1
|
Yevoo PE, Fontanini A, Maffei A. Modulation of sweet preference by neurosteroid-sensitive, δ-GABA A receptors in adult mouse gustatory insular cortex. Curr Biol 2025; 35:1047-1060.e4. [PMID: 39933517 PMCID: PMC11903165 DOI: 10.1016/j.cub.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/12/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Taste preference is a fundamental driver of feeding behavior, influencing dietary choices and eating patterns. Extensive experimental evidence indicates that the gustatory cortex (GC) is engaged in taste perception, palatability, and preference. However, our knowledge of the neural and neurochemical signals regulating taste preference is limited. Neuromodulators can affect preferences, though their effects on neural circuits for taste are incompletely understood. Neurosteroids are of particular interest, as systemic administration of the neurosteroid allopregnanolone (ALLO), a positive allosteric modulator of extrasynaptic GABAA receptors containing the delta subunit (δ-GABAARs), induces hyperphagia and increases intake of energy-rich food in humans and animals. The δ-GABAARs receptors produce a tonic inhibitory current and are widely distributed in the brain. However, information regarding their expression within gustatory circuits is lacking, and their role in taste preference has not been investigated. Here, we focused on GC to investigate whether activation of δ-GABAARs affects sweet taste preference in adult mice. Our data reveal that δ-GABAARs are expressed in multiple cell types within GC, mediate an ALLO-sensitive tonic current, decrease the behavioral sensitivity to sucrose, and reduce the preference for sweet taste in a cell-type-specific manner. Our findings demonstrate a fundamental role for δ-GABAAR-mediated currents within GC in regulating taste sensitivity and preference in the adult mammalian brain.
Collapse
Affiliation(s)
- Priscilla E Yevoo
- Department of Neurobiology and Behavior Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Graduate Program in Neuroscience, Stony Brook University, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Graduate Program in Neuroscience, Stony Brook University, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Center for Neural Circuit Dynamics, Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Graduate Program in Neuroscience, Stony Brook University, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Center for Neural Circuit Dynamics, Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA.
| |
Collapse
|
2
|
Kogan JF, Fontanini A. Learning enhances representations of taste-guided decisions in the mouse gustatory insular cortex. Curr Biol 2024; 34:1880-1892.e5. [PMID: 38631343 PMCID: PMC11188718 DOI: 10.1016/j.cub.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Learning to discriminate overlapping gustatory stimuli that predict distinct outcomes-a feat known as discrimination learning-can mean the difference between ingesting a poison or a nutritive meal. Despite the obvious importance of this process, very little is known about the neural basis of taste discrimination learning. In other sensory modalities, this form of learning can be mediated by either the sharpening of sensory representations or the enhanced ability of "decision-making" circuits to interpret sensory information. Given the dual role of the gustatory insular cortex (GC) in encoding both sensory and decision-related variables, this region represents an ideal site for investigating how neural activity changes as animals learn a novel taste discrimination. Here, we present results from experiments relying on two-photon calcium imaging of GC neural activity in mice performing a taste-guided mixture discrimination task. The task allows for the recording of neural activity before and after learning induced by training mice to discriminate increasingly similar pairs of taste mixtures. Single-neuron and population analyses show a time-varying pattern of activity, with early sensory responses emerging after taste delivery and binary, choice-encoding responses emerging later in the delay before a decision is made. Our results demonstrate that, while both sensory and decision-related information is encoded by GC in the context of a taste mixture discrimination task, learning and improved performance are associated with a specific enhancement of decision-related responses.
