1
|
Shyr ZA, Amniouel S, Owusu-Ansah K, Tambe M, Abbott J, Might M, Zheng W. Increased oxidative stress and autophagy in NGLY1 patient iPSC-derived neural stem cells. Exp Cell Res 2025; 448:114540. [PMID: 40189184 DOI: 10.1016/j.yexcr.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
NGLY1 (N-glycanase) is a de-glycosylating enzyme that promotes clearance of misfolded glycan proteins. NGLY1 deficiency leads to a disease pathology with varied symptoms, including severe neurological defects. There are no therapeutic options currently available for the treatment of this rare disease. With the goal of finding potential therapeutic avenues, we performed comprehensive characterization of aberrant cellular stress pathways in a patient relevant model of NGLY1 deficiency. For a more accurate study of NGLY1 deficiency without other confounding factors, we compared differences between iPSC-derived neural stem cells carrying the commonly occurring nonsense mutation c.1201A > T (p.R401X) and their genetically similar CRISPR-corrected isogenic controls. Our findings demonstrate that NGLY1 deficiency in neural stem cells leads to an upregulation of ER stress, increased autophagic flux and significant signs of oxidative stress. These results provide new insights into the cellular dysfunctions associated with this disorder. Moreover, they point to better establishing reliable high throughput phenotypic assays that can be utilized for drug discovery.
Collapse
Affiliation(s)
- Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Soukaina Amniouel
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kofi Owusu-Ansah
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Mitali Tambe
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Abbott
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, AL, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kim HS, Sanchez ML, Silva J, Schubert HL, Dennis R, Hill CP, Christian JL. Mutations that prevent phosphorylation of the BMP4 prodomain impair proteolytic maturation of homodimers leading to lethality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617306. [PMID: 39416136 PMCID: PMC11482978 DOI: 10.1101/2024.10.08.617306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bone morphogenetic protein4 (BMP4) plays numerous roles during embryogenesis and can signal either alone as a homodimer, or together with BMP7 as a more active heterodimer. BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments. In humans, heterozygous mutations within the prodomain of BMP4 are associated with birth defects. We studied the effect of two of these mutations (p.S91C and p.E93G), which disrupt a conserved FAM20C phosphorylation motif, on ligand activity. We compared the activity of ligands generated from BMP4, BMP4S91C or BMP4E93G in Xenopus embryos and found that these mutations reduce the activity of BMP4 homodimers but not BMP4/7 heterodimers. We generated Bmp4 S91C and Bmp4 E93G knock-in mice and found that Bmp4 S91C/S91C mice die by E11.5 and display reduced BMP activity in multiple tissues including the heart. Most Bmp4 E93G/E93G mice die before weaning and Bmp4 -/E93G mutants die prenatally with reduced or absent eyes, heart and ventral body wall closure defects. Mouse embryonic fibroblasts (MEFs) isolated from Bmp4 S91C and Bmp4 E93G embryos show accumulation of BMP4 precursor protein, reduced levels of cleaved BMP ligand and reduced BMP activity relative to MEFs from wild type littermates. Because Bmp7 is not expressed in MEFs, the accumulation of unprocessed BMP4 precursor protein in mice carrying these mutations most likely reflects an inability to cleave BMP4 homodimers, leading to reduced levels of ligand and BMP activity in vivo. Our results suggest that phosphorylation of the BMP4 prodomain is required for proteolytic activation of BMP4 homodimers, but not heterodimers.
