1
|
Liu X, Ge X. TurboID Labeling and Analysis of Proteins in the Primary Cilium. Bio Protoc 2025; 15:e5303. [PMID: 40364985 PMCID: PMC12067308 DOI: 10.21769/bioprotoc.5303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Known as the cell's antenna and signaling hub, the primary cilium is a hair-like organelle with a few micrometers in length and 200-300 nm in diameter. Due to the small size of the primary cilium, it is technically challenging to profile ciliary proteins from mammalian cells. Traditional methods, such as physical isolation of cilia, are susceptible to contamination from other cellular components. Other proximity-based labeling methods via APEX or BioID have been used to map ciliary proteins. However, these approaches have their inherent limitations, including the use of toxic reagents like H2O2 and prolonged labeling kinetics. Here, we show a new proximity-based labeling technique for primary cilia with TurboID. TurboID presents a distinct advantage over BioID and APEX2 due to its expedited labeling kinetics, taking minutes instead of hours, and its use of a non-toxic biotin substrate, which eliminates the need for H2O2. When targeted to the cilium, TurboID selectively labels ciliary proteins with biotin. The biotinylated proteins are then enriched with streptavidin beads and labeled with tandem mass tags (TMT), followed by mass spectrometry (MS) detection. This protocol eliminates the requirement of toxic labeling reagents and significantly reduces the labeling time, thus providing advantages in mapping signaling proteins with high temporal resolution in live cells. Key features • Compared to other proximity labeling enzymes, TurboID offers fast labeling kinetics and uses cell-permeable biotin as the labeling reagent [1]. • This protocol includes a straightforward subcellular fractionation step to remove the nuclei to reduce the non-specific background. • This protocol has been successfully applied to the NIH 3T3 cell line and could also be applied in other cell lines and animal tissues.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Molecular and Cell Biology, University of California, Merced, Merced California, CA, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, University of California, Merced, Merced California, CA, USA
| |
Collapse
|
2
|
Acebedo AR, Yamada G, Alcantara MC, Raga DD, Sato T, Nishinakamura R, Suzuki K. Sall1 regulates microtubule acetylation in mesenchymal cells during mouse urethral development. Cells Dev 2025:204027. [PMID: 40306366 DOI: 10.1016/j.cdev.2025.204027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Male embryonic external genitalia (eExG) undergo sexually dimorphic urethral development in response to androgen signaling (urethral masculinization). Whereas androgen is an essential masculinization factor for eExG, the specific molecular and cellular mechanisms are still unclear. Sall1 is a transcription factor that has been linked to the congenital disease Townes-Brocks syndrome, which includes anorectal and urogenital malformations. Currently, the functional role of Sall1 for normal urethral development is still unclear. In this study, we show that Sall1 is required to regulate proper microtubule acetylation to facilitate mesenchymal cell migration during urethral masculinization of mouse eExG. Mutant male mice with loss of function of mesenchymal Sall1 exhibited severe urethral defects, without prominent alteration of androgen signaling. Loss of Sall1 induced hyperacetylated microtubules in the eExG mesenchyme. Microtubule hyperacetylation resulted in defective fibrillar adhesions and fibronectin expression which impaired cell migration. Our findings reveal a novel mechanism of Sall1-regulated mesenchymal cell migration for urethral development. This mechanism for Sall1 may underlie the etiology of diseases such as Townes-Brocks syndrome.
Collapse
Affiliation(s)
- Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Institute of Biology, College of Science, University of the Philippines, Diliman, 1101 Quezon City, NCR, Philippines
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medicine Wakayama Medical University, Kimiidera, Wakayama 641-8509, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Dennis D Raga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
3
|
Hufft-Martinez BM, Wang HH, Saadi I, Tran PV. Actin cytoskeletal regulation of ciliogenesis in development and disease. Dev Dyn 2024; 253:1076-1093. [PMID: 38958410 PMCID: PMC11611694 DOI: 10.1002/dvdy.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.
Collapse
Affiliation(s)
| | - Henry H Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
4
|
Meriranta L, Sorri S, Huse K, Liu X, Spasevska I, Zafar S, Chowdhury I, Dufva O, Sahlberg E, Tandarić L, Karjalainen-Lindsberg ML, Hyytiäinen M, Varjosalo M, Myklebust JH, Leppä S. Disruption of KLHL6 Fuels Oncogenic Antigen Receptor Signaling in B-Cell Lymphoma. Blood Cancer Discov 2024; 5:331-352. [PMID: 38630892 PMCID: PMC11369598 DOI: 10.1158/2643-3230.bcd-23-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL) are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin ligase with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiologic KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the bric-a-brac tramtrack broad domain of KLHL6 disrupted its localization and heterodimerization and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL. Significance: Oncogenic BCR signaling sustains DLBCL cells. We discovered that Cullin-3-RING E3 ubiquitin ligase substrate-adapter KLHL6 targets BCR heterodimer (CD79A/CD79B) for ubiquitin-mediated degradation. Recurrent somatic mutations in the KLHL6 gene cause corrupt BCR signaling by disrupting surface BCR homeostasis. Loss of KLHL6 expression and mutant-induced phenotypes associate with targetable disease characteristics in B-cell lymphoma. See related commentary by Leveille et al. See related commentary by Corcoran et al.
