1
|
Hartness EM, Shevalye H, Skeie JM, Eggleston T, Field MG, Schmidt GA, Phruttiwanichakun P, Salem AK, Greiner MA. Iron-Sulfur Clusters and Iron Responsive Element Binding Proteins Mediate Iron Accumulation in Corneal Endothelial Cells in Fuchs Dystrophy. Invest Ophthalmol Vis Sci 2025; 66:23. [PMID: 40202733 PMCID: PMC11993131 DOI: 10.1167/iovs.66.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Evidence suggests that corneal endothelial cell (CEC) death in Fuchs endothelial corneal dystrophy (FECD) is due to ferroptosis, an iron-mediated cell death. Iron-sulfur cluster (ISC)-containing aconitases and the iron responsive element binding proteins IREBP1 and IREBP2 are known mediators of iron homeostasis. This study investigates mechanisms underlying iron dysregulation in CECs and proposes a role for ISCs and IREBPs in the context of FECD pathogenesis. Methods We studied gene expression of proteins responsible for ISC synthesis and iron homeostasis in human and mouse CECs and analyzed published RNA sequencing datasets. We validated a subset of transcriptional changes between FECD and control tissues using microfluidic Western blotting with human CEC tissues. Finally, we silenced proteins involved in ISC synthesis or iron homeostasis in cell cultures and assessed ferroptosis susceptibility. Results RNA-seq and qPCR data demonstrated significantly decreased transcription of genes required for ISC synthesis in FECD tissues (P < 0.05). Protein quantification revealed a significant decrease in mitochondrial aconitase (P < 0.05), ferredoxin 1 (P < 0.001), and mitofusin (P < 0.05), and a significant increase in cysteine desulfurase (P < 0.05), cytosolic aconitase/IREBP1, and IREBP2 (P < 0.05) in FECD tissues. Silencing studies revealed increased susceptibility to ferroptosis upon siRNA knockdown of ferredoxin 1 (P < 0.05). Conclusions We identified differential gene expression of proteins responsible for ISC synthesis, ISC-containing proteins, IREBPs that mediate cellular iron homeostasis, and mitofusin, which promotes mitochondrial fusion in FECD. We also identified increased susceptibility to ferroptosis after ferredoxin 1 knockdown in CECs. These results advance an ISC- and IREBP-mediated mechanism of iron accumulation in FECD CECs.
Collapse
Affiliation(s)
- Emma M. Hartness
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
| | - Hanna Shevalye
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Jessica M. Skeie
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Timothy Eggleston
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Matthew G. Field
- Minnesota Eye Consultants, Minneapolis, Minnesota, United States
| | | | - Pornpoj Phruttiwanichakun
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| | - Aliasger K. Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| | - Mark A. Greiner
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Zhao Q, Wei L, Chen Y. From bench to bedside: Developing CRISPR/Cas-based therapy for ocular diseases. Pharmacol Res 2025; 213:107638. [PMID: 39889868 DOI: 10.1016/j.phrs.2025.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Vision-threatening disorders, including both hereditary and multifactorial ocular diseases, necessitate innovative therapeutic approaches. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has emerged as a promising tool for treating ocular diseases through gene editing and expression regulation. This system has contributed to the development of representative disease models, including animal models, organoids, and cell lines, thereby facilitating investigations into the pathogenesis of disease-related genes. Besides, therapeutic applications of CRISPR/Cas have been extensively explored in preclinical in vitro and in vivo studies, targeting various ocular conditions, such as retinitis pigmentosa, Leber congenital amaurosis, Usher syndrome, fundus neovascular diseases, glaucoma, and corneal diseases. Recent advancements have demonstrated the technology's potential to restore cellular homeostasis and alleviate disease phenotypes, thereby prompting a variety of clinical trials. To date, active trials include treatments for primary open angle glaucoma with MYOC mutations, refractory herpetic viral keratitis, CEP290-associated inherited retinal degenerations, neovascular age-related macular degeneration, and retinitis pigmentosa with RHO mutations. However, challenges remain, primarily concerning off-target effects, immunogenicity, ethical considerations, and regulatory particularity. To reach higher safety and efficiency before truly transitioning from bench to bedside, future research should concentrate on improving the specificity and efficacy of Cas proteins, optimizing delivery vectors, and broadening the applicability of therapeutic targets. This review summarizes the application strategies and delivery methods of CRISPR/Cas, discusses recent progress in CRISPR/Cas-based disease models and therapies, and provides an overview of the landscape of clinical trials. Current obstacles and future directions regarding the bench-to-bedside transition are also discussed.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China
| | - Linxin Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China.