Collapse
Affiliation(s)
- Hyung-seok Kim
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Mary L. Sanchez
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Joshua Silva
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Rebecca Dennis
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| | - Jan L. Christian
- Department of Neurobiology, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
- Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84132-3401
| |
Collapse
|
3
|
Schoberer J, Vavra U, Shin Y, Grünwald‐Gruber C, Strasser R. Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17185. [PMID: 39642157 PMCID: PMC11712024 DOI: 10.1111/tpj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay. The results demonstrate that a misfolded variant of the STRUBBELIG (SUB) extracellular protein domain (SUBEX-C57Y) is retrotranslocated to the cytosol when transiently expressed in Nicotiana benthamiana leaf epidermal cells. Retrotranslocation requires a protein domain with a lesion that is exposed in the lumen of the ER, N-glycan trimming by α-mannosidases, HRD1-mediated ubiquitination, and the ATPase function of CDC48. The retrotranslocated SUBEX-C57Y ERAD substrate undergoes deglycosylation, and proteasomal degradation is blocked by a catalytically inactive cytosolic peptide N-glycanase. These findings define distinct aspects of ERAD that have been elusive until now and may represent the default pathway for degrading misfolded glycoproteins in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Yun‐Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Clemens Grünwald‐Gruber
- Core Facility Mass SpectrometryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
4
|
Du A, Yang K, Zhou X, Ren L, Liu N, Zhou C, Liang J, Yan N, Gao G, Wang D. Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight 2024; 9:e183189. [PMID: 39137042 PMCID: PMC11466192 DOI: 10.1172/jci.insight.183189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
The cytoplasmic peptide:N-glycanase (NGLY1) is ubiquitously expressed and functions as a de-N-glycosylating enzyme that degrades misfolded N-glycosylated proteins. NGLY1 deficiency due to biallelic loss-of-function NGLY1 variants is an ultrarare autosomal recessive deglycosylation disorder with multisystemic involvement; the neurological manifestations represent the main disease burden. Currently, there is no treatment for this disease. To develop a gene therapy, we first characterized a tamoxifen-inducible Ngly1-knockout (iNgly1) C57BL/6J mouse model, which exhibited symptoms recapitulating human disease, including elevation of the biomarker GlcNAc-Asn, motor deficits, kyphosis, Purkinje cell loss, and gait abnormalities. We packaged a codon-optimized human NGLY1 transgene cassette into 2 adeno-associated virus (AAV) capsids, AAV9 and AAV.PHPeB. Systemic administration of the AAV.PHPeB vector to symptomatic iNgly1 mice corrected multiple disease features at 8 weeks after treatment. Furthermore, another cohort of AAV.PHPeB-treated iNgly1 mice were monitored over a year and showed near-complete normalization of the neurological aspects of the disease phenotype, demonstrating the durability of gene therapy. Our data suggested that brain-directed NGLY1 gene replacement via systemic delivery is a promising therapeutic strategy for NGLY1 deficiency. Although the superior CNS tropism of AAV.PHPeB vector does not translate to primates, emerging AAV capsids with enhanced primate CNS tropism will enable future translational studies.
Collapse
Affiliation(s)
- Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kun Yang
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Yan
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems and
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Hirayama H, Fujihira H, Suzuki T. Development of new NGLY1 assay systems - toward developing an early screening method for NGLY1 deficiency. Glycobiology 2024; 34:cwae067. [PMID: 39206713 PMCID: PMC11442003 DOI: 10.1093/glycob/cwae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| |
Collapse
|
6
|
Hirayama H, Tachida Y, Fujinawa R, Matsuda Y, Murase T, Nishiuchi Y, Suzuki T. Development of a fluorescence and quencher-based FRET assay for detection of endogenous peptide:N-glycanase/NGLY1 activity. J Biol Chem 2024; 300:107121. [PMID: 38417795 PMCID: PMC11065741 DOI: 10.1016/j.jbc.2024.107121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | | | | | | | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
7
|
Suzuki T. A commentary on 'Patient-derived gene and protein expression signatures of NGLY1 deficiency'. J Biochem 2024; 175:221-223. [PMID: 38156787 DOI: 10.1093/jb/mvad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cytosolic peptide:N-glycanase (PNGase; NGLY1 in human and PNG1 in budding yeast) is a deglycosylating enzyme widely conserved in eukaryotes. Initially, functional importance of this enzyme remained unknown as the png1Δ mutant in yeast did not exhibit any significant phenotypes. However, the discovery of NGLY1 deficiency, a rare genetic disorder with biallelic mutations in NGLY1 gene, prompted an intensification of research that has resulted in uncovering the significance of NGLY1 as well as the proteins under its influence that are involved in numerous cellular processes. A recent report by Rauscher et al. (Patient-derived gene and protein expression signatures of NGLY1 deficiency. J. Biochem. 2022; 171: 187-199) presented a comprehensive summary of transcriptome/proteome analyses of various cell types derived from NGLY1-deficient patients. The authors also provide a web application called 'NGLY1 browser', which will allow researchers to have access to a wealth of information on gene and protein expression signature for patients with NGLY1 deficiency.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Suzuki T, Fujihira H. NGLY1: A fascinating, multifunctional molecule. Biochim Biophys Acta Gen Subj 2024; 1868:130379. [PMID: 37951368 DOI: 10.1016/j.bbagen.2023.130379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 11/14/2023]
Abstract
NGLY1, a cytoplasmic de-N-glycosylating enzyme is well conserved among eukaryotes. This enzyme has attracted considerable attention after mutations on the NGLY1 gene were found to cause a rare genetic disorder called NGLY1 deficiency. Recent explosive progress in NGLY1 research has revealed multi-functional aspects of this protein.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan.