Collapse
Affiliation(s)
- Joshua F Kogan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alfredo Fontanini
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Gutiérrez-Vera B, Reyes-García SE, Escobar ML. Brief environmental enrichment elicits metaplasticity on the insular cortex in vivo and reduces the strength of conditioned taste aversion. Neurobiol Learn Mem 2023; 205:107840. [PMID: 37805119 DOI: 10.1016/j.nlm.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Environmental enrichment (EE) is known to improve memory and cognition and modulate the impact of aversive stimuli in animals, promoting the development of resilience to stressful situations. Likewise, it is known that EE can modulate synaptic plasticity as is the case of long-term potentiation (LTP). These findings have been described initially in ex vivo preparations, suggesting that the effects of EE are the result of an early modification of the synaptic excitability and transmission. In this regard, it is known that metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. In addition, we have shown that CTA extinction allows the induction but not the maintenance of IC-LTP of the Bla-IC pathway. Recently, we also showed that prior exposure to environmental enrichment for three weeks reduces the strength of CTA, restoring the brain-derived neurotrophic factor (BDNF) levels in the IC. The present study aimed to analyze the effects of brief exposure to an enriched environment on the strength of aversive memory, as well as on the in vivo IC-LTP. To do so, adult rats were exposed for seven days to an EE, either before CTA training or LTP induction in the Bla-IC pathway. Our results demonstrate that a seven-day exposure to an enriched environment attenuates the aversive response to a strong CTA and allows the induction but not the maintenance of LTP in the insular cortex. These findings provide evidence that metaplastic regulation in a neocortical region takes part in the mechanisms through which brief exposure to enriched environments attenuates an aversive response.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Vera
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Salma E Reyes-García
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico.
| |
Collapse
|
4
|
Kogan JF, Fontanini A. Learning enhances representations of taste-guided decisions in the mouse gustatory insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562605. [PMID: 37905010 PMCID: PMC10614904 DOI: 10.1101/2023.10.16.562605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Learning to discriminate overlapping gustatory stimuli that predict distinct outcomes - a feat known as discrimination learning - can mean the difference between ingesting a poison or a nutritive meal. Despite the obvious importance of this process, very little is known on the neural basis of taste discrimination learning. In other sensory modalities, this form of learning can be mediated by either sharpening of sensory representations, or enhanced ability of "decision-making" circuits to interpret sensory information. Given the dual role of the gustatory insular cortex (GC) in encoding both sensory and decision-related variables, this region represents an ideal site for investigating how neural activity changes as animals learn a novel taste discrimination. Here we present results from experiments relying on two photon calcium imaging of GC neural activity in mice performing a taste-guided mixture discrimination task. The task allows for recording of neural activity before and after learning induced by training mice to discriminate increasingly similar pairs of taste mixtures. Single neuron and population analyses show a time-varying pattern of activity, with early sensory responses emerging after taste delivery and binary, choice encoding responses emerging later in the delay before a decision is made. Our results demonstrate that while both sensory and decision-related information is encoded by GC in the context of a taste mixture discrimination task, learning and improved performance are associated with a specific enhancement of decision-related responses.
Collapse
|
5
|
Cao Y, Song Y, Ding Y, Ni J, Zhu B, Shen J, Miao L. The role of hormones in the pathogenesis and treatment mechanisms of delirium in ICU: The past, the present, and the future. J Steroid Biochem Mol Biol 2023; 233:106356. [PMID: 37385414 DOI: 10.1016/j.jsbmb.2023.106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Delirium is an acute brain dysfunction. As one of the common psychiatric disorders in ICU, it can seriously affect the prognosis of patients. Hormones are important messenger substances found in the human body that help to regulate and maintain the function and metabolism of various tissues and organs. They are also one of the most commonly used drugs in clinical practice. Recent evidences suggest that aberrant swings in cortisol and non-cortisol hormones might induce severe cognitive impairment, eventually leading to delirium. However, the role of hormones in the pathogenesis of delirium still remains controversial. This article reviews the recent research on risk factors of delirium and the association between several types of hormones and cognitive dysfunction. These mechanisms are expected to offer novel ideas and clinical relevance for the treatment and prevention of delirium.
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yuwei Song
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yuan Ding
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Jiayuan Ni
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Bin Zhu
- Department of Critical Care Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Jianqin Shen
- Department of Blood Purification Center, the Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| | - Liying Miao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| |
Collapse
|
6
|
Schiff HC, Kogan JF, Isaac M, Czarnecki LA, Fontanini A, Maffei A. Experience-dependent plasticity of gustatory insular cortex circuits and taste preferences. SCIENCE ADVANCES 2023; 9:eade6561. [PMID: 36630501 PMCID: PMC9833665 DOI: 10.1126/sciadv.ade6561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 05/10/2023]
Abstract
Early experience with food influences taste preference in adulthood. How gustatory experience influences development of taste preferences and refinement of cortical circuits has not been investigated. Here, we exposed weanling mice to an array of taste solutions and determined the effects on the preference for sweet in adulthood. We demonstrate an experience-dependent shift in sucrose preference persisting several weeks following the termination of exposure. A shift in sucrose palatability, altered neural responsiveness to sucrose, and inhibitory synaptic plasticity in the gustatory portion of the insular cortex (GC) were also induced. The modulation of sweet preference occurred within a restricted developmental window, but restoration of the capacity for inhibitory plasticity in adult GC reactivated the sensitivity of sucrose preference to taste experience. Our results establish a fundamental link between gustatory experience, sweet preference, inhibitory plasticity, and cortical circuit function and highlight the importance of early life nutrition in setting taste preferences.
