threat levels. In addition, we demonstrate that one of the most commonly used defensive behavioral responses-freezing as measured by immobility-is part of an integrated cardio-behavioral microstate mediated by Chx10+ neurons in the periaqueductal gray. Our framework for systematic integration of cardiac and behavioral readouts presents the basis for a better understanding of complex neural defensive states and their associated systemic functions.
Collapse
|
37
|
A framework for integrated cardio-behavioral defensive states. Nat Neurosci 2023; 26:373-374. [PMID: 36759560 DOI: 10.1038/s41593-023-01255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
38
|
Togo H, Nakamura T, Wakasugi N, Takahashi Y, Hanakawa T. Interactions across emotional, cognitive and subcortical motor networks underlying freezing of gait. Neuroimage Clin 2023; 37:103342. [PMID: 36739790 PMCID: PMC9932566 DOI: 10.1016/j.nicl.2023.103342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Freezing of gait (FOG) is a gait disorder affecting patients with Parkinson's disease (PD) and related disorders. The pathophysiology of FOG is unclear because of its phenomenological complexity involving motor, cognitive, and emotional aspects of behavior. Here we used resting-state functional MRI to retrieve functional connectivity (FC) correlated with the New FOG questionnaire (NFOGQ) reflecting severity of FOG in 67 patients with PD. NFOGQ scores were correlated with FCs in the extended basal ganglia network (BGN) involving the striatum and amygdala, and in the extra-cerebellum network (CBLN) involving the frontoparietal network (FPN). These FCs represented interactions across the emotional (amygdala), subcortical motor (BGN and CBLN), and cognitive networks (FPN). Using these FCs as features, we constructed statistical models that explained 40% of the inter-individual variances of FOG severity and that discriminated between PD patients with and without FOG. The amygdala, which connects to the subcortical motor (BGN and CBLN) and cognitive (FPN) networks, may have a pivotal role in interactions across the emotional, cognitive, and subcortical motor networks. Future refinement of the machine learning-based classifier using FCs may clarify the complex pathophysiology of FOG further and help diagnose and evaluate FOG in clinical settings.
Collapse
Affiliation(s)
- Hiroki Togo
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Tatsuhiro Nakamura
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noritaka Wakasugi
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takashi Hanakawa
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
| |
Collapse
|
39
|
Bohne P, Rybarski M, Mourabit DBE, Krause F, Mark MD. Cerebellar contribution to threat probability in a SCA6 mouse model. Hum Mol Genet 2022; 31:3807-3828. [PMID: 35708512 PMCID: PMC9652111 DOI: 10.1093/hmg/ddac135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Fear and anxiety have proven to be essential during the evolutionary process. However, the mechanisms involved in recognizing and categorizing threat probability (i.e. low to high) to elicit the appropriate defensive behavior are yet to be determined. In this study, we investigated the cerebellar contribution in evoking appropriate defensive escape behavior using a purely cerebellar, neurodegenerative mouse model for spinocerebellar ataxia type 6 which is caused by an expanded CAG repeat in exon 47 of the P/Q type calcium channel α1A subunit. These mice overexpress the carboxy terminus (CT) of the P/Q type calcium channel containing an expanded 27 CAG repeat specifically in cerebellar Purkinje cells (CT-longQ27PC). We found that our CT-longQ27PC mice exhibit anxiolytic behavior in the open field, elevated plus maze and light/dark place preference tests, which could be recovered with more threatening conditions such as brighter lighting, meowing sounds and an ultrasound repellent. Their innate fear to find safety in the Barnes maze and visual cliff tests was also diminished with subsequent trials, which could be partially recovered with an ultrasound repellent in the Barnes maze. However, under higher threat conditions such as in the light/dark place preference with ultrasound repellent and in the looming tests, CT-longQ27PC mice responded with higher defensive escape behaviors as controls. Moreover, CT-longQ27PC mice displayed increased levels of CT-labeled aggregates compared with controls. Together these data suggest that cerebellar degeneration by overexpression of CT-longQ27PC is sufficient to impair defensive escape responses in those mice.