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
9
|
Zhang Y, Yu H, Wang D, Lei X, Meng Y, Zhang N, Chen F, Lv L, Pan Q, Qin H, Zhang Z, van Aalten DMF, Yuan K. Protein O-GlcNAcylation homeostasis regulates facultative heterochromatin to fine-tune sog-Dpp signaling during Drosophila early embryogenesis. J Genet Genomics 2023; 50:948-959. [PMID: 37286164 DOI: 10.1016/j.jgg.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Protein O-GlcNAcylation is a monosaccharide post-translational modification maintained by two evolutionarily conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Mutations in human OGT have recently been associated with neurodevelopmental disorders, although the mechanisms linking O-GlcNAc homeostasis to neurodevelopment are not understood. Here, we investigate the effects of perturbing protein O-GlcNAcylation using transgenic Drosophila lines that overexpress a highly active OGA. We reveal that temporal reduction of protein O-GlcNAcylation in early embryos leads to reduced brain size and olfactory learning in adult Drosophila. Downregulation of O-GlcNAcylation induced by the exogenous OGA activity promotes nuclear foci formation of Polycomb-group protein Polyhomeotic and the accumulation of excess K27 trimethylation of histone H3 (H3K27me3) at the mid-blastula transition. These changes interfere with the zygotic expression of several neurodevelopmental genes, particularly shortgastrulation (sog), a component of an evolutionarily conserved sog-Decapentaplegic (Dpp) signaling system required for neuroectoderm specification. Our findings highlight the importance of early embryonic O-GlcNAcylation homeostasis for the fidelity of facultative heterochromatin redeployment and initial cell fate commitment of neuronal lineages, suggesting a possible mechanism underpinning OGT-associated intellectual disability.
Collapse
Affiliation(s)
- Yaowen Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haibin Yu
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dandan Wang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun Lei
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yang Meng
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Na Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Lv
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhuohua Zhang
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daan M F van Aalten
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
10
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism drive lethality in NGLY1-deficient Drosophila. Nat Commun 2023; 14:5667. [PMID: 37704604 PMCID: PMC10499810 DOI: 10.1038/s41467-023-40910-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Antonio Galeone
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Seung Yeop Han
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA
| | - Benjamin A Story
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gaia Consonni
- Department of Biosciences, University of Milan, Milan, Italy
| | - William F Mueller
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Hamed Jafar-Nejad
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Genetics & Genomic Graduate Program, Baylor College of Medicine, Houston, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
11
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023; 24:312-333. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Wang J, Han S, Ye J. Topological regulation of a transmembrane protein by luminal-to-cytosolic retrotranslocation of glycosylated sequence. Cell Rep 2023; 42:112311. [PMID: 36972171 PMCID: PMC10520219 DOI: 10.1016/j.celrep.2023.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 03/28/2023] Open
Abstract
Transmembrane proteins must adopt proper topology to perform their functions. We previously demonstrated that ceramide regulates TM4SF20 (transmembrane 4 L6 family 20) by altering the topology of the transmembrane protein, but the underlying mechanism remains obscure. Here we report that TM4SF20 is synthesized in the endoplasmic reticulum (ER) with a cytosolic C terminus and a luminal loop before the last transmembrane helix where N132, N148, and N163 are glycosylated. In the absence of ceramide, the sequence surrounding glycosylated N163 but not N132 is retrotranslocated from lumen to cytosol independent of ER-associated degradation. Accompanying this retrotranslocation, the C terminus of the protein is relocated from cytosol to lumen. Ceramide delays the retrotranslocation process, causing accumulation of the protein that is originally synthesized. Our findings suggest that N-linked glycans, although synthesized in the lumens, may be exposed to cytosol through retrotranslocation, a reaction that may play a crucial role in topological regulation of transmembrane proteins.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, increased intestinal innate immune response, and enhanced lipid catabolism drive lethality in N -glycanase 1 deficient Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536022. [PMID: 37066398 PMCID: PMC10104161 DOI: 10.1101/2023.04.07.536022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.