Collapse
Affiliation(s)
- Hillary C. Schiff
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joshua F. Kogan
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
- Medical Scientist Training Program, SUNY Stony Brook, Stony Brook, NY, USA
| | - Maria Isaac
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
| | | | - Alfredo Fontanini
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
7
|
Kolatt Chandran S, Yiannakas A, Kayyal H, Salalha R, Cruciani F, Mizrahi L, Khamaisy M, Stern S, Rosenblum K. Intrinsic Excitability in Layer IV-VI Anterior Insula to Basolateral Amygdala Projection Neurons Correlates with the Confidence of Taste Valence Encoding. eNeuro 2023; 10:ENEURO.0302-22.2022. [PMID: 36635250 PMCID: PMC9850927 DOI: 10.1523/eneuro.0302-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022] Open
Abstract
Avoiding potentially harmful, and consuming safe food is crucial for the survival of living organisms. However, the perceived valence of sensory information can change following conflicting experiences. Pleasurability and aversiveness are two crucial parameters defining the perceived valence of a taste and can be impacted by novelty. Importantly, the ability of a given taste to serve as the conditioned stimulus (CS) in conditioned taste aversion (CTA) is dependent on its valence. Activity in anterior insula (aIC) Layer IV-VI pyramidal neurons projecting to the basolateral amygdala (BLA) is correlated with and necessary for CTA learning and retrieval, as well as the expression of neophobia toward novel tastants, but not learning taste familiarity. Yet, the cellular mechanisms underlying the updating of taste valence representation in this specific pathway are poorly understood. Here, using retrograde viral tracing and whole-cell patch-clamp electrophysiology in trained mice, we demonstrate that the intrinsic properties of deep-lying Layer IV-VI, but not superficial Layer I-III aIC-BLA neurons, are differentially modulated by both novelty and valence, reflecting the subjective predictability of taste valence arising from prior experience. These correlative changes in the profile of intrinsic properties of LIV-VI aIC-BLA neurons were detectable following both simple taste experiences, as well as following memory retrieval, extinction learning, and reinstatement.
Collapse
Affiliation(s)
| | - Adonis Yiannakas
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Randa Salalha
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Federica Cruciani
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
9
|
Ramos R, Wu CH, Turrigiano GG. Strong Aversive Conditioning Triggers a Long-Lasting Generalized Aversion. Front Cell Neurosci 2022; 16:854315. [PMID: 35295904 PMCID: PMC8918528 DOI: 10.3389/fncel.2022.854315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Generalization is an adaptive mnemonic process in which an animal can leverage past learning experiences to navigate future scenarios, but overgeneralization is a hallmark feature of anxiety disorders. Therefore, understanding the synaptic plasticity mechanisms that govern memory generalization and its persistence is an important goal. Here, we demonstrate that strong CTA conditioning results in a long-lasting generalized aversion that persists for at least 2 weeks. Using brain slice electrophysiology and activity-dependent labeling of the conditioning-active neuronal ensemble within the gustatory cortex, we find that strong CTA conditioning induces a long-lasting increase in synaptic strengths that occurs uniformly across superficial and deep layers of GC. Repeated exposure to salt, the generalized tastant, causes a rapid attenuation of the generalized aversion that correlates with a reversal of the CTA-induced increases in synaptic strength. Unlike the uniform strengthening that happens across layers, reversal of the generalized aversion results in a more pronounced depression of synaptic strengths in superficial layers. Finally, the generalized aversion and its reversal do not impact the acquisition and maintenance of the aversion to the conditioned tastant (saccharin). The strong correlation between the generalized aversion and synaptic strengthening, and the reversal of both in superficial layers by repeated salt exposure, strongly suggests that the synaptic changes in superficial layers contribute to the formation and reversal of the generalized aversion. In contrast, the persistence of synaptic strengthening in deep layers correlates with the persistence of CTA. Taken together, our data suggest that layer-specific synaptic plasticity mechanisms separately govern the persistence and generalization of CTA memory.