| |
Collapse
|
3
|
Yamada K, Oie Y, Nishida N, Maeno S, Kai C, Kitao M, Kobayashi R, Soma T, Koh S, Kawasaki R, Nishida K. Quality of Life Survey Using NEI VFQ-25 in Japanese Patients With Fuchs Endothelial Corneal Dystrophy. Eye Contact Lens 2025; 51:e135-e141. [PMID: 39661470 DOI: 10.1097/icl.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES To assess the quality of life in Japanese patients with Fuchs endothelial corneal dystrophy (FECD) using The National Eye Institute Visual Function Questionnaire. METHODS Here, 34 patients with FECD (FECD group) and 13 healthy individuals (control group) completed the National Eye Institute Visual Function Questionnaire Japanese version by interview format. The association between dominant eye corrected distance visual acuity and composite score (component 11) or subscales in the FECD group was evaluated using Spearman rank correlation coefficient. RESULTS The average age was 65.8±11.9 and 60.1±7.9 years in the FECD and control groups, respectively. Corrected distance visual acuity was significantly lower in the FECD group (0.021±0.21 logarithm of the minimum angle of resolution) than in the control group (-0.61±0.055 logarithm of the minimum angle of resolution) ( P <0.0001). Composite scores were significantly lower in the FECD group (77.6±11.0) than in the control group (89.2±7.0) ( P =0.0006). All subscale scores were lower in the FECD group, particularly for distance vision and mental health (81.4±13.1 and 84.0±15.6, respectively) than in the control group (90.7±12.0 and 95.7±5.7) ( P =0.022 and P =0.0046, respectively). Corrected distance visual acuity in the dominant eye did not significantly correlate with composite scores or subscales in the FECD group. CONCLUSIONS Quality of life is lower in patients with FECD than in healthy individuals, particularly regarding distance vision and mental health.
Collapse
Affiliation(s)
- Keiko Yamada
- Department of Ophthalmology (K.Y., Y.O., N.N., S.M., C.K., M.K., Reiko Kobayashi, T.S., S.K., K.N.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and Division of Public Health (Ryo Kawasaki), Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zwingelberg SB, Karabiyik G, Gehle P, von Brandenstein M, Eibichova S, Lotz C, Groeber-Becker F, Kampik D, Jurkunas U, Geerling G, Lang G. Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK). NPJ Regen Med 2025; 10:10. [PMID: 39952985 PMCID: PMC11828897 DOI: 10.1038/s41536-025-00396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Corneal diseases are the third leading cause of blindness worldwide. Descemet's Membrane Endothelial Keratoplasty (DMEK) is the preferred surgical technique for treating corneal endothelial disorders, relying heavily on high-quality donor tissue. However, the scarcity of suitable donor tissue and the sensitivity of endothelial cells remain significant challenges. This review explores the current state of DMEK, focusing on advancements in tissue engineering as a promising solution to improve outcomes and address donor limitations.
Collapse
Affiliation(s)
| | - Gizem Karabiyik
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Paul Gehle
- Department of Urology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Melanie von Brandenstein
- Department of Urology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sabina Eibichova
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine, Würzburg, Germany
| | - Christian Lotz
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC Translational Center Regenerative Therapies, Würzburg, Germany
| | - Florian Groeber-Becker
- Department of Ophthalmology, University Hospital of Duesseldorf, Duesseldorf, Germany
- Fraunhofer Institute for Silicate Research ISC Translational Center Regenerative Therapies, Würzburg, Germany
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Ula Jurkunas
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Institute, Boston, MA, USA
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
6
|
Singh RB, Dohlman TH, Ivanov A, Hall N, Ross C, Elze T, Miller JW, Lorch A, Yuksel E, Yin J, Dana R. Corneal Opacity in the United States: An American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) Study. Ophthalmology 2025; 132:52-61. [PMID: 38986874 DOI: 10.1016/j.ophtha.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE This study assesses the case frequencies, underlying causes, and vision outcomes in patients with a diagnosis of corneal opacity in the United States. DESIGN Retrospective cohort study. PARTICIPANTS Patients in the IRIS® Registry (Intelligent Research in Sight) who received a diagnosis of corneal opacity between January 1, 2013, and November 30, 2020. METHODS The IRIS Registry contains demographic and clinical data of 79 887 324 patients who sought treatment at eye clinics during the study period. We identified patients with corneal opacity using International Classification of Diseases (ICD), Ninth and Tenth Revisions, codes of 371 (corneal scar) and H17 (corneal opacity), respectively. The analyzed data comprised demographic parameters including age, sex, race, ethnicity, and geographical location. We evaluated clinical data including laterality, cause, disease descriptors, and best-corrected visual acuity (VA) up to 1 year before the onset (± 30 days), at the time of diagnosis, and at 1 year after diagnosis (± 30 days). MAIN OUTCOME MEASURES Case frequencies, causes, and vision outcomes in patients with a diagnosis of corneal opacity. RESULTS We identified 5 220 382 patients who received a diagnosis of corneal opacity and scars using H17 (ICD, Tenth Revision) and 371.0 (ICD, Ninth Revision) codes over 7 