Collapse
MESH Headings
- Humans
- Signal Transduction
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mutation
- Cell Line, Tumor
- Carrier Proteins
Collapse
Affiliation(s)
- Leo Meriranta
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Selma Sorri
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sadia Zafar
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| | - Eerika Sahlberg
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Luka Tandarić
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Marko Hyytiäinen
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
5
|
Jadav R, Weiland F, Noordermeer SM, Carroll T, Gao Y, Wang J, Zhou H, Lamoliatte F, Toth R, Macartney T, Brown F, Hastie CJ, Alabert C, van Attikum H, Zenke F, Masson JY, Rouse J. Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators. Mol Cell Proteomics 2024; 23:100802. [PMID: 38880245 PMCID: PMC11338954 DOI: 10.1016/j.mcpro.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.
Collapse
Affiliation(s)
- Rathan Jadav
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Genetics, Oncode Institute, Utrecht, The Netherlands
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Yuandi Gao
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - Jianming Wang
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Zenke
- EMD Serono, Research Unit Oncology, Billerica, Massachusetts, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK.
| |
Collapse
|
6
|
Liu X, Wang H, Zhang Y, Zhang R, Zhang R, Shi X, Pan F, Qiao D, Xin Q, Liu Z, Zhang Y, Li C, Lang Y, Shao L. A novel heterozygous variant of the SALL1 gene with atypical Townes-Brocks syndrome phenotypes in Chinese family. Nephrology (Carlton) 2024; 29:541-546. [PMID: 38584358 DOI: 10.1111/nep.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Townes-Brocks syndrome (TBS) is an autosomal dominant disorder characterised by the triad of anorectal, thumb, and ear malformations. It may also be accompanied by defects in kidney, heart, eyes, hearing, and feet. TBS has been demonstrated to result from heterozygous variants in the SALL1 gene, which encodes zinc finger protein believed to function as a transcriptional repressor. The clinical characteristics of an atypical TBS phenotype patient from a Chinese family are described, with predominant manifestations including external ear dysplasia, unilateral renal hypoplasia with mild renal dysfunction, and hearing impairment. A novel heterozygous variant c.3060T>A (p.Tyr1020*) in exon 2 of the SALL1 gene was identified in this proband. Pyrosequencing of the complementary DNA of the proband revealed that the variant transcript accounted for 48% of the total transcripts in peripheral leukocytes, indicating that this variant transcript has not undergone nonsense-mediated mRNA decay. This variant c.3060T > A is located at the terminal end of exon 2, proximal to the 3' end of the SALL1 gene, and exerts a relatively minor impact on protein function. We suggest that the atypical TBS phenotype observed in the proband may be attributed to the truncated protein retaining partial SALL1 function.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Hong Wang
- Department of Nephrology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Yiyin Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ran Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Emergency, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Fengjiao Pan
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Dan Qiao
- Department of Nephrology, Dalian Medical University, Dalian, China
| | - Qing Xin
- Department of Nephrology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiying Liu
- Renal Division, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Nephrology, Weifang Medical University, Weifang, China
| | - Changying Li
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yanhua Lang
- Department of Materials, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Leping Shao
- Department of Nephrology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
7
|
Wang L, Tsang HY, Yan Z, Tojkander S, Ciuba K, Kogan K, Liu X, Zhao H. LUZP1 regulates the maturation of contractile actomyosin bundles. Cell Mol Life Sci 2024; 81:248. [PMID: 38832964 PMCID: PMC11335285 DOI: 10.1007/s00018-024-05294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Contractile actomyosin bundles play crucial roles in various physiological processes, including cell migration, morphogenesis, and muscle contraction. The intricate assembly of actomyosin bundles involves the precise alignment and fusion of myosin II filaments, yet the underlying mechanisms and factors involved in these processes remain elusive. Our study reveals that LUZP1 plays a central role in orchestrating the maturation of thick actomyosin bundles. Loss of LUZP1 caused abnormal cell morphogenesis, migration, and the ability to exert forces on the environment. Importantly, knockout of LUZP1 results in significant defects in the concatenation and persistent association of myosin II filaments, severely impairing the assembly of myosin II stacks. The disruption of these processes in LUZP1 knockout cells provides mechanistic insights into the defective assembly of thick ventral stress fibers and the associated cellular contractility abnormalities. Overall, these results significantly contribute to our understanding of the molecular mechanism involved in actomyosin bundle formation and highlight the essential role of LUZP1 in this process.
Collapse
Affiliation(s)
- Liang Wang
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katarzyna Ciuba
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
8
|
Hyodo T, Asano-Inami E, Ito S, Sugiyama M, Nawa A, Rahman ML, Hasan MN, Mihara Y, Lam VQ, Karnan S, Ota A, Tsuzuki S, Hamaguchi M, Hosokawa Y, Konishi H. Leucine zipper protein 1 (LUZP1) regulates the constriction velocity of the contractile ring during cytokinesis. FEBS J 2024; 291:927-944. [PMID: 38009294 DOI: 10.1111/febs.17017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
There has been a great deal of research on cell division and its mechanisms; however, its processes still have many unknowns. To find novel proteins that regulate cell division, we performed the screening using siRNAs and/or the expression plasmid of the target genes and identified leucine zipper protein 1 (LUZP1). Recent studies have shown that LUZP1 interacts with various proteins and stabilizes the actin cytoskeleton; however, the function of LUZP1 in mitosis is not known. In this study, we found that LUZP1 colocalized with the chromosomal passenger complex (CPC) at the centromere in metaphase and at the central spindle in anaphase and that these LUZP1 localizations were regulated by CPC activity and kinesin family member 20A (KIF20A). Mass spectrometry analysis identified that LUZP1 interacted with death-associated protein kinase 3 (DAPK3), one regulator of the cleavage furrow ingression in cytokinesis. In addition, we found that LUZP1 also interacted with myosin light chain 9 (MYL9), a substrate of DAPK3, and comprehensively inhibited MYL9 phosphorylation by DAPK3. In line with a known role for MYL9 in the actin-myosin contraction, LUZP1 suppression accelerated the constriction velocity at the division plane in our time-lapse analysis. Our study indicates that LUZP1 is a novel regulator for cytokinesis that regulates the constriction velocity of the contractile ring.