Collapse
|
10
|
Gietzen DW. Brain Signaling of Indispensable Amino Acid Deficiency. J Clin Med 2021; 11:191. [PMID: 35011932 PMCID: PMC8745678 DOI: 10.3390/jcm11010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Our health requires continual protein synthesis for maintaining and repairing tissues. For protein synthesis to function, all the essential (indispensable) amino acids (IAAs) must be available in the diet, along with those AAs that the cells can synthesize (the dispensable amino acids). Here we review studies that have shown the location of the detector for IAA deficiency in the brain, specifically for recognition of IAA deficient diets (IAAD diets) in the anterior piriform cortex (APC), with subsequent responses in downstream brain areas. The APC is highly excitable, which makes is uniquely suited to serve as an alarm for reductions in IAAs. With a balanced diet, these neurons are kept from over-excitation by GABAergic inhibitory neurons. Because several transporters and receptors on the GABAergic neurons have rapid turnover times, they rely on intact protein synthesis to function. When an IAA is missing, its unique tRNA cannot be charged. This activates the enzyme General Control Nonderepressible 2 (GCN2) that is important in the initiation phase of protein synthesis. Without the inhibitory control supplied by GABAergic neurons, excitation in the circuitry is free to signal an urgent alarm. Studies in rodents have shown rapid recognition of IAA deficiency by quick rejection of the IAAD diet.
Collapse
Affiliation(s)
- Dorothy W Gietzen
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Reyes-García SE, Escobar ML. Calcineurin Participation in Hebbian and Homeostatic Plasticity Associated With Extinction. Front Cell Neurosci 2021; 15:685838. [PMID: 34220454 PMCID: PMC8242195 DOI: 10.3389/fncel.2021.685838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In nature, animals need to adapt to constant changes in their environment. Learning and memory are cognitive capabilities that allow this to happen. Extinction, the reduction of a certain behavior or learning previously established, refers to a very particular and interesting type of learning that has been the basis of a series of therapies to diminish non-adaptive behaviors. In recent years, the exploration of the cellular and molecular mechanisms underlying this type of learning has received increasing attention. Hebbian plasticity (the activity-dependent modification of the strength or efficacy of synaptic transmission), and homeostatic plasticity (the homeostatic regulation of plasticity) constitute processes intimately associated with memory formation and maintenance. Particularly, long-term depression (LTD) has been proposed as the underlying mechanism of extinction, while the protein phosphatase calcineurin (CaN) has been widely related to both the extinction process and LTD. In this review, we focus on the available evidence that sustains CaN modulation of LTD and its association with extinction. Beyond the classic view, we also examine the interconnection among extinction, Hebbian and homeostatic plasticity, as well as emergent evidence of the participation of kinases and long-term potentiation (LTP) on extinction learning, highlighting the importance of the balance between kinases and phosphatases in the expression of extinction. Finally, we also integrate data that shows the association between extinction and less-studied phenomena, such as synaptic silencing and engram formation that open new perspectives in the field.