years. The case frequency of corneal opacity during the study period was 6535 cases per 100 000 patients (6.5%). The mean age of the patients was 63.36 ± 18.14 years, and most were female (57.6%). In the cohort, 38.39% and 30.00% of patients had bilateral and unilateral corneal opacity, respectively. Most of the patients affected by corneal opacity were White (69.13%), followed by Black or African American (6.84%). Corneal dystrophies (64.66%) were the most common cause of corneal opacity in the study cohort. Visual acuity of the patients worsened significantly because of corneal opacity (0.46 ± 0.74 logarithm of the minimum angle of resolution [logMAR]) and did not improve to the baseline (0.37 ± 0.68 logMAR) after management (0.43 ± 0.77 logMAR). The multiple linear regression analysis showed worse vision outcomes in female patients (compared with male patients), and Asian, Black or African American, and American Indian or Alaska Native (compared with White) patients. Additionally, worse vision outcomes were observed in patients with opacity associated with corneal malformation, degenerative disorders, edema, injury, and ulcer compared with those with hereditary corneal dystrophy. CONCLUSIONS Our study showed that corneal opacity was diagnosed in 6.5% of patients in the IRIS Registry and primarily associated with corneal dystrophies. The final vision outcomes in patients with corneal opacity were significantly worse compared with baseline. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Thomas H Dohlman
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Alexander Ivanov
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Nathan Hall
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Connor Ross
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tobias Elze
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Joan W Miller
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Alice Lorch
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Erdem Yuksel
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jia Yin
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Murphy R, Martin KR. Genetic engineering and the eye. Eye (Lond) 2025; 39:57-68. [PMID: 39516652 PMCID: PMC11733221 DOI: 10.1038/s41433-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The transformative potential of genetic engineering in ophthalmology is remarkable, promising new treatments for a wide range of blinding eye diseases. The eye is an attractive target organ for genetic engineering approaches, in part due to its relatively immune-privileged status, its accessibility, and the ease of monitoring of efficacy and safety. Consequently, the eye has been at the forefront of genetic engineering advances in recent years. The development of Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), base editors, prime editors, and transposases have enabled efficient and specific gene modification. Ocular gene therapy continues to progress, with recent advances in delivery systems using viral / non-viral vectors and novel promoters and enhancers. New strategies to achieve neuroprotection and neuroregeneration are evolving, including direct in-vivo cell reprogramming and optogenetic approaches. In this review, we discuss recent advances in ocular genetic engineering, examine their current therapeutic roles, and explore their potential use in future strategies to reduce the growing burden of vision loss and blindness.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
- Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Keith R Martin
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Cohen S, Bergman S, Lynn N, Tuller T. A tool for CRISPR-Cas9 sgRNA evaluation based on computational models of gene expression. Genome Med 2024; 16:152. [PMID: 39716183 DOI: 10.1186/s13073-024-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND CRISPR is widely used to silence genes by inducing mutations expected to nullify their expression. While numerous computational tools have been developed to design single-guide RNAs (sgRNAs) with high cutting efficiency and minimal off-target effects, only a few tools focus specifically on predicting gene knockouts following CRISPR. These tools consider factors like conservation, amino acid composition, and frameshift likelihood. However, they neglect the impact of CRISPR on gene expression, which can dramatically affect the success of CRISPR-induced gene silencing attempts. Furthermore, information regarding gene expression can be useful even when the objective is not to silence a gene. Therefore, a tool that considers gene expression when predicting CRISPR outcomes is lacking. RESULTS We developed EXPosition, the first computational tool that combines models predicting gene knockouts after CRISPR with models that forecast gene expression, offering more accurate predictions of gene knockout outcomes. EXPosition leverages deep-learning models to predict key steps in gene expression: transcription, splicing, and translation initiation. We showed our tool performs better at predicting gene knockout than existing tools across 6 datasets, 4 cell types and ~207k sgRNAs. We also validated our gene expression models using the ClinVar dataset by showing enrichment of pathogenic mutations in high-scoring mutations according to our models. CONCLUSIONS We believe EXPosition will enhance both the efficiency and accuracy of genome editing projects, by directly predicting CRISPR's effect on various aspects of gene expression. EXPosition is available at http://www.cs.tau.ac.il/~tamirtul/EXPosition . The source code is available at https://github.com/shaicoh3n/EXPosition .