Collapse
Affiliation(s)
- Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | | | - Mai Sugiyama
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yuko Mihara
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Vu Quang Lam
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
9
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
10
|
Wang S, Wang X, Pan C, Liu Y, Lei M, Guo X, Chen Q, Yang X, Ouyang C, Ren Z. Functions of actin-binding proteins in cilia structure remodeling and signaling. Biol Cell 2023; 115:e202300026. [PMID: 37478133 DOI: 10.1111/boc.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Cilia are microtubule-based organelles found on the surfaces of many types of cells, including cardiac fibroblasts, vascular endothelial cells, human retinal pigmented epithelial-1 (RPE-1) cells, and alveolar epithelial cells. These organelles can be classified as immotile cilia, referred to as primary cilia in mammalian cells, and motile cilia. Primary cilia are cellular sensors that detect extracellular signals; this is a critical function associated with ciliopathies, which are characterized by the typical clinical features of developmental disorders. Cilia are extensively studied organelles of the microtubule cytoskeleton. However, the ciliary actin cytoskeleton has rarely been studied. Clear evidence has shown that highly regulated actin cytoskeleton dynamics contribute to normal ciliary function. Actin-binding proteins (ABPs) play vital roles in filamentous actin (F-actin) morphology. Here, we discuss recent progress in understanding the roles of ABPs in ciliary structural remodeling and further downstream ciliary signaling with a focus on the molecular mechanisms underlying actin cytoskeleton-related ciliopathies.
Collapse
Affiliation(s)
- Siqi Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| | - Congbin Pan
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ying Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Shandong Normal University, Jinan, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
11
|
Fan D, Jin Z, Cao J, Li Y, He T, Zhang W, Peng L, Liu H, Wu X, Chen M, Fan Y, He B, Yu W, Wang H, Hu X, Lu Z. Leucine zipper protein 1 prevents doxorubicin-induced cardiotoxicity in mice. Redox Biol 2023; 64:102780. [PMID: 37354826 DOI: 10.1016/j.redox.2023.102780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is commonly used for chemotherapy; however, its clinical value is extremely dampened because of the fatal cardiotoxicity. Leucine zipper protein 1 (LUZP1) plays critical roles in cardiovascular development, and this study is designed for determining its function and mechanism in DOX-induced cardiotoxicity. METHODS Cardiac-specific Luzp1 knockout (cKO) and transgenic (cTG) mice received a single or repeated DOX injections to establish acute and chronic cardiotoxicity. Biomarkers of inflammation, oxidative damage and cell apoptosis were evaluated. Transcriptome and co-immunoprecipitation analysis were used to screen the underlying molecular pathways. Meanwhile, primary cardiomyocytes were applied to confirm the beneficial effects of LUZP1 in depth. RESULTS LUZP1 was upregulated in DOX-injured hearts and cardiomyocytes. Cardiac-specific LUZP1 deficiency aggravated, while cardiac-specific LUZP1 overexpression attenuated DOX-associated inflammation, oxidative damage, cell apoptosis and acute cardiac injury. Mechanistic studies revealed that LUZP1 ameliorated DOX-induced cardiotoxicity through activating 5'-AMP-activated protein kinase (AMPK) pathway, and AMPK deficiency abolished the cardioprotection of LUZP1. Further findings suggested that LUZP1 interacted with protein phosphatase 1 to activate AMPK pathway. Moreover, we determined that cardiac-specific LUZP1 overexpression could also attenuate DOX-associated chronic cardiac injury in mice. CONCLUSION LUZP1 attenuates DOX-induced inflammation, oxidative damage, cell apoptosis and ventricular impairment through regulating AMPK pathway, and gene therapy targeting LUZP1 may provide novel therapeutic approached to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Di Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Zhili Jin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Yi Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Tao He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Wei Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Li Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Huixia Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Wenxi Yu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Hairong Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China.
| |
Collapse
|
12
|
Chen X, Shi Z, Yang F, Zhou T, Xie S. Deciphering cilia and ciliopathies using proteomic approaches. FEBS J 2023; 290:2590-2603. [PMID: 35633520 DOI: 10.1111/febs.16538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Cilia are microtubule-based organelles that protrude from the cell surface and play crucial roles in cellular signaling pathways and extracellular fluid movement. Defects in the ciliary structures and functions are implicated in a set of hereditary disorders, including polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, which are collectively termed as ciliopathies. The application of mass spectrometry-based proteomic approaches to explore ciliary components provides important clues for understanding their physiological and pathological roles. In this review, we focus primarily on proteomic studies involving the identification of proteins in motile cilia and primary cilia, proteomes in ciliopathies, and interactomes of ciliopathy proteins. Collectively, the integration of these data sets will be beneficial for the comprehensive understanding of ciliary structures and exploring potential biomarkers and therapeutic targets for ciliopathies.