Collapse
|
14
|
Budhraja R, Saraswat M, De Graef D, Ranatunga W, Ramarajan MG, Mousa J, Kozicz T, Pandey A, Morava E. N-glycoproteomics reveals distinct glycosylation alterations in NGLY1-deficient patient-derived dermal fibroblasts. J Inherit Metab Dis 2023; 46:76-91. [PMID: 36102038 PMCID: PMC10092224 DOI: 10.1002/jimd.12557] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Congenital disorders of glycosylation are genetic disorders that occur due to defects in protein and lipid glycosylation pathways. A deficiency of N-glycanase 1, encoded by the NGLY1 gene, results in a congenital disorder of deglycosylation. The NGLY1 enzyme is mainly involved in cleaving N-glycans from misfolded, retro-translocated glycoproteins in the cytosol from the endoplasmic reticulum before their proteasomal degradation or activation. Despite the essential role of NGLY1 in deglycosylation pathways, the exact consequences of NGLY1 deficiency on global cellular protein glycosylation have not yet been investigated. We undertook a multiplexed tandem mass tags-labeling-based quantitative glycoproteomics and proteomics analysis of fibroblasts from NGLY1-deficient individuals carrying different biallelic pathogenic variants in NGLY1. This quantitative mass spectrometric analysis detected 8041 proteins and defined a proteomic signature of differential expression across affected individuals and controls. Proteins that showed significant differential expression included phospholipid phosphatase 3, stromal cell-derived factor 1, collagen alpha-1 (IV) chain, hyaluronan and proteoglycan link protein 1, and thrombospondin-1. We further detected a total of 3255 N-glycopeptides derived from 550 glycosylation sites of 407 glycoproteins by multiplexed N-glycoproteomics. Several extracellular matrix glycoproteins and adhesion molecules showed altered abundance of N-glycopeptides. Overall, we observed distinct alterations in specific glycoproteins, but our data revealed no global accumulation of glycopeptides in the patient-derived fibroblasts, despite the genetic defect in NGLY1. Our findings highlight new molecular and system-level insights for understanding NGLY1-CDDG.
Collapse
Affiliation(s)
- Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diederik De Graef
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Wasantha Ranatunga
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madan G Ramarajan
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jehan Mousa
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Kozicz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Genetics and Department of Biophysics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
15
|
An in vivo drug repurposing screen and transcriptional analyses reveals the serotonin pathway and GSK3 as major therapeutic targets for NGLY1 deficiency. PLoS Genet 2022; 18:e1010228. [PMID: 35653343 PMCID: PMC9162339 DOI: 10.1371/journal.pgen.1010228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
NGLY1 deficiency, a rare disease with no effective treatment, is caused by autosomal recessive, loss-of-function mutations in the N-glycanase 1 (NGLY1) gene and is characterized by global developmental delay, hypotonia, alacrima, and seizures. We used a Drosophila model of NGLY1 deficiency to conduct an in vivo, unbiased, small molecule, repurposing screen of FDA-approved drugs to identify therapeutic compounds. Seventeen molecules partially rescued lethality in a patient-specific NGLY1 deficiency model, including multiple serotonin and dopamine modulators. Exclusive dNGLY1 expression in serotonin and dopamine neurons, in an otherwise dNGLY1 deficient fly, was sufficient to partially rescue lethality. Further, genetic modifier and transcriptomic data supports the importance of serotonin signaling in NGLY1 deficiency. Connectivity Map analysis identified glycogen synthase kinase 3 (GSK3) inhibition as a potential therapeutic mechanism for NGLY1 deficiency, which we experimentally validated with TWS119, lithium, and GSK3 knockdown. Strikingly, GSK3 inhibitors and a serotonin modulator rescued size defects in dNGLY1 deficient larvae upon proteasome inhibition, suggesting that these compounds act through NRF1, a transcription factor that is regulated by NGLY1 and regulates proteasome expression. This study reveals the importance of the serotonin pathway in NGLY1 deficiency, and serotonin modulators or GSK3 inhibitors may be effective therapeutics for this rare disease. NGLY1 deficiency is a rare disease with no effective treatment. We conducted a drug repurposing screen and used the Connectivity Map, a transcriptional-based computational approach, to identify compounds that may serve as therapeutics for NGLY1 deficient individuals. The drug repurposing screen identified FDA-approved compounds acting through the serotonin and dopamine pathway that partially rescued lethality in an NGLY1 deficiency fly model. We also found that expressing dNGLY1 (the Drosophila ortholog of NGLY1) exclusively in serotonin neurons, in an otherwise dNGLY1 deficient fly, partially rescued lethality. These data indicate the importance of the serotonin and dopamine systems in NGLY1 deficiency. The Connectivity Map analyses found GSK3 inhibitors as potential therapeutic compounds, which were validated in vivo in the fly. Furthermore, knockdown of sgg (the Drosophila ortholog of GSK3) partially rescued lethality in dNGLY1 deficient flies, suggesting GSK3 as a therapeutic target for NGLY1 deficiency. Taken together, this work identifies therapeutic strategies for NGLY1 deficiency.