Collapse
Affiliation(s)
- Shai Cohen
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Nicolas Lynn
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, 6997801, Israel.
| |
Collapse
|
9
|
Kaufman R, Jun AS. Emerging alternatives to keratoplasty for corneal endothelial cell dysfunction. Curr Opin Ophthalmol 2024; 35:415-422. [PMID: 38941153 DOI: 10.1097/icu.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
PURPOSE OF REVIEW While effective for treating endothelial dysfunction, keratoplasty has shortcomings including limited access to donor tissue for much of the world. Thus, alternative strategies are under development. This review explores the main advancements achieved in this field during 2022-2023. RECENT FINDINGS Recent publications further support the validity of intracameral cultivated allogeneic endothelial cell injection and Descemet stripping only, while emphasizing the benefits of adjunctive Rho-associated kinase inhibitor (ROCKi) therapy. New donor-independent artificial implants, such as EndoArt, show favorable results. Multiple pharmacologic agents, especially ROCKi, show promise as monotherapies, yet none are currently approved for human treatment. Multiple regenerative and genetic therapies are being investigated but all are still in preclinical stages. SUMMARY A plethora of innovative alternatives to keratoplasty for endothelial disease is in development. Among these, surgical methods are still the mainstay of treatment and closest to clinical application, though further studies to establish their benefits over keratoplasty are needed. Albeit promising, pharmacologic, regenerative, and genetic approaches require validation and are farther from clinical application.
Collapse
Affiliation(s)
- Ron Kaufman
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Gowda DAA, Birappa G, Rajkumar S, Ajaykumar CB, Srikanth B, Kim SL, Singh V, Jayachandran A, Lee J, Ramakrishna S. Recent progress in CRISPR/Cas9 system for eye disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:21-46. [PMID: 39824582 DOI: 10.1016/bs.pmbts.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
- D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Sammy L Kim
- Department of Biological Science, College of Sang-Huh Life Science, Department of Biological Science, Konkuk University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia.
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
12
|
Kai C, Oie Y, Nishida N, Doi S, Fujimoto C, Asonuma S, Maeno S, Soma T, Koh S, Jhanji V, Kawasaki R, Nishida K. Associations Between Visual Functions and Severity Gradings, Corneal Scatter, or Higher-Order Aberrations in Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38848076 PMCID: PMC11166222 DOI: 10.1167/iovs.65.6.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate the associations between visual function and severity grading, corneal scatter, or higher-order aberrations (HOAs) in patients with Fuchs endothelial corneal dystrophy (FECD). Methods This observational case series study included 49 eyes of 27 patients with FECD and 10 eyes of 10 healthy individuals. We evaluated corrected distance visual acuity (CDVA) using Landolt-C and Early Treatment Diabetic Retinopathy Study charts and contrast sensitivity using the CSV-1000E chart and CSV-1000RN letter chart. We analyzed the associations between visual function and explanatory variables, including age, modified Krachmer grade, central corneal thickness (CCT), anterior segment optical coherence tomography (AS-OCT)-based grade, HOAs, intraocular straylight, and corneal densitometry. We additionally conducted receiver operating characteristic (ROC) analysis to identify the corneal densitometry thresholds for decreased visual function. Results There were significant associations between visual function and the modified Krachmer grade, CCT, AS-OCT-based grade, HOAs, intraocular straylight, and corneal densitometry. A modified Krachmer grade ≥ 3 was identified as a threshold for decreased visual function. Multivariate analysis showed that corneal densitometry was significantly associated with all visual function parameters, and HOAs were significantly associated with CDVA but not with contrast sensitivity. ROC analysis revealed that corneal densitometry of the posterior layer at 0 to 2 mm ≥ 10 grayscale units (GSU), was identified as a threshold for decreased visual function. Conclusions HOAs, forward and backward light scatter affected visual function, with backward light scatter being the most influential. In patients with FECD, modified Krachmer grade ≥ 3 and corneal densitometry ≥ 10 GSU were thresholds for visual disturbance.