Collapse
Affiliation(s)
- Xiying Chen
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyuanjing Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xie
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Lecorguillé M, Navarro P, Chen LW, Murrin C, Viljoen K, Mehegan J, Shivappa N, Hébert JR, Kelleher CC, Suderman M, Phillips CM. Maternal and Paternal Dietary Quality and Dietary Inflammation Associations with Offspring DNA Methylation and Epigenetic Biomarkers of Aging in the Lifeways Cross-Generation Study. J Nutr 2023; 153:1075-1088. [PMID: 36842935 PMCID: PMC10196589 DOI: 10.1016/j.tjnut.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Early-life nutritional exposures may contribute to offspring epigenetic modifications. However, few studies have evaluated parental dietary quality effects on offspring DNA methylation (DNAm). OBJECTIVES We aim to fill this gap by elucidating the influence of maternal and paternal whole-diet quality and inflammatory potential on offspring DNAm in the Lifeways Cross-generation cohort. METHODS Families (n = 1124) were recruited around 16 weeks of gestation in the Republic of Ireland between 2001 and 2003. Maternal dietary intake during the first trimester and paternal diet during the 12 previous months were assessed with an FFQ. Parental dietary inflammatory potential and quality were determined using the energy-adjusted Dietary Inflammatory Index (E-DII), the Healthy Eating Index-2015 (HEI-2015), and the maternal DASH score. DNAm in the saliva of 246 children at age nine was measured using the Illumina Infinium HumanMethylationEPIC array. DNAm-derived biomarkers of aging, the Pediatric-Buccal-Epigenetic clock and DNAm estimator of telomere length, were calculated. Parental diet associations with the DNAm concentrations of 850K Cytosine-phosphate-guanine sites (CpG sites) and with DNAm-derived biomarkers of aging were examined using an epigenome-wide association study and linear regressions, respectively. RESULTS Maternal HEI-2015 scores were inversely associated with DNAm at CpG site (cg21840035) located near the PLEKHM1 gene, whose functions involve regulation of bone development (β = -0.0036, per 1 point increase in the score; P = 5.6 × 10-8). Higher paternal HEI-2015 score was related to lower methylation at CpG site (cg22431767), located near cell signaling gene LUZP1 (β = -0.0022, per 1 point increase in the score, P = 4.1 × 10-8). There were no associations with parental E-DII and DASH scores, and no evidence of major effects on biomarkers of aging. CONCLUSIONS Parental dietary quality in the prenatal period, evaluated by the HEI-2015, may influence offspring DNAm during childhood. Further research to improve our understanding of parental nutritional programming is warranted.
Collapse
Affiliation(s)
- Marion Lecorguillé
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.
| | - Pilar Navarro
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Ling-Wei Chen
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Celine Murrin
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Karien Viljoen
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - John Mehegan
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Nitin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Connecting Health Innovations, LLC, Columbia, SC, USA
| | - Cecily C Kelleher
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Catherine M Phillips
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
15
|
Lugli L, Rossi C, Ceccarelli PL, Calabrese O, Bedetti L, Miselli F, Bianchini MA, Iughetti L, Berardi A. Townes-Brocks syndrome with craniosynostosis in two siblings. Eur J Med Genet 2022; 65:104642. [PMID: 36252910 DOI: 10.1016/j.ejmg.2022.104642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
Abstract
This report describes a novel truncating c.709C > T p.(Gln237*) SALL1 variant in two siblings exhibiting sagittal craniosynostosis as a unique feature of Townes-Brocks syndrome (TBS, OMIM #107480). TBS is a rare autosomal dominant syndrome with variable phenotypes, including anorectal, renal, limb, and ear abnormalities, which results from heterozygous variants in the SALL1 gene, predominantly located in the 802 bp "hot spot region" within exon 2. Recent studies have suggested that aberrations in primary cilia and sonic hedgehog signalling contribute to the TBS phenotypes. The presence of the novel c.709C > T p.(Gln237*) SALL1 variant was confirmed in both the siblings and their father, whereas no mutations currently associated with craniosynostosis were detected. We hypothesise that the truncating c.709C > T p.(Gln237*) SALL1 variant, which occurs outside the "hot spot region" and inside the glutamine-rich domain coding region, could interfere with ciliary signalling and mechanotransduction, contributing to premature fusion of calvarial sutures. This report broadens the genetic and phenotypic spectrum of TBS and provides the first clinical evidence of craniosynostosis as a novel feature of the syndrome.