Collapse
|
16
|
Miao X, Wu J, Chen H, Lu G. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Nutrients 2022; 14:nu14091690. [PMID: 35565658 PMCID: PMC9102325 DOI: 10.3390/nu14091690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-β-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-β-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1’ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.
Collapse
Affiliation(s)
- Xiangguang Miao
- Queen Mary School, Nanchang University, No. 1299 Xuefu Avenue, Honggutan New District, Nanchang 330036, China;
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| |
Collapse
|
17
|
NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022; 11:cells11071155. [PMID: 35406718 PMCID: PMC8997433 DOI: 10.3390/cells11071155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytosolic enzyme involved in removing N-linked glycans of misfolded N-glycoproteins and is considered to be a component of endoplasmic reticulum-associated degradation (ERAD). The 2012 identification of recessive NGLY1 mutations in a rare multisystem disorder has led to intense research efforts on the roles of NGLY1 in animal development and physiology, as well as the pathophysiology of NGLY1 deficiency. Here, we present a review of the NGLY1-deficient patient phenotypes, along with insights into the function of this gene from studies in rodent and invertebrate animal models, as well as cell culture and biochemical experiments. We will discuss critical processes affected by the loss of NGLY1, including proteasome bounce-back response, mitochondrial function and homeostasis, and bone morphogenetic protein (BMP) signaling. We will also cover the biologically relevant targets of NGLY1 and the genetic modifiers of NGLY1 deficiency phenotypes in animal models. Together, these discoveries and disease models have provided a number of avenues for preclinical testing of potential therapeutic approaches for this disease.
Collapse
|
18
|
Forcina GC, Pope L, Murray M, Dong W, Abu-Remaileh M, Bertozzi CR, Dixon SJ. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc Natl Acad Sci U S A 2022; 119:e2118646119. [PMID: 35271393 PMCID: PMC8931371 DOI: 10.1073/pnas.2118646119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.
Collapse
Affiliation(s)
| | - Lauren Pope
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
19
|
Deficiency of N-glycanase 1 perturbs neurogenesis and cerebral development modeled by human organoids. Cell Death Dis 2022; 13:262. [PMID: 35322011 PMCID: PMC8942998 DOI: 10.1038/s41419-022-04693-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
AbstractMutations in N-glycanase 1 (NGLY1), which deglycosylates misfolded glycoproteins for degradation, can cause NGLY1 deficiency in patients and their abnormal fetal development in multiple organs, including microcephaly and other neurological disorders. Using cerebral organoids (COs) developed from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), we investigate how NGLY1 dysfunction disturbs early brain development. While NGLY1 loss had limited impact on the undifferentiated cells, COs developed from NGLY1-deficient hESCs showed defective formation of SATB2-positive upper-layer neurons, and attenuation of STAT3 and HES1 signaling critical for sustaining radial glia. Bulk and single-cell transcriptomic analysis revealed premature neuronal differentiation accompanied by downregulation of secreted and transcription factors, including TTR, IGFBP2, and ID4 in NGLY1-deficient COs. NGLY1 malfunction also dysregulated ID4 and enhanced neuronal differentiation in CO transplants developed in vivo. NGLY1-deficient CO cells were more vulnerable to multiple stressors; treating the deficient cells with recombinant TTR reduced their susceptibility to stress from proteasome inactivation, likely through LRP2-mediated activation of MAPK signaling. Expressing NGLY1 led to IGFBP2 and ID4 upregulation in CO cells developed from NGLY1-deficiency patient’s hiPSCs. In addition, treatment with recombinant IGFBP2 enhanced ID4 expression, STAT3 signaling, and proliferation of NGLY1-deficient CO cells. Overall, our discoveries suggest that dysregulation of stress responses and neural precursor differentiation underlies the brain abnormalities observed in NGLY1-deficient individuals.