Collapse
Affiliation(s)
- Pauline Bohne
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| | - Max Rybarski
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| | | | - Felix Krause
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| |
Collapse
|
40
|
Manning CE, Fritz M, Kauer JA. Function of Excitatory Periaqueductal Gray Synapses in the Ventral Tegmental Area following Inflammatory Injury. eNeuro 2022; 9:ENEURO.0324-22.2022. [PMID: 36635253 PMCID: PMC9797208 DOI: 10.1523/eneuro.0324-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Manipulating the activity of ventral tegmental area (VTA) dopamine (DA) neurons can drive nocifensive reflexes, and their firing rates are reduced following noxious stimuli. However, the pain-relevant inputs to the VTA remain incompletely understood. In this study, we used male and female mice in combination with identified dopamine and GABA neurons in the VTA that receive excitatory inputs from the periaqueductal gray (PAG), a nexus of ascending pain information. We tested whether PAG-VTA synapses undergo functional plasticity in response to a pain model using optical stimulation in conjunction with slice electrophysiology. We found that acute carrageenan inflammation does not significantly affect the strength of excitatory PAG synapses onto VTA DA neurons. However, at the PAG synapses on VTA GABA neurons, the subunit composition of NMDA receptors is altered; the complement of NR2D subunits at synaptic sites appears to be lost. Thus, our data support a model in which injury initially alters synapses on VTA GABA neurons. Over time, these alterations may increase tonic inhibition of VTA DA neurons leading to their reduced firing.
Collapse
Affiliation(s)
- Claire Elena Manning
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305-5101
| | - Michael Fritz
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305-5101
| | - Julie Ann Kauer
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305-5101
| |
Collapse
|
41
|
Bhandiwad AA, Chu NC, Semenova SA, Holmes GA, Burgess HA. A cerebellar-prepontine circuit for tonic immobility triggered by an inescapable threat. SCIENCE ADVANCES 2022; 8:eabo0549. [PMID: 36170356 PMCID: PMC9519051 DOI: 10.1126/sciadv.abo0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Sudden changes in the environment are frequently perceived as threats and provoke defensive behavioral states. One such state is tonic immobility, a conserved defensive strategy characterized by powerful suppression of movement and motor reflexes. Tonic immobility has been associated with multiple brainstem regions, but the underlying circuit is unknown. Here, we demonstrate that a strong vibratory stimulus evokes tonic immobility in larval zebrafish defined by suppressed locomotion and sensorimotor responses. Using a circuit-breaking screen and targeted neuron ablations, we show that cerebellar granule cells and a cluster of glutamatergic ventral prepontine neurons (vPPNs) that express key stress-associated neuropeptides are critical components of the circuit that suppresses movement. The complete sensorimotor circuit transmits information from sensory ganglia through the cerebellum to vPPNs to regulate reticulospinal premotor neurons. These results show that cerebellar regulation of a neuropeptide-rich prepontine structure governs a conserved and ancestral defensive behavior that is triggered by an inescapable threat.
Collapse
Affiliation(s)
- Ashwin A. Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | - Svetlana A. Semenova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - George A. Holmes
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
van Hoogstraten WS, Lute MCC, Nusselder H, Kros L, van den Maagdenberg AMJM, De Zeeuw CI. cATR Tracing Approach to Identify Individual Intermediary Neurons Based on Their Input and Output: A Proof-of-Concept Study Connecting Cerebellum and Central Hubs Implicated in Developmental Disorders. Cells 2022; 11:cells11192978. [PMID: 36230940 PMCID: PMC9562212 DOI: 10.3390/cells11192978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past decades, it has become increasingly clear that many neurodevelopmental disorders can be characterized by aberrations in the neuro-anatomical connectome of intermediary hubs. Yet, despite the advent in unidirectional transsynaptic tracing technologies, we are still lacking an efficient approach to identify individual neurons based on both their precise input and output relations, hampering our ability to elucidate the precise connectome in both the healthy and diseased condition. Here, we bridge this gap by combining anterograde transsynaptic- and retrograde (cATR) tracing in Ai14 reporter mice, using adeno-associated virus serotype 1 expressing Cre and cholera toxin subunit B as the anterograde and retrograde tracer, respectively. We have applied this innovative approach to selectively identify individual neurons in the brainstem that do not only receive input from one or more of the cerebellar nuclei (CN), but also project to the primary motor cortex (M1), the amygdala or the ventral tegmental area (VTA). Cells directly connecting CN to M1 were found mainly in the thalamus, while a large diversity of midbrain and brainstem areas connected the CN to the amygdala or VTA. Our data highlight that cATR allows for specific, yet brain-wide, identification of individual neurons that mediate information from a cerebellar nucleus to the cerebral cortex, amygdala or VTA via a disynaptic pathway. Given that the identified neurons in healthy subjects can be readily quantified, our data also form a solid foundation to make numerical comparisons with mouse mutants suffering from aberrations in their connectome due to a neurodevelopmental disorder.