Collapse
Affiliation(s)
- Licia Lugli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Cecilia Rossi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy
| | - Pier Luca Ceccarelli
- Pediatric Surgery Unit, Mother-Child Department, University Hospital of Modena, Italy
| | | | - Luca Bedetti
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy; PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy
| | - Francesca Miselli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy
| | | | - Lorenzo Iughetti
- Postgraduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy; Pediatric Unit, Mother-Child Department, University Hospital of Modena, Italy
| | - Alberto Berardi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy
| |
Collapse
|
16
|
Circular RNA circFIRRE drives osteosarcoma progression and metastasis through tumorigenic-angiogenic coupling. Mol Cancer 2022; 21:167. [PMID: 35986280 PMCID: PMC9389772 DOI: 10.1186/s12943-022-01624-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Disappointing clinical efficacy of standard treatment has been proven in refractory metastatic osteosarcoma, and the emerging anti-angiogenic regimens are still in the infantile stage. Thus, there is an urgent need to develop novel therapeutic approach for osteosarcoma lung metastasis. Methods circFIRRE was selected from RNA-sequencing of 4 matched osteosarcoma and adjacent samples. The expression of circFIRRE was verified in clinical osteosarcoma samples and cell lines via quantitative real-time polymerase chain reaction (RT-qPCR). The effect of circFIRRE was investigated in cell lines in vitro models, ex vivo models and in vivo xenograft tumor models, including proliferation, invasion, migration, metastasis and angiogenesis. Signaling regulatory mechanism was evaluated by RT-qPCR, Western blot, RNA pull-down and dual-luciferase reporter assays. Results In this article, a novel circular RNA, circFIRRE (hsa_circ_0001944) was screened out and identified from RNA-sequencing, and was upregulated in both osteosarcoma cell lines and tissues. Clinically, aberrantly upregulated circFIRRE portended higher metastatic risk and worse prognosis in osteosarcoma patients. Functionally, in vitro, ex vivo and in vivo experiments demonstrated that circFIRRE could drive primary osteosarcoma progression and lung metastasis by inducing both tumor cells and blood vessels, we call as “tumorigenic-angiogenic coupling”. Mechanistically, upregulated circFIRRE was induced by transcription factor YY1, and partially boosted the mRNA and protein level of LUZP1 by sponging miR-486-3p and miR-1225-5p. Conclusions We identified circFIRRE as a master regulator in the tumorigenesis and angiogenesis of osteosarcoma, which could be purposed as a novel prognostic biomarker and therapeutic target for refractory osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01624-7.
Collapse
|
17
|
Wei XF, Fan SY, Wang YW, Li S, Long SY, Gan CY, Li J, Sun YX, Guo L, Wang PY, Yang X, Wang JL, Cui J, Zhang WL, Huang AL, Hu JL. Identification of STAU1 as a regulator of HBV replication by TurboID-based proximity labeling. iScience 2022; 25:104416. [PMID: 35663023 PMCID: PMC9156947 DOI: 10.1016/j.isci.2022.104416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
The core promoter (CP) of hepatitis B virus (HBV) is critical for HBV replication by controlling the transcription of pregenomic RNA (pgRNA). Host factors regulating the activity of the CP can be identified by different methods. Biotin-based proximity labeling, a powerful method with the capability to capture weak or dynamic interactions, has not yet been used to map proteins interacting with the CP. Here, we established a strategy, based on the newly evolved promiscuous enzyme TurboID, for interrogating host factors regulating the activity of HBV CP. Using this strategy, we identified STAU1 as an important factor involved in the regulation of HBV CP. Mechanistically, STAU1 indirectly binds to CP mediated by TARDBP, and recruits the SAGA transcription coactivator complex to the CP to upregulate its activity. Moreover, STAU1 binds to HBx and enhances the level of HBx by stabilizing it in a ubiquitin-independent manner.
Collapse
Affiliation(s)
- Xia-Fei Wei
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shu-Ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Wei Wang
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shan Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chun-Yang Gan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yu-Xue Sun
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lin Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Pei-Yun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jin-Lan Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Cui
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
LUZP1: A new player in the actin-microtubule cross-talk. Eur J Cell Biol 2022; 101:151250. [PMID: 35738212 DOI: 10.1016/j.ejcb.2022.151250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
LUZP1 (leucine zipper protein 1) was first described as being important for embryonic development. Luzp1 null mice present defective neural tube closure and cardiovascular problems, which cause perinatal death. Since then, LUZP1 has also been implicated in the etiology of diseases like the 1p36 and the Townes-Brocks syndromes, and the molecular mechanisms involving this protein started being uncovered. Proteomics studies placed LUZP1 in the interactomes of the centrosome-cilium interface, centriolar satellites, and midbody. Concordantly, LUZP1 is an actin and microtubule-associated protein, which localizes to the centrosome, the basal body of primary cilia, the midbody, actin filaments and cellular junctions. LUZP1, like its interactor EPLIN, is an actin-stabilizing protein and a negative regulator of primary cilia formation. Moreover, through the regulation of actin, LUZP1 has been implicated in the regulation of cell cycle progression, cell migration and epithelial cell apical constriction. This review discusses the latest findings concerning LUZP1 molecular functions and implications in disease development.
Collapse
|
19
|
Abstract
Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Dong X, Zhang P, Liu L, Li H, Cheng S, Li S, Wang Y, Zheng C, Dong J, Zhang L. The Circ_0001367/miR-545-3p/LUZP1 Axis Regulates Cell Proliferation, Migration and Invasion in Glioma Cells. Front Oncol 2021; 11:781471. [PMID: 34869035 PMCID: PMC8637337 DOI: 10.3389/fonc.2021.781471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023] Open
Abstract
Glioma is the most common primary intracranial malignant tumour in adults. It has a high incidence and poses a serious threat to human health. Circular RNA is a hotspot of cancer research. In this study, we aimed to explore the role of circ_0001367 in gliomagenesis and the underlying mechanism. First, qRT-PCR was conducted, which showed that circ_0001367 level was downregulated in glioma tissues and cells. Next, gain-of-function and loss-of-function assays were performed, which indicated that circ_0001367 inhibited the proliferation, migration and invasion of glioma cells. Subsequent bioinformatics analysis, dual-luciferase reporter assays, RNA immunoprecipitation assays and cell function assays demonstrated that circ_0001367 inhibited the proliferation, migration and invasion of glioma cells by absorbing miR-545-3p and thereby regulating the expression of leucine zipper protein (LUZP1). Finally, an in vivo experiment was conducted, which demonstrated that circ_0001367 inhibited glioma growth in vivo by modulating miR-545-3p and LUZP1. Taken together, the results of this study demonstrate that the circ_0001367/miR-545-3p/LUZP1 axis may be a novel target for glioma therapy.