Collapse
Affiliation(s)
- Chifune Kai
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshinori Oie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nozomi Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Suzuka Doi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chihomi Fujimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sanae Asonuma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sayo Maeno
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Soma
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shizuka Koh
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ryo Kawasaki
- Division of Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
13
|
Nwagbo U, Parvez S, Maschek JA, Bernstein PS. Elovl4b knockout zebrafish as a model for ocular very-long-chain PUFA deficiency. J Lipid Res 2024; 65:100518. [PMID: 38342437 PMCID: PMC10940177 DOI: 10.1016/j.jlr.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
Very-long-chain PUFAs (VLC-PUFAs) are a group of lipids with chain lengths >24 carbons, and the ELOVL4 (elongation of very-long-chain FA-4) enzyme is responsible for vertebrate VLC-PUFA biosynthesis. Studies on the role of VLC-PUFAs in vision have been hindered because of the need for adequate animal models to capture the global loss of VLC-PUFAs. Since homozygous Elovl4 ablation is lethal in neonatal mice because of catastrophic drying from the loss of their protective skin barrier, we established a zebrafish (Danio rerio) model of Elovl4 ablation. We generated Elovl4b KO zebrafish by creating a 56-bp deletion mutation in exon 2 of the Elovl4b gene using CRISPR-Cas9. We used GC-MS and LC-MS/MS to analyze the VLC-PUFA and lipid profiles from wild-type and Elovl4b KO fish eyes. We also performed histology and visual-behavioral tests. We found that heterozygous and homozygous Elovl4b KO zebrafish eyes had altered lipid profiles and a significantly lower C30 to C36 VLC-PUFA abundance than wild-type fish. Moreover, Elovl4b+/- and Elovl4b-/- KO larvae had significantly lower motor activity in response to light-dark cycles than their age-matched controls. Elovl4b-/- adult fish showed no obvious differences in gross retinal morphology and lamination compared with wild type, except for the presence of lipid droplets within the retinal pigment epithelial cell layer of Elovl4b-/- fish. Our data indicate that the loss of Elovl4b in zebrafish changes ocular lipid profiles and leads to visual abnormalities and subtle retinal changes. These findings highlight the use of zebrafish as a model for VLC-PUFA depletion and ELOVL4-related dysfunction.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Saba Parvez
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Metabolomics Core, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Oie Y, Yamaguchi T, Nishida N, Okumura N, Maeno S, Kawasaki R, Jhanji V, Shimazaki J, Nishida K. Systematic Review of the Diagnostic Criteria and Severity Classification for Fuchs Endothelial Corneal Dystrophy. Cornea 2023; 42:1590-1600. [PMID: 37603692 DOI: 10.1097/ico.0000000000003343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/28/2023] [Indexed: 08/23/2023]
Abstract
PURPOSE There are no defined diagnostic criteria and severity classification for Fuchs endothelial corneal dystrophy (FECD), which are required for objective standardized assessments. Therefore, we performed a systematic literature review of the current diagnosis and severity classification of FECD. METHODS We searched the Ovid MEDLINE and Web of Science databases for studies published until January 13, 2021. We excluded review articles, conference abstracts, editorials, case reports with <5 patients, and letters. RESULTS Among 468 articles identified, we excluded 173 and 165 articles in the first and second screenings, respectively. Among the 130 included articles, 61 (47%) and 99 (76%) mentioned the diagnostic criteria for FECD and described its severity classification, respectively. Regarding diagnosis, slitlamp microscope alone was the most frequently used device in 31 (51%) of 61 articles. Regarding diagnostic findings, corneal guttae alone was the most common parameter [adopted in 23 articles (38%)]. Regarding severity classification, slitlamp microscopes were used in 88 articles (89%). The original or modified Krachmer grading scale was used in 77 articles (78%), followed by Adami's classification in six (6%). Specular microscopes or Scheimpflug tomography were used in four articles (4%) and anterior segment optical coherence tomography in one (1%). CONCLUSIONS FECD is globally diagnosed by the corneal guttae using slitlamp examination, and its severity is predominantly determined by the original or modified Krachmer grading scale. Objective severity grading using Scheimpflug or anterior segment optical coherence tomography can be applied in the future innovative therapies such as cell injection therapy or novel small molecules.
Collapse
Affiliation(s)
- Yoshinori Oie
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Nozomi Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan; and
| | - Sayo Maeno
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryo Kawasaki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
15
|
Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J 2023; 290:5248-5269. [PMID: 36877952 PMCID: PMC10480348 DOI: 10.1111/febs.16771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
| | | | - Bindu Kodati
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Charles E. Amankwa
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Akash Raola
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
16
|
Mehta N, Verma A, Achanta DS, Kannabiran C, Roy S, Mishra DK, Chaurasia S, Edward DP, Ramappa M. Updates on congenital hereditary endothelial dystrophy. Taiwan J Ophthalmol 2023; 13:405-416. [PMID: 38249503 PMCID: PMC10798399 DOI: 10.4103/tjo.tjo-d-23-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 01/23/2024] Open
Abstract
Congenital hereditary endothelial dystrophy (CHED) is a rare genetic corneal disorder causing progressive cornea clouding and significant visual impairment. CHED remains a leading indication for pediatric corneal transplantation despite its infrequency, particularly in regions with high consanguinity rates like Southeast Asia. Identifying the Solute Carrier Family 4 Member 11 (SLC4A11) gene as the genetic basis of CHED has led to the discovery of it's various genetic variations. However, a comprehensive understanding of its clinical-genetic correlation, pathophysiology, and optimal management is ongoing. This review aims to consolidate current knowledge about CHED, covering its genetic origins, pathophysiological mechanisms, clinical presentation, and management strategies. Surgical intervention, such as penetrating keratoplasty (PK), Descemet stripping automated endothelial keratoplasty (DSAEK), and Descemet membrane endothelial keratoplasty (DMEK), remains the primary treatment. DSAEK and DMEK offer advantages over PK, including quicker visual recovery, reduced complications, and longer graft survival, especially in the pediatric age group. The timing of surgical interventions depends on disease severity, age at presentation, comorbidities, and visual potential. Elevated oxidative stress in CHED corneal tissue suggests potential benefits from anti-inflammatory drugs to rescue mutated endothelial cells. Considering the limitations of corneal graft surgeries, exploring novel gene-based molecular therapies are essential for future management. Early diagnosis, appropriate surgical interventions, amblyopia control, and genetic counseling for predictive analysis are pivotal for optimizing CHED management. A multidisciplinary approach involving ophthalmologists, researchers, and genetic counselors is essential for precise diagnosis and optimal care for CHED patients.