Collapse
Affiliation(s)
| | - Marit C. C. Lute
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Hugo Nusselder
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, NIN-KNAW, 1105 BA Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
43
|
McPherson KB, Ingram SL. Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front Syst Neurosci 2022; 16:963812. [PMID: 36045708 PMCID: PMC9421147 DOI: 10.3389/fnsys.2022.963812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
The descending pain modulatory pathway exerts important bidirectional control of nociceptive inputs to dampen and/or facilitate the perception of pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from many regions associated with the processing of nociceptive, cognitive, and affective components of pain perception, and is a key brain area for opioid action. Opioid receptors are expressed on a subset of vlPAG neurons, as well as on both GABAergic and glutamatergic presynaptic terminals that impinge on vlPAG neurons. Microinjection of opioids into the vlPAG produces analgesia and microinjection of the opioid receptor antagonist naloxone blocks stimulation-mediated analgesia, highlighting the role of endogenous opioid release within this region in the modulation of nociception. Endogenous opioid effects within the vlPAG are complex and likely dependent on specific neuronal circuits activated by acute and chronic pain stimuli. This review is focused on the cellular heterogeneity within vlPAG circuits and highlights gaps in our understanding of endogenous opioid regulation of the descending pain modulatory circuits.
Collapse
Affiliation(s)
- Kylie B. McPherson
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Susan L. Ingram
| |
Collapse
|
44
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
45
|
Abstract
The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
46
|
McAfee SS, Zhang S, Zou P, Conklin HM, Raches D, Robinson G, Gajjar A, Khan R, Klimo P, Patay Z, Scoggins MA. Fastigial nuclei surgical damage and focal midbrain disruption implicate PAG survival circuits in cerebellar mutism syndrome. Neuro Oncol 2022; 25:375-385. [PMID: 35789275 PMCID: PMC9925705 DOI: 10.1093/neuonc/noac168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pediatric postoperative cerebellar mutism syndrome (CMS) is a rare but well-known complication of medulloblastoma (Mb) resection with devastating effects on expressive language, mobility, cognition, and emotional regulation that diminishes quality of life for many Mb survivors. The specific anatomical and neuronal basis of CMS remains obscure. We address this issue by identifying patterns of surgical damage and secondary axonal degeneration in Mb survivors with CMS. METHODS Children with Mb deemed high risk for CMS based on intraventricular location of the tumor had T1 images analyzed for location(s) of surgical damage using a specially developed algorithm. We used three complementary methods of spatial analysis to identify surgical damage linked to CMS diagnosis. Magnetization transfer ratio (MTR) images were analyzed for evidence of demyelination in anatomic regions downstream of the cerebellum, indicating neuronal dysfunction. RESULTS Spatial analyses highlighted damage to the fastigial nuclei and their associated cerebellar cortices as the strongest predictors of CMS. CMS-related MTR decrease was greatest in the ventral periaqueductal gray (PAG) area and highly consistent in the left red nucleus. CONCLUSION Our evidence points to disruption of output from the fastigial nuclei as a likely causal trigger for CMS. We propose that core CMS symptoms result from a disruption in the triggering of survival behaviors regulated by the PAG, including the gating of vocalization and volitional movement. The fastigial nuclei provide the densest output to the PAG from the cerebellum, thus sparing these structures may provide a greater likelihood of CMS prevention.