Collapse
Affiliation(s)
- Salma E Reyes-García
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martha L Escobar
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
12
|
Wu CH, Ramos R, Katz DB, Turrigiano GG. Homeostatic synaptic scaling establishes the specificity of an associative memory. Curr Biol 2021; 31:2274-2285.e5. [PMID: 33798429 PMCID: PMC8187282 DOI: 10.1016/j.cub.2021.03.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Correlation-based (Hebbian) forms of synaptic plasticity are crucial for the initial encoding of associative memories but likely insufficient to enable the stable storage of multiple specific memories within neural circuits. Theoretical studies have suggested that homeostatic synaptic normalization rules provide an essential countervailing force that can stabilize and expand memory storage capacity. Although such homeostatic mechanisms have been identified and studied for decades, experimental evidence that they play an important role in associative memory is lacking. Here, we show that synaptic scaling, a widely studied form of homeostatic synaptic plasticity that globally renormalizes synaptic strengths, is dispensable for initial associative memory formation but crucial for the establishment of memory specificity. We used conditioned taste aversion (CTA) learning, a form of associative learning that relies on Hebbian mechanisms within gustatory cortex (GC), to show that animals conditioned to avoid saccharin initially generalized this aversion to other novel tastants. Specificity of the aversion to saccharin emerged slowly over a time course of many hours and was associated with synaptic scaling down of excitatory synapses onto conditioning-active neuronal ensembles within gustatory cortex. Blocking synaptic scaling down in the gustatory cortex enhanced the persistence of synaptic strength increases induced by conditioning and prolonged the duration of memory generalization. Taken together, these findings demonstrate that synaptic scaling is crucial for sculpting the specificity of an associative memory and suggest that the relative strengths of Hebbian and homeostatic plasticity can modulate the balance between stable memory formation and memory generalization.
Collapse
Affiliation(s)
- Chi-Hong Wu
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Raul Ramos
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
13
|
Lin JY, Mukherjee N, Bernstein MJ, Katz DB. Perturbation of amygdala-cortical projections reduces ensemble coherence of palatability coding in gustatory cortex. eLife 2021; 10:e65766. [PMID: 34018924 PMCID: PMC8139825 DOI: 10.7554/elife.65766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Taste palatability is centrally involved in consumption decisions-we ingest foods that taste good and reject those that don't. Gustatory cortex (GC) and basolateral amygdala (BLA) almost certainly work together to mediate palatability-driven behavior, but the precise nature of their interplay during taste decision-making is still unknown. To probe this issue, we discretely perturbed (with optogenetics) activity in rats' BLA→GC axons during taste deliveries. This perturbation strongly altered GC taste responses, but while the perturbation itself was tonic (2.5 s), the alterations were not-changes preferentially aligned with the onset times of previously-described taste response epochs, and reduced evidence of palatability-related activity in the 'late-epoch' of the responses without reducing the amount of taste identity information available in the 'middle epoch.' Finally, BLA→GC perturbations changed behavior-linked taste response dynamics themselves, distinctively diminishing the abruptness of ensemble transitions into the late epoch. These results suggest that BLA 'organizes' behavior-related GC taste dynamics.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Narendra Mukherjee
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Max J Bernstein
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Donald B Katz
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| |
Collapse
|
14
|
Yiannakas A, Kolatt Chandran S, Kayyal H, Gould N, Khamaisy M, Rosenblum K. Parvalbumin interneuron inhibition onto anterior insula neurons projecting to the basolateral amygdala drives aversive taste memory retrieval. Curr Biol 2021; 31:2770-2784.e6. [PMID: 33930301 DOI: 10.1016/j.cub.2021.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Memory retrieval refers to the fundamental ability of organisms to make use of acquired, sometimes inconsistent, information about the world. Although memory acquisition has been studied extensively, the neurobiological mechanisms underlying memory retrieval remain largely unknown. Conditioned taste aversion (CTA) is a robust associative paradigm, through which animals can be trained to express aversion toward innately appetitive tastants. The anterior insula (aIC) is indispensable in the ability of mammals to retrieve associative information regarding tastants that have been previously linked with gastric malaise. Here, we show that CTA memory retrieval promotes cell-type-specific activation in the aIC. Using chemogenetic tools in the aIC, we found that CTA memory acquisition requires activation of excitatory neurons and inhibition of inhibitory neurons, whereas retrieval necessitates activation of both excitatory and inhibitory aIC circuits. CTA memory retrieval at the aIC activates parvalbumin (PV) interneurons and increases synaptic inhibition onto activated pyramidal neurons projecting to the basolateral amygdala (aIC-BLA). Unlike innately appetitive taste memory retrieval, CTA retrieval increases synaptic inhibition onto aIC-BLA-projecting neurons that is dependent on activity in aIC PV interneurons. PV aIC interneurons coordinate CTA memory retrieval and are necessary for its dominance when conflicting internal representations are encountered over time. The reinstatement of CTA memories following extinction is also dependent on activation of aIC PV interneurons, which increase the frequency of inhibition onto aIC-BLA-projecting neurons. This newly described interaction of PV and a subset of excitatory neurons can explain the coherency of aversive memory retrieval, an evolutionary pre-requisite for animal survival.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | - Haneen Kayyal
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Nathaniel Gould
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Haifa, Israel.