Collapse
Affiliation(s)
- Neet Mehta
- Academy of Eye Care Education, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Anshuman Verma
- Centre for Rare Eye Diseases and Ophthalmic Genetics, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Divya Sree Achanta
- Centre for Rare Eye Diseases and Ophthalmic Genetics, L V Prasad Eye Institute, Hyderabad, Telangana, India
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Jasti V Ramanamma Children’s Eye Care Center, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Chitra Kannabiran
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Dilip Kumar Mishra
- Ophthalmic Pathology Services, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunita Chaurasia
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deepak Paul Edward
- Department of Ophthalmology and Visual Sciences and Pathology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Muralidhar Ramappa
- Centre for Rare Eye Diseases and Ophthalmic Genetics, L V Prasad Eye Institute, Hyderabad, Telangana, India
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Jasti V Ramanamma Children’s Eye Care Center, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
17
|
AlAbdi L, Maddirevula S, Shamseldin HE, Khouj E, Helaby R, Hamid H, Almulhim A, Hashem MO, Abdulwahab F, Abouyousef O, Alqahtani M, Altuwaijri N, Jaafar A, Alshidi T, Alzahrani F, Alkuraya FS. Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families. Nat Commun 2023; 14:5269. [PMID: 37644014 PMCID: PMC10465531 DOI: 10.1038/s41467-023-40909-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Despite large sequencing and data sharing efforts, previously characterized pathogenic variants only account for a fraction of Mendelian disease patients, which highlights the need for accurate identification and interpretation of novel variants. In a large Mendelian cohort of 4577 molecularly characterized families, numerous scenarios in which variant identification and interpretation can be challenging are encountered. We describe categories of challenges that cover the phenotype (e.g. novel allelic disorders), pedigree structure (e.g. imprinting disorders masquerading as autosomal recessive phenotypes), positional mapping (e.g. double recombination events abrogating candidate autozygous intervals), gene (e.g. novel gene-disease assertion) and variant (e.g. complex compound inheritance). Overall, we estimate a probability of 34.3% for encountering at least one of these challenges. Importantly, our data show that by only addressing non-sequencing-based challenges, around 71% increase in the diagnostic yield can be expected. Indeed, by applying these lessons to a cohort of 314 cases with negative clinical exome or genome reports, we could identify the likely causal variant in 54.5%. Our work highlights the need to have a thorough approach to undiagnosed diseases by considering a wide range of challenges rather than a narrow focus on sequencing technologies. It is hoped that by sharing this experience, the yield of undiagnosed disease programs globally can be improved.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Norah Altuwaijri
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
Chan MF, Pan P, Wolfreys FD. Novel Mechanisms Guide Innovative Molecular-Based Therapeutic Strategies for Fuchs Endothelial Corneal Dystrophy. Cornea 2023; 42:929-933. [PMID: 37318135 PMCID: PMC10313750 DOI: 10.1097/ico.0000000000003292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/13/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Major advances in genomics have dramatically increased our understanding of Fuchs endothelial corneal dystrophy (FECD) and identified diverse genetic causes and associations. Biomarkers derived from these studies have the potential to inform both clinical treatment and yield novel therapeutics for this corneal dystrophy.
Collapse
Affiliation(s)
- Matilda F. Chan
- Department of Ophthalmology, University of California, San Francisco, California, USA
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Finn D. Wolfreys
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
19
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
20
|
Liu GW, Guzman EB, Menon N, Langer RS. Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharm Res 2023; 40:3-25. [PMID: 36735106 PMCID: PMC9897626 DOI: 10.1007/s11095-023-03471-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated during health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strategies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how to surmount those challenges.