Collapse
Affiliation(s)
- Samuel S McAfee
- Corresponding Author: Samuel S. McAfee, PhD, Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Chili’s Care Center, Room I3210, Memphis, TN 38105, USA ()
| | - Silu Zhang
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ping Zou
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Darcy Raches
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Raja Khan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew A Scoggins
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
47
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
48
|
Wheatcroft T, Saleem AB, Solomon SG. Functional Organisation of the Mouse Superior Colliculus. Front Neural Circuits 2022; 16:792959. [PMID: 35601532 PMCID: PMC9118347 DOI: 10.3389/fncir.2022.792959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a highly conserved area of the mammalian midbrain that is widely implicated in the organisation and control of behaviour. SC receives input from a large number of brain areas, and provides outputs to a large number of areas. The convergence and divergence of anatomical connections with different areas and systems provides challenges for understanding how SC contributes to behaviour. Recent work in mouse has provided large anatomical datasets, and a wealth of new data from experiments that identify and manipulate different cells within SC, and their inputs and outputs, during simple behaviours. These data offer an opportunity to better understand the roles that SC plays in these behaviours. However, some of the observations appear, at first sight, to be contradictory. Here we review this recent work and hypothesise a simple framework which can capture the observations, that requires only a small change to previous models. Specifically, the functional organisation of SC can be explained by supposing that three largely distinct circuits support three largely distinct classes of simple behaviours-arrest, turning towards, and the triggering of escape or capture. These behaviours are hypothesised to be supported by the optic, intermediate and deep layers, respectively.
Collapse
Affiliation(s)
| | | | - Samuel G. Solomon
- Institute of Behavioural Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
49
|
de Mello Rosa GH, Ullah F, de Paiva YB, da Silva JA, Branco LGS, Corrado AP, Medeiros P, Coimbra NC, Franceschi Biagioni A. Ventrolateral periaqueductal gray matter integrative system of defense and antinociception. Pflugers Arch 2022; 474:469-480. [PMID: 35201425 PMCID: PMC8924147 DOI: 10.1007/s00424-022-02672-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/16/2023]
Abstract
Defensive responses are neurophysiological processes crucial for survival during threatening situations. Defensive immobility is a common adaptive response, in rodents, elaborated by ventrolateral periaqueductal gray matter (vlPAG) when threat is unavoidable. It is associated with somatosensory and autonomic reactions such as alteration in the sensation of pain and rate of respiration. In this study, defensive immobility was assessed by chemical stimulation of vlPAG with different doses of NMDA (0.1, 0.3, and 0.6 nmol). After elicitation of defensive immobility, antinociceptive and respiratory response tests were also performed. Results revealed that defensive immobility was followed by a decrease in the nociceptive perception. Furthermore, the lowest dose of NMDA induced antinociceptive response without eliciting defensive immobility. During defensive immobility, respiratory responses were also disturbed. Interestingly, respiratory rate was increased and interspersed with prolonged expiratory phase of breathing. These findings suggest that vlPAG integrates three different defensive behavioral responses, contributing to the most effective defensive strategies during threatening situations.
Collapse
Affiliation(s)
- Gustavo Henrique de Mello Rosa
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Farhad Ullah
- Department of Zoology, Islamia College Peshawar, Grand trunk Rd, Rahat Abad, Peshawar, 25120, Pakistan
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Luiz Guilherme S Branco
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Alexandre Pinto Corrado
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| | - Audrey Franceschi Biagioni
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Neuron Physiology and Technology Laboratory, International School for Advanced Studies (SISSA), Department of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
50
|
Hwang KD, Kim SJ, Lee YS. Cerebellar Circuits for Classical Fear Conditioning. Front Cell Neurosci 2022; 16:836948. [PMID: 35431810 PMCID: PMC9005982 DOI: 10.3389/fncel.2022.836948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicates that the cerebellum is critically involved in modulating non-motor behaviors, including cognition and emotional processing. Both imaging and lesion studies strongly suggest that the cerebellum is a component of the fear memory network. Given the well-established role of the cerebellum in adaptive prediction of movement and cognition, the cerebellum is likely to be engaged in the prediction of learned threats. The cerebellum is activated by fear learning, and fear learning induces changes at multiple synaptic sites in the cerebellum. Furthermore, recent technological advances have enabled the investigation of causal relationships between intra- and extra-cerebellar circuits and fear-related behaviors such as freezing. Here, we review the literature on the mechanisms underlying the modulation of cerebellar circuits in a mammalian brain by fear conditioning at the cellular and synaptic levels to elucidate the contributions of distinct cerebellar structures to fear learning and memory. This knowledge may facilitate a deeper understanding and development of more effective treatment strategies for fear-related affective disorders including post-traumatic stress or anxiety related disorders.
Collapse
Affiliation(s)
- Kyoung-Doo Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- *Correspondence: Yong-Seok Lee
| |
Collapse
|