Collapse
|
20
|
Suzuki T, Yoshida Y. Ever-Expanding NGLY1 biology. J Biochem 2021; 171:141-143. [PMID: 34969094 DOI: 10.1093/jb/mvab134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
The cytosolic peptide:N-glycanase (PNGase; NGLY1 in humans) is a deglycosylating enzyme that is widely conserved in eukaryotes. This enzyme is involved in the degradation of misfolded N-glycoproteins that are destined for proteasomal degradation in the cytosol, a process that is called endoplasmic reticulum (ER)-associated degradation (ERAD). Although the physiological significance of NGLY1 remained unknown until recently, the discovery of NGLY1 deficiency, a human genetic disorder bearing mutations in the NGLY1 gene, has led to explosive research progress regarding the functional characterization of this enzyme. For example, it is now known that NGLY1 can also act as an "editing enzyme" to convert N-glycosylated asparagine residues to aspartate residues, thus introducing negative charges into a core peptide and modulating the function of the target molecule. Diverse biological processes have also been found to be affected by compromised NGLY1 activity. In this special issue, recent research progress on the functional characterization of NGLY1 and its orthologues in worm/fly/rodents, assay methods/biomarkers useful for the development of therapeutics, and the comprehensive transcriptome/proteome of NGLY1-KO cells as well as patient-derived cells are discussed.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
| | - Yukiko Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
21
|
Hirayama H, Suzuki T. Assay for the peptide:N-glycanase/NGLY1 and disease-specific biomarkers for diagnosing NGLY1 deficiency. J Biochem 2021; 171:169-176. [PMID: 34791337 DOI: 10.1093/jb/mvab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1 in mammals), a highly conserved enzyme in eukaryotes, catalyzes the deglycosylation of N-glycans that are attached to glycopeptide/glycoproteins. In 2012, an autosomal recessive disorder related to the NGLY1 gene, which was referred to as NGLY1 deficiency, was reported. Since then, more than 100 patients have been identified. Patients with this disease exhibit various symptoms, including various motor deficits and other neurological problems. Effective therapeutic treatments for this disease, however, have not been established. Most recently, it was demonstrated that the intracerebroventricular administration of an adeno-associated virus 9 vector expressing human NGLY1 during the weaning period allowed some motor functions to be recovered in Ngly1-/- rats. This observation led us to hypothesize that a therapeutic intervention for improving these motor deficits or other neurological symptoms found in the patients might be possible. To achieve this, it is critical to establish robust and facile methods for assaying NGLY1 activity in biological samples, for the early diagnosis and evaluation of the therapeutic efficacy for the treatment of NGLY1 deficiency. In this mini-review, we summarize progress made in the development of various assay methods for NGLY1 activity, as well as a recent progress in the identification of NGLY1 deficiency-specific biomarkers.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
22
|
Hirayama H, Tachida Y, Seino J, Suzuki T. A method for assaying peptide: N-glycanase/N-Glycanase 1 activities in crude extracts using an N-glycosylated cyclopeptide. Glycobiology 2021; 32:110-122. [PMID: 34939090 PMCID: PMC8934141 DOI: 10.1093/glycob/cwab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase; NGLY1), an enzyme responsible for de-glycosylation of N-glycans on glycoproteins, is known to play pivotal roles in a variety of biological processes. In 2012, NGLY1 deficiency, a rare genetic disorder, was reported and since then, more than 100 patients have now been identified worldwide. Patients with this disease exhibit several common symptoms that are caused by the dysfunction of NGLY1. However, correlation between the severity of patient symptoms and the extent of the reduction in NGLY1 activity in these patients remains to be clarified, mainly due to the absence of a facile quantitative assay system for this enzyme, especially in a crude extract as an enzyme source. In this study, a quantitative, non-radioisotope (RI)-based assay method for measuring recombinant NGLY1 activity was established using a BODIPY-labeled asialoglycopeptide (BODIPY-ASGP) derived from hen eggs. With this assay, the activities of 27 recombinant NGLY1 mutants that are associated with the deficiency were examined. It was found that the activities of 3 (R469X, R458fs, and H494fs) out of the 27 recombinant mutant proteins were 30-70 percent of the activities of wild-type NGLY1. We further developed a method for measuring endogenous NGLY1 activity in crude extracts derived from cultured cells, patients' fibroblasts, iPS cells or peripheral blood mononuclear cells (PBMCs), using a glycosylated cyclopeptide (GCP) that exhibited resistance to the endogenous proteases in the extract. Our methods will not only provide new insights into the molecular mechanism responsible for this disease but also promises to be applicable for its diagnosis.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
23
|
Matsuda S, Schaefer JV, Mii Y, Hori Y, Bieli D, Taira M, Plückthun A, Affolter M. Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc. Nat Commun 2021; 12:6435. [PMID: 34750371 PMCID: PMC8576045 DOI: 10.1038/s41467-021-26726-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
How morphogen gradients control patterning and growth in developing tissues remains largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two membrane-tethered protein binders that manipulate different aspects of Decapentaplegic (Dpp), a morphogen required for overall patterning and growth of the Drosophila wing. One is "HA trap" based on a single-chain variable fragment (scFv) against the HA tag that traps HA-Dpp to mainly block its dispersal, the other is "Dpp trap" based on a Designed Ankyrin Repeat Protein (DARPin) against Dpp that traps Dpp to block both its dispersal and signaling. Using these tools, we found that, while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that dpp transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient dpp source cells render the anterior compartment robust against the absence of Dpp dispersal. Furthermore, despite a critical requirement of dpp for the overall wing growth, neither Dpp dispersal nor direct signaling is critical for lateral wing growth after wing pouch specification. These results challenge the long-standing dogma that Dpp dispersal is strictly required to control and coordinate overall wing patterning and growth.