Collapse
Affiliation(s)
- Gary W Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward B Guzman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nandita Menon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Strand Therapeutics, MA, 02215, Boston, USA
| | - Robert S Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
21
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
22
|
Dias-Teixeira KL, Sharifian Gh M, Romano J, Norouzi F, Laurie GW. Autophagy in the normal and diseased cornea. Exp Eye Res 2022; 225:109274. [PMID: 36252655 PMCID: PMC10083687 DOI: 10.1016/j.exer.2022.109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023]
Abstract
The cornea and covering tear film are together the 'objective lens' of the eye through which 80% of light is refracted. Despite exposure to a physically harsh and at times infectious or toxic environment, transparency essential for sight is in most cases maintained. Such resiliency makes the avascular cornea a superb model for the exploration of autophagy in the regulation of homeostasis with relevancy to all organs. Nonetheless, missense mutations and inflammation respectively clog or apparently overwhelm autophagic flux to create dystrophies much like in neurodegenerative diseases or further exacerbate inflammation. Here there is opportunity to generate novel topical therapies towards the restoration of homeostasis with potential broad application.
Collapse
Affiliation(s)
| | | | - Jeff Romano
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
23
|
Mirjalili Mohanna SZ, Djaksigulova D, Hill AM, Wagner PK, Simpson EM, Leavitt BR. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J Control Release 2022; 350:401-413. [PMID: 36029893 DOI: 10.1016/j.jconrel.2022.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
CRISPR/Cas9-based genome-editing therapies are poised to change the clinical outcome for many diseases with validated therapeutic targets awaiting an appropriate delivery system. Recent advances in lipid nanoparticle (LNP) technology make them an attractive platform for the delivery of various forms of CRISPR/Cas9, including the efficient and transient Cas9/gRNA ribonucleoprotein (RNP) complexes. In this study, we initially tested our novel LNP platform by delivering pre-complexed RNPs and template DNA to cultured mouse cortical neurons, and obtained successful ex vivo genome editing. We then directly injected LNP-packaged RNPs and DNA template into the mouse cornea to evaluate in vivo delivery. For the first time, we demonstrated wide-spread genome editing in the cornea using our LNP-RNPs. The ability of our LNPs to transfect the cornea highlights the potential of our novel delivery platform to be used in CRISPR/Cas9-based genome editing therapies of corneal diseases.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Diana Djaksigulova
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | | | | | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada; Incisive Genetics Inc., Vancouver, BC, Canada
| |
Collapse
|
24
|
Salman M, Verma A, Chaurasia S, Prasad D, Kannabiran C, Singh V, Ramappa M. Identification and in silico analysis of a spectrum of SLC4A11 variations in Indian familial and sporadic cases of congenital hereditary endothelial dystrophy. Orphanet J Rare Dis 2022; 17:361. [PMID: 36115991 PMCID: PMC9482203 DOI: 10.1186/s13023-022-02521-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital hereditary endothelial dystrophy (CHED) is a rare form of corneal dystrophy caused by SLC4A11 gene variations. This study aims to find the genetic alterations in SLC4A11, in two Indian familial CHED cases with affected members n = 3 and n = 2 respectively and five sporadic CHED cases using direct sequencing, followed by in silico analysis and characterization of the identified variants.
Results
All three affected members of the first CHED family were identified with a novel homozygous c.1514C > G (p.Ser489Trp) variation while second family showed presence of a compound heterozygous variation c.529A > C (p.Arg161Arg) + c.2461insT (p.Val805fs). Among five sporadic cases, two showed novel changes, homozygous c.1487G > T (p.Ser480Ile) and c.620-2A > G, while the other one had previously reported homozygous c.2653C > T (p.Arg869Cys) variation. The remaining two cases did not reveal the presence of SLC4A11-related pathogenic variations. The identified variations were excluded from the Indian control (n = 80). In silico analysis using homology-based protein modeling and pathogenicity prediction tools, which revealed these alterations as pathogenic, changing their protein stability, local flexibility, residue contact clashes, and the hydrogen bond interactions.
Conclusions
This study contributed to the CHED mutational spectrum, adding four novel variations and confirming a previously reported one. It demonstrates different type of variations in CHED cases, including coding, non-coding, homozygous, synonymous, and compound heterozygous variations. The identified variations revealed different degrees of pathogenic effects in silico. Moreover, two sporadic cases could not be identified with pathogenic variation emphasizing the involvement of other genes or genetic mechanisms.