Collapse
Affiliation(s)
- Xuchen Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Rugao Hospital Affiliated to Nantong University, Nantong, China
| | - Liang Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoran Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suwen Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Giordano I, Pirone L, Muratore V, Landaluze E, Pérez C, Lang V, Garde-Lapido E, Gonzalez-Lopez M, Barroso-Gomila O, Vertegaal ACO, Aransay AM, Rodriguez JA, Rodriguez MS, Sutherland JD, Barrio R. SALL1 Modulates CBX4 Stability, Nuclear Bodies, and Regulation of Target Genes. Front Cell Dev Biol 2021; 9:715868. [PMID: 34621739 PMCID: PMC8490708 DOI: 10.3389/fcell.2021.715868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Development is orchestrated through a complex interplay of multiple transcription factors. The comprehension of this interplay will help us to understand developmental processes. Here we analyze the relationship between two key transcription factors: CBX4, a member of the Polycomb Repressive Complex 1 (PRC1), and SALL1, a member of the Spalt-like family with important roles in embryogenesis and limb development. Both proteins localize to nuclear bodies and are modified by the small ubiquitin-like modifier (SUMO). Our results show that CBX4 and SALL1 interact in the nucleoplasm and that increased SALL1 expression reduces ubiquitination of CBX4, enhancing its stability. This is accompanied by an increase in the number and size of CBX4-containing Polycomb bodies, and by a greater repression of CBX4 target genes. Thus, our findings uncover a new way of SALL1-mediated regulation of Polycomb bodies through modulation of CBX4 stability, with consequences in the regulation of its target genes, which could have an impact in cell differentiation and development.
Collapse
Affiliation(s)
- Immacolata Giordano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Lucia Pirone
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Eukene Landaluze
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Coralia Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Valerie Lang
- Viralgen Vector Core, Parque Científico y Tecnológico de Guipúzcoa, San Sebastián, Spain
| | - Elisa Garde-Lapido
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination-CNRS, Paul Sabatier: Université Toulouse III, Toulouse, France
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Spain
| |
Collapse
|
22
|
Niri F, Terpstra A, Lim KRQ, McDermid H. Chromatin remodeling factor CECR2 forms tissue-specific complexes with CCAR2 and LUZP1. Biochem Cell Biol 2021; 99:759-765. [PMID: 34197713 DOI: 10.1139/bcb-2021-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin remodeling complexes alter chromatin structure to control access to DNA and therefore control cellular processes such as transcription, DNA replication, and DNA repair. CECR2 is a chromatin remodeling factor that plays an important role in neural tube closure and reproduction. Loss-of-function mutations in Cecr2 result primarily in the perinatal lethal neural tube defect exencephaly, with non-penetrant mice that survive to adulthood exhibiting subfertility. CECR2 forms a complex with ISWI proteins SMARCA5 and/or SMARCA1, but further information on the structure and function of the complex is not known. We therefore have identified candidate components of the CECR2-containing remodeling factor (CERF) complex in embryonic stem (ES) cells through mass spectroscopy. Both SMARCA5 and SMARCA1 were confirmed to be present in CERF complexes in ES cells and testis. However, novel proteins CCAR2 and LUZP1 are CERF components in ES cells but not testis. This tissue specificity in mice suggests these complexes may also have functional differences. Furthermore, LUZP1, loss of which is also associated with exencephaly, appears to play a role in stabilizing the CERF complex in ES cells. Keywords: CECR2, LUZP1, CCAR2, Chromatin remodeling factor, Neural tube defects.
Collapse
Affiliation(s)
- Farshad Niri
- University of Alberta, 3158, Edmonton, Alberta, Canada, T6G 2R3.,Edmonton, Alberta, Canada, T6E 1V3;
| | | | | | | |
Collapse
|
23
|
Proximity Biotin Labeling Reveals Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor Networks. J Virol 2021; 95:JVI.02049-20. [PMID: 33597212 PMCID: PMC8104114 DOI: 10.1128/jvi.02049-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Studies on “hit-and-run” effects by viral proteins are difficult when using traditional affinity precipitation-based techniques under dynamic conditions, because only proteins interacting at a specific instance in time can be precipitated by affinity purification. Recent advances in proximity labeling (PL) have enabled identification of both static and dynamic protein-protein interactions. In this study, we applied a PL method by generating recombinant Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV, a gammaherpesvirus, uniquely encodes four interferon regulatory factors (IRF-1 to -4) that suppress host interferon responses, and we examined KSHV IRF-1 and IRF-4 neighbor proteins to identify cellular proteins involved in innate immune regulation. PL identified 213 and 70 proteins as neighboring proteins of viral IRF-1 (vIRF-1) and vIRF-4 during viral reactivation, and 47 proteins were shared between the two vIRFs; the list also includes three viral proteins, ORF17, thymidine kinase, and vIRF-4. Functional annotation of respective interacting proteins showed highly overlapping biological roles such as mRNA processing and transcriptional regulation by TP53. Innate immune regulation by these commonly interacting 44 cellular proteins was examined with small interfering RNAs (siRNAs), and the splicing factor 3B family proteins were found to be associated with interferon transcription and to act as suppressors of KSHV reactivation. We propose that recombinant mini-TurboID-KSHV is a powerful tool to probe key cellular proteins that play a role in KSHV replication and that selective splicing factors have a function in the regulation of innate immune responses. IMPORTANCE Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Proximity labeling (PL), however, can also highlight transient and negative effects—those interactions which lead to dissociation from the existing protein complex. Here, we highlight the power of PL in combination with recombinant KSHV to study viral host interactions.