| |
Collapse
|
15
|
Urrieta E, Escobar ML. Metaplastic regulation of neocortical long-term depression in vivo is sensitive to distinct phases of conditioned taste aversion. Neurobiol Learn Mem 2021; 182:107449. [PMID: 33915300 DOI: 10.1016/j.nlm.2021.107449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Accumulated evidence has proposed that metaplasticity contributes to network function and cognitive processes such as learning and memory. In this regard, it has been observed that training in several behavioral tasks modifies the possibility to induce subsequent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). For instance, our previous studies have shown that conditioned taste aversion (CTA) training prevents the induction of in vivo LTP in the projection from the basolateral nucleus of the amygdala to the insular cortex (BLA-IC). Likewise, we reported that extinction of CTA allows induction but not maintenance of LTP in the same pathway. Besides, we showed that it is possible to express in vivo low-frequency stimulation LTD in the BLA-IC projection and that its induction prior to CTA training facilitates the extinction of this task. However, until now, little is known about the participation of LTD on metaplastic processes. The present study aimed to analyze whether CTA training modifies the expression of in vivo LTD in the BLA-IC projection. To do so, animals received low-frequency stimulation to induce IC-LTD 48 h after CTA training. Our results show that CTA training occludes the subsequent induction of LTD in the BLA-IC pathway in a retrieval-dependent manner. These findings reveal that CTA elicits a metaplastic regulation of long-lasting changes in the IC synaptic strength, as well as that specific phases of learning differentially take part in adjusting the expression of synaptic plasticity in neocortical regions.
Collapse
Affiliation(s)
- Esteban Urrieta
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico.
| |
Collapse
|
16
|
Another Example of Conditioned Taste Aversion: Case of Snails. BIOLOGY 2020; 9:biology9120422. [PMID: 33256267 PMCID: PMC7760351 DOI: 10.3390/biology9120422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary It is important to decide what to eat and what not to eat in the life. Children are likely to reject new foods. When eating a new food results in a negative experience, the child will avoid that specific food in the future. This phenomenon is called ‘conditioned taste aversion’ in mammals, and it is considered necessary for survival by preventing subsequent ingestion of sickening foods. Many researchers study the same kind of phenomenon in invertebrates, too. For example, the formation of conditioned taste aversion was found in the pond snail, Lymnaea stagnalis, with the selective associability between a sweet sucrose solution and a bitter KCl solution. A sweet food attracts many kinds of animals, resulting in the feeding response, whereas a KCl solution is an aversive stimulus, inducing a withdrawal response in snails. After repeated temporally-contingent presentations of these two stimuli, the sucrose solution no longer elicits a feeding response, and this phenomenon persists for a long term. In the present review, we first outline the mechanisms of conditioned taste aversion in mammals, then introduce the conditioned taste aversion in snails, and compare them. Furthermore, the molecular events in snails are discussed, suggesting the general mechanism in conditioned taste aversion. Abstract Conditioned taste aversion (CTA) in mammals has several specific characteristics: (1) emergence of a negative symptom in subjects due to selective association with a taste-related stimulus, (2) robust long-term memory that is resistant to extinction induced by repeated presentation of the conditioned stimulus (CS), (3) a very-long-delay presentation of the unconditioned stimulus (US), and (4) single-trial learning. The pond snail, Lymnaea stagnalis, can also form a CTA. Although the negative symptoms, like nausea, in humans cannot be easily observed in invertebrate animal models of CTA, all the other characteristics of CTA seem to be present in snails. Selective associability was confirmed using a sweet sucrose solution and a bitter KCl solution. Once snails form a CTA, repeated presentation of the CS does not extinguish the CTA. A long interstimulus interval between the CS and US, like in trace conditioning, still results in the formation of a CTA in snails. Lastly, even single-trial learning has been demonstrated with a certain probability. In the present review, we compare, in detail, CTA in mammals and snails, and discuss the possible molecular events in CTA.
Collapse
|