Collapse
|
25
|
Shyam R, Ogando DG, Kim ET, Murugan S, Choi M, Bonanno JA. Rescue of the Congenital Hereditary Endothelial Dystrophy Mouse Model by Adeno-Associated Viruse-Mediated Slc4a11 Replacement. OPHTHALMOLOGY SCIENCE 2022; 2:100084. [PMID: 36051248 PMCID: PMC9432820 DOI: 10.1016/j.xops.2021.100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022]
Abstract
Purpose Congenital hereditary endothelial dystrophy (CHED) is a rare condition that manifests at an early age showing corneal edema, increased oxidative stress, mitochondrial dysfunction, and eventually apoptosis of the endothelium due to loss of function of the membrane transport protein SLC4A11. This project tested whether replacing Slc4a11 into the Slc4a11 -/- CHED mouse model can reverse the disease-associated phenotypes. Design Experimental study. Participants Five-week-old or 11-week-old Slc4a11 -/- mice. Age- and gender-matched Slc4a11 +/+ animals were used as controls. A total of 124 animals (62 female, and 62 male) were used in this study. Fifty-three animals of the genotype Slc4a11 +/+ were used as age- and gender-matched noninjected controls. Seventy-one Slc4a11 -/- mice were administered anterior chamber injections of adeno-associated virus (AAV). Methods Anterior chambers of young (5 weeks old) or older (11 weeks old) Slc4a11 -/- mice were injected once with adeno-associated virus serotype 9 (AAV9) mouse Slc4a11 or AAV9-Null vectors. Corneal thickness was measured using OCT. End point analysis included corneal endothelial cell density, mitochondrial oxidative stress, and corneal lactate concentration. Main Outcome Measures Corneal thickness, endothelial cell loss, lactate levels, and mitochondrial oxidative stress. Results In the young animals, AAV9-Slc4a11 reversed corneal edema, endothelial cell loss, mitochondrial oxidative stress, lactate transporter expression, and corneal lactate concentration to the levels observed in wild-type animals. In the older animals, gene replacement did not reverse the phenotype but prevented progression. Conclusions Functional rescue of CHED phenotypes in the Slc4a11 -/- mouse is possible; however, early intervention is critical.
Collapse
Affiliation(s)
- Rajalekshmy Shyam
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Diego G. Ogando
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Edward T. Kim
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Subashree Murugan
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Moonjung Choi
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| | - Joseph A. Bonanno
- Vision Science Program, School of Optometry, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
26
|
Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-723. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | | | - Jigresh Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Hue Vu-Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
27
|
Uehara H, Zhang X, Pereira F, Narendran S, Choi S, Bhuvanagiri S, Liu J, Ravi Kumar S, Bohner A, Carroll L, Archer B, Zhang Y, Liu W, Gao G, Ambati J, Jun AS, Ambati BK. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. eLife 2021; 10:e55637. [PMID: 34100716 PMCID: PMC8216720 DOI: 10.7554/elife.55637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
A missense mutation of collagen type VIII alpha 2 chain (COL8A2) gene leads to early-onset Fuchs' endothelial corneal dystrophy (FECD), which progressively impairs vision through the loss of corneal endothelial cells. We demonstrate that CRISPR/Cas9-based postnatal gene editing achieves structural and functional rescue in a mouse model of FECD. A single intraocular injection of an adenovirus encoding both the Cas9 gene and guide RNA (Ad-Cas9-Col8a2gRNA) efficiently knocked down mutant COL8A2 expression in corneal endothelial cells, prevented endothelial cell loss, and rescued corneal endothelium pumping function in adult Col8a2 mutant mice. There were no adverse sequelae on histology or electroretinography. Col8a2 start codon disruption represents a non-surgical strategy to prevent vision loss in early-onset FECD. As this demonstrates the ability of Ad-Cas9-gRNA to restore the phenotype in adult post-mitotic cells, this method may be widely applicable to adult-onset diseases, even in tissues affected with disorders of non-reproducing cells.
Collapse
Affiliation(s)
- Hironori Uehara
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Xiaohui Zhang
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Felipe Pereira
- Department of Ophthalmology, University of VirginiaCharlottesvilleUnited States
| | - Siddharth Narendran
- Department of Ophthalmology, University of VirginiaCharlottesvilleUnited States
| | - Susie Choi
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Sai Bhuvanagiri
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Jinlu Liu
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Sangeetha Ravi Kumar
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Austin Bohner
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Lara Carroll
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Bonnie Archer
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| | - Yue Zhang
- Division of Epidemiology, Department of Internal Medicine, University of UtahSalt Lake CityUnited States
| | - Wei Liu
- Division of Epidemiology, Department of Internal Medicine, University of UtahSalt Lake CityUnited States
| | - Guangping Gao
- Gene Therapy Center, Department of Microbiology and Physiological Science Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jayakrishna Ambati
- Department of Ophthalmology, University of VirginiaCharlottesvilleUnited States
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Balamurali K Ambati
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugene, ORUnited States
| |
Collapse
|