Collapse
|
24
|
Bozal-Basterra L, Gonzalez-Santamarta M, Muratore V, Martín-Martín N, Ercilla A, Rodríguez JA, Carracedo A, Sutherland JD, Barrio R. LUZP1 Controls Cell Division, Migration and Invasion Through Regulation of the Actin Cytoskeleton. Front Cell Dev Biol 2021; 9:624089. [PMID: 33869174 PMCID: PMC8049182 DOI: 10.3389/fcell.2021.624089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
LUZP1 is a centrosomal and actin cytoskeleton-localizing protein that regulates both ciliogenesis and actin filament bundling. As the cytoskeleton and cilia are implicated in metastasis and tumor suppression, we examined roles for LUZP1 in the context of cancer. Here we show that LUZP1 exhibits frequent genomic aberrations in cancer, with a predominance of gene deletions. Furthermore, we demonstrate that CRISPR/Cas9-mediated loss of Luzp1 in mouse fibroblasts promotes cell migration and invasion features, reduces cell viability, and increases cell apoptosis, centriole numbers, and nuclear size while altering the actin cytoskeleton. Loss of Luzp1 also induced changes to ACTR3 (Actin Related Protein 3, also known as ARP3) and phospho-cofilin ratios, suggesting regulatory roles in actin polymerization, beyond its role in filament bundling. Our results point to an unprecedented role for LUZP1 in the regulation of cancer features through the control of actin cytoskeleton.
Collapse
Affiliation(s)
- Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - María Gonzalez-Santamarta
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| |
Collapse
|
25
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
26
|
Drivas TG, Lucas A, Zhang X, Ritchie MD. Mendelian pathway analysis of laboratory traits reveals distinct roles for ciliary subcompartments in common disease pathogenesis. Am J Hum Genet 2021; 108:482-501. [PMID: 33636100 PMCID: PMC8008498 DOI: 10.1016/j.ajhg.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rare monogenic disorders of the primary cilium, termed ciliopathies, are characterized by extreme presentations of otherwise common diseases, such as diabetes, hepatic fibrosis, and kidney failure. However, despite a recent revolution in our understanding of the cilium's role in rare disease pathogenesis, the organelle's contribution to common disease remains largely unknown. Hypothesizing that common genetic variants within Mendelian ciliopathy genes might contribute to common complex diseases pathogenesis, we performed association studies of 16,874 common genetic variants across 122 ciliary genes with 12 quantitative laboratory traits characteristic of ciliopathy syndromes in 452,593 individuals in the UK Biobank. We incorporated tissue-specific gene expression analysis, expression quantitative trait loci, and Mendelian disease phenotype information into our analysis and replicated our findings in meta-analysis. 101 statistically significant associations were identified across 42 of the 122 examined ciliary genes (including eight novel replicating associations). These ciliary genes were widely expressed in tissues relevant to the phenotypes being studied, and eQTL analysis revealed strong evidence for correlation between ciliary gene expression levels and laboratory traits. Perhaps most interestingly, our analysis identified different ciliary subcompartments as being specifically associated with distinct sets of phenotypes. Taken together, our data demonstrate the utility of a Mendelian pathway-based approach to genomic association studies, challenge the widely held belief that the cilium is an organelle important mainly in development and in rare syndromic disease pathogenesis, and provide a framework for the continued integration of common and rare disease genetics to provide insight into the pathophysiology of human diseases of immense public health burden.
Collapse
Affiliation(s)
- Theodore George Drivas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
| | - Xinyuan Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
| | - Marylyn DeRiggi Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA.