Collapse
Affiliation(s)
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- JST PRESTO, Kawaguchi, Saitama, Japan
| | - Yutaro Hori
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | | | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
24
|
Fujihira H, Asahina M, Suzuki T. Physiological importance of NGLY1, as revealed by rodent model analyses. J Biochem 2021; 171:161-167. [PMID: 34580715 DOI: 10.1093/jb/mvab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1) is an enzyme that cleaves N-glycans from glycoproteins that has been retrotranslocated from the endoplasmic reticulum (ER) lumen into the cytosol. It is known that NGLY1 is involved in the degradation of cytosolic glycans (non-lysosomal glycan degradation) as well as ER-associated degradation (ERAD), a quality control system for newly synthesized glycoproteins. The discovery of NGLY1 deficiency, which is caused by mutations in the human NGLY1 gene and results in multisystemic symptoms, has attracted interest in the physiological functions of NGLY1 in mammals. Studies using various animal models led to the identification of possible factors that contribute to the pathogenesis of NGLY1 deficiency. In this review, we summarize phenotypic consequences that have been reported for various Ngly1-deficient rodent models, and discuss future perspectives to provide more insights into the physiological functions of NGLY1.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 3510198 Saitama, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 1138421 Tokyo, Japan
| | - Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, 2518555 Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 3510198 Saitama, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, 2518555 Kanagawa, Japan
| |
Collapse
|
25
|
Pandey A, Jafar-Nejad H. Tracing the NGLY1 footprints: Insights from Drosophila. J Biochem 2021; 171:153-160. [PMID: 34270726 DOI: 10.1093/jb/mvab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 02/03/2023] Open
Abstract
Recessive mutations in human N-glycanase 1 (NGLY1) cause a multisystem disorder with various phenotypes including global developmental delay. One of the models utilized to understand the biology of NGLY1 and the pathophysiology of NGLY1 deficiency is Drosophila melanogaster, a well-established, genetically tractable organism broadly used to study various biological processes and human diseases. Loss of the Drosophila NGLY1 homolog (Pngl) causes a host of phenotypes including developmental delay and lethality. Phenotypic, transcriptomic and genome-wide association analyses on Drosophila have revealed links between NGLY1 and several critical developmental and cellular pathways/processes. Further, repurposing screens of FDA-approved drugs have identified potential candidates to ameliorate some of the Pngl mutant phenotypes. Here, we will summarize the insights gained into the functions of NGLY1 from Drosophila studies. We hope that the current review article will encourage additional studies in Drosophila and other model systems towards establishing a therapeutic strategy for NGLY1 deficiency patients.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States of America.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Yoshida Y, Asahina M, Murakami A, Kawawaki J, Yoshida M, Fujinawa R, Iwai K, Tozawa R, Matsuda N, Tanaka K, Suzuki T. Loss of peptide: N-glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Proc Natl Acad Sci U S A 2021; 118:e2102902118. [PMID: 34215698 PMCID: PMC8271764 DOI: 10.1073/pnas.2102902118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the human peptide:N-glycanase gene (NGLY1), which encodes a cytosolic de-N-glycosylating enzyme, cause a congenital autosomal recessive disorder. In rodents, the loss of Ngly1 results in severe developmental delay or lethality, but the underlying mechanism remains unknown. In this study, we found that deletion of Fbxo6 (also known as Fbs2), which encodes a ubiquitin ligase subunit that recognizes glycoproteins, rescued the lethality-related defects in Ngly1-KO mice. In NGLY1-KO cells, FBS2 overexpression resulted in the substantial inhibition of proteasome activity, causing cytotoxicity. Nuclear factor, erythroid 2-like 1 (NFE2L1, also known as NRF1), an endoplasmic reticulum-associated transcriptional factor involved in expression of proteasome subunits, was also abnormally ubiquitinated by SCFFBS2 in NGLY1-KO cells, resulting in its retention in the cytosol. However, the cytotoxicity caused by FBS2 was restored by the overexpression of "glycan-less" NRF1 mutants, regardless of their transcriptional activity, or by the deletion of NRF1 in NGLY1-KO cells. We conclude that the proteasome dysfunction caused by the accumulation of N-glycoproteins, primarily NRF1, ubiquitinated by SCFFBS2 accounts for the pathogenesis resulting from NGLY1 deficiency.