| |
Collapse
|
27
|
Yang G, Yin Y, Tan Z, Liu J, Deng X, Yang Y. Whole-exome sequencing identified a novel heterozygous mutation of SALL1 and a new homozygous mutation of PTPRQ in a Chinese family with Townes-Brocks syndrome and hearing loss. BMC Med Genomics 2021; 14:24. [PMID: 33478437 PMCID: PMC7819242 DOI: 10.1186/s12920-021-00871-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have revealed that mutations of Spalt Like Transcription Factor 1 (SALL1) are responsible for Townes-Brocks syndrome (TBS), a rare genetic disorder that is characterized by an imperforate anus, dysplastic ears, thumb malformations and other abnormalities, such as hearing loss, foot malformations, renal impairment with or without renal malformations, genitourinary malformations, and congenital heart disease. In addition, the protein tyrosine phosphatase receptor type Q (PTPRQ) gene has been identified in nonsyndromic hearing loss patients with autosomal recessive or autosomal dominant inherited patterns. METHODS A Chinese family with TBS and hearing loss was enrolled in this study. The proband was a two-month-old girl who suffered from congenital anal atresia with rectal perineal fistula, ventricular septal defect, patent ductus arteriosus, pulmonary hypertension (PH), and finger deformities. The proband's father also had external ear deformity with deafness, toe deformities and PH, although his anus was normal. Further investigation found that the proband's mother presented nonsyndromic hearing loss, and the proband's mother's parents were consanguine married. Whole-exome sequencing and Sanger sequencing were applied to detect the genetic lesions of TBS and nonsyndromic hearing loss. RESULTS Via whole-exome sequencing and Sanger sequencing of the proband and her mother, we identified a novel heterozygous mutation (ENST00000251020: c.1428_1429insT, p. K478QfsX38) of SALL1 in the proband and her father who presented TBS phenotypes, and we also detected a new homozygous mutation [ENST00000266688: c.1057_1057delC, p. L353SfsX8)] of PTPRQ in the proband's mother and uncle, who suffered from nonsyndromic hearing loss. Both mutations were located in the conserved sites of the respective protein and were predicted to be deleterious by informatics analysis. CONCLUSIONS This study confirmed the diagnosis of TBS at the molecular level and expanded the spectrum of SALL1 mutations and PTPRQ mutations. Our study may contribute to the clinical management and genetic counselling of TBS and hearing loss.
Collapse
Affiliation(s)
- Guangxian Yang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, Hunan Province, 410007, China.
| | - Yi Yin
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Liu
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, Hunan Province, 410007, China
| | - Xicheng Deng
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, Hunan Province, 410007, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Smith CEL, Lake AVR, Johnson CA. Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please. Front Cell Dev Biol 2020; 8:622822. [PMID: 33392209 PMCID: PMC7773788 DOI: 10.3389/fcell.2020.622822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are microtubule-based organelles that extend from the apical surface of most mammalian cells, forming when the basal body (derived from the mother centriole) docks at the apical cell membrane. They act as universal cellular "antennae" in vertebrates that receive and integrate mechanical and chemical signals from the extracellular environment, serving diverse roles in chemo-, mechano- and photo-sensation that control developmental signaling, cell polarity and cell proliferation. Mutations in ciliary genes cause a major group of inherited developmental disorders called ciliopathies. There are very few preventative treatments or new therapeutic interventions that modify disease progression or the long-term outlook of patients with these conditions. Recent work has identified at least four distinct but interrelated cellular processes that regulate cilia formation and maintenance, comprising the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton. The actin cytoskeleton is composed of microfilaments that are formed from filamentous (F) polymers of globular G-actin subunits. Actin filaments are organized into bundles and networks, and are attached to the cell membrane, by diverse cross-linking proteins. During cell migration, actin filament bundles form either radially at the leading edge or as axial stress fibers. Early studies demonstrated that loss-of-function mutations in ciliopathy genes increased stress fiber formation and impaired ciliogenesis whereas pharmacological inhibition of actin polymerization promoted ciliogenesis. These studies suggest that polymerization of the actin cytoskeleton, F-actin branching and the formation of stress fibers all inhibit primary cilium formation, whereas depolymerization or depletion of actin enhance ciliogenesis. Here, we review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales. Actin polymerization is both a physical barrier to both cilia-targeted vesicle transport and to the membrane remodeling required for ciliogenesis. In contrast, actin may cause cilia loss by localizing disassembly factors at the ciliary base, and F-actin branching may itself activate the YAP/TAZ pathway to promote cilia disassembly. The fundamental role of actin polymerization in the control of ciliogenesis may present potential new targets for disease-modifying therapeutic approaches in treating ciliopathies.
Collapse
Affiliation(s)
| | | | - Colin A. Johnson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Devi R, Pelletier L, Prosser SL. Charting the complex composite nature of centrosomes, primary cilia and centriolar satellites. Curr Opin Struct Biol 2020; 66:32-40. [PMID: 33130249 DOI: 10.1016/j.sbi.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 10/24/2022]
Abstract
The centrosome and its associated structures of the primary cilium and centriolar satellites have been established as central players in a plethora of cellular processes ranging from cell division to cellular signaling. Consequently, defects in the structure or function of these organelles are linked to a diverse range of human diseases, including cancer, microcephaly, ciliopathies, and neurodegeneration. To understand the molecular mechanisms underpinning these diseases, the biology of centrosomes, cilia, and centriolar satellites has to be elucidated. Central to solving this conundrum is the identification, localization, and functional analysis of all the proteins that reside and interact with these organelles. In this review, we discuss the technological breakthroughs that are dissecting the molecular players of these enigmatic organelles with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Raksha Devi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | - Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.
| |
Collapse
|
30
|
Halder P, Khatun S, Majumder S. Freeing the brake: Proliferation needs primary cilium to disassemble. J Biosci 2020. [DOI: 10.1007/s12038-020-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Arslanhan MD, Gulensoy D, Firat-Karalar EN. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex. Cells 2020; 9:E1390. [PMID: 32503249 PMCID: PMC7348975 DOI: 10.3390/cells9061390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
Collapse
Affiliation(s)
| | | | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Turkey; (M.D.A.); (D.G.)
| |
Collapse
|