Collapse
Affiliation(s)
- Yukiko Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Makoto Asahina
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Kanagawa 251-8555, Japan
| | - Arisa Murakami
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Junko Kawawaki
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Meari Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Reiko Fujinawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryuichi Tozawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Kanagawa 251-8555, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tadashi Suzuki
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan;
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain 2021; 14:91. [PMID: 34120625 PMCID: PMC8201687 DOI: 10.1186/s13041-021-00806-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency is a rare inherited disorder characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, motor deficits, and other neurological symptoms. The underlying mechanisms of the NGLY1 phenotype are poorly understood, and no effective therapy is currently available. Similar to human patients, the rat model of NGLY1 deficiency, Ngly1-/-, shows developmental delay, movement disorder, somatosensory impairment, scoliosis, and learning disability. Here we show that single intracerebroventricular administration of AAV9 expressing human NGLY1 cDNA (AAV9-hNGLY1) to Ngly1-/- rats during the weaning period restored NGLY1 expression in the brain and spinal cord, concomitant with increased enzymatic activity of NGLY1 in the brain. hNGLY1 protein expressed by AAV9 was found predominantly in mature neurons, but not in glial cells, of Ngly1-/- rats. Strikingly, intracerebroventricular administration of AAV9-hNGLY1 normalized the motor phenotypes of Ngly1-/- rats assessed by the rota-rod test and gait analysis. The reversibility of motor deficits in Ngly1-/- rats by central nervous system (CNS)-restricted gene delivery suggests that the CNS is the primary therapeutic target organs for NGLY1 deficiency, and that the Ngly1-/- rat model may be useful for evaluating therapeutic treatments in pre-clinical studies.
Collapse
Affiliation(s)
- Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Ryuichi Tozawa
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Yasushi Kajii
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan.
| |
Collapse
|
28
|
Talsness DM, Owings KG, Coelho E, Mercenne G, Pleinis JM, Partha R, Hope KA, Zuberi AR, Clark NL, Lutz CM, Rodan AR, Chow CY. A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency. eLife 2020; 9:e57831. [PMID: 33315011 PMCID: PMC7758059 DOI: 10.7554/elife.57831] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental delay, seizures, and a lack of sweat and tears. To model the phenotypic variability observed among patients, we crossed a Drosophila model of NGLY1 deficiency onto a panel of genetically diverse strains. The resulting progeny showed a phenotypic spectrum from 0 to 100% lethality. Association analysis on the lethality phenotype, as well as an evolutionary rate covariation analysis, generated lists of modifying genes, providing insight into NGLY1 function and disease. The top association hit was Ncc69 (human NKCC1/2), a conserved ion transporter. Analyses in NGLY1-/- mouse cells demonstrated that NKCC1 has an altered average molecular weight and reduced function. The misregulation of this ion transporter may explain the observed defects in secretory epithelium function in NGLY1 deficiency patients.
Collapse
Affiliation(s)
- Dana M Talsness
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Emily Coelho
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Gaelle Mercenne
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of UtahSalt Lake CityUnited States
| | - John M Pleinis
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of UtahSalt Lake CityUnited States
| | - Raghavendran Partha
- Department of Computational and Systems Biology, University of PittsburghPittsburghUnited States
| | - Kevin A Hope
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Aamir R Zuberi
- Genetic Resource Science, The Jackson LaboratoryBar HarborUnited States
| | - Nathan L Clark
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Cathleen M Lutz
- Genetic Resource Science, The Jackson LaboratoryBar HarborUnited States
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Medical Service, Veterans Affairs Salt Lake City Health Care SystemSalt Lake CityUnited States
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
29
|
Han SY, Pandey A, Moore T, Galeone A, Duraine L, Cowan TM, Jafar-Nejad H. A conserved role for AMP-activated protein kinase in NGLY1 deficiency. PLoS Genet 2020; 16:e1009258. [PMID: 33315951 PMCID: PMC7769621 DOI: 10.1371/journal.pgen.1009258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/28/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tereza Moore
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Antonio Galeone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Jan & Dan Duncan Neurological Research Institute Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Tina M. Cowan
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|