1
|
Tu F, Qiao Y, Zhao W, Wu T. Comparative selective pressure analysis on mitochondrial protein-coding genes in flying squirrels (Pteromyini) and tree squirrels (Sciurini). Mitochondrial DNA A DNA Mapp Seq Anal 2025; 35:75-83. [PMID: 39417543 DOI: 10.1080/24701394.2024.2416179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Different animal groups with varying locomotion modes may have unique energy requirements. Mitochondria produce adenosine triphosphate (ATP) and reactive oxygen species via oxidative phosphorylation to support organisms energy requirements. The tribes Pteromyini (flying squirrels) and Sciurini (tree squirrels), two closely related taxa within the family Sciuridae, exhibit distinct locomotion modes, energy requirements, and likely face different selective pressures on mitochondrial protein-coding genes (PCGs). We analysed 13 mitochondrial genome sequences from species belonging to the tribe Pteromyini and 117 from species belonging to the tribe Sciurini. Phylogenetic analysis revealed Pteromyini and Sciurini formed a sister relationship within the family Sciuridae. Among the 13 PCGs, ATP8 exhibited the highest dN/dS values, while COX1 showed the lowest. The background selection ratio (ω2) values for six genes (ND1, ND2, ND4, ATP6, ND5, and COX3) in Pteromyini were lower than the foreground selection ratio (ω0) values observed in Sciurini. A RELAX analysis revealed that CYTB, ND4, ATP6, and COX3 genes experienced intensified in selection strength. BUSTED analysis identified stronger signatures of diversifying selection in CYTB and ATP6, highlighting amino acid changes. MEME identified episodic diversifying selection at specific sites among eight PCGs. These findings revealed distinct selective pressures on PCGs in flying and tree squirrels.
Collapse
Affiliation(s)
- Feiyun Tu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yaqin Qiao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Wenjing Zhao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Tong Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
2
|
White J, Schell ER, Dawson NJ, McCracken KG. Comparative mechanisms for O 2 storage and metabolism in two Florida diving birds: the anhinga (Anhinga anhinga) and the double-crested cormorant (Nannopterum auritum). J Comp Physiol B 2025; 195:191-208. [PMID: 39704814 PMCID: PMC12069429 DOI: 10.1007/s00360-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 12/21/2024]
Abstract
Air-breathing vertebrates face many physiological challenges while breath-hold diving. In particular, they must endure intermittent periods of declining oxygen (O2) stores, as well as the need to rapidly replenish depleted O2 at the surface prior to their next dive. While many species show adaptive increases in the O2 storage capacity of the blood or muscles, others increase the oxidative capacity of the muscles through changes in mitochondrial arrangement, abundance, or remodeling of key metabolic pathways. Here, we assess the diving phenotypes of two sympatric diving birds: the anhinga (Anhinga anhinga) and the double-crested cormorant (Nannopterum auritum). In each, we measured blood- and muscle-O2 storage capacity, as well as phenotypic characteristics such as muscle fiber composition, capillarity, and mitochondrial arrangement and abundance in the primary flight (pectoralis) and swimming (gastrocnemius) muscles. Finally, we compared the maximal activities of 10 key enzymes in the pectoralis, gastrocnemius, and left ventricle of the heart to assess tissue level oxidative capacity and fuel use. Our results indicate that both species utilize enhanced muscle-O2 stores over blood-O2. This is most apparent in the large difference in available myoglobin in the gastrocnemius between the two species. Oxidative capacity varied significantly between the flight and swimming muscles and between the two species. However, both species showed lower oxidative capacity than expected compared to other diving birds. In particular, the anhinga exhibits a unique diving phenotype with a slightly higher reliance on glycolysis and lower aerobic ATP generation than double-crested cormorants.
Collapse
Affiliation(s)
- Jeff White
- Department of Biology, University of Miami, Coral Gables, FL, USA.
- Department of Public and Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| | | | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Kevin G McCracken
- Department of Biology, University of Miami, Coral Gables, FL, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Laguë SL, Ivy CM, York JM, Dawson NJ, Chua BA, Alza L, Scott GR, McCracken KG, Milsom WK. Gas exchange, oxygen transport and metabolism in high-altitude waterfowl. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230424. [PMID: 40010396 PMCID: PMC11864830 DOI: 10.1098/rstb.2023.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025] Open
Abstract
High-altitude life poses physiological challenges to all animals due to decreased environmental oxygen (O2) availability (hypoxia) and cold. Supporting high metabolic rates and body temperatures with limited O2 is challenging. Many birds, however, thrive at high altitudes. The O2-transport cascade describes the pathway involved in moving O2 from the environment to the tissues encompassing: (i) ventilation, (ii) pulmonary O2 diffusion, (iii) circulation, (iv) tissue O2 diffusion, and (v) mitochondrial O2 use for ATP production. Shared avian traits such as rigid lungs with cross-current gas exchange and unidirectional airflow aid in O2 acquisition and transport in all birds. Many high-altitude birds, however, have evolved enhancements to some or all steps in the cascade. In this review, we summarize the current literature on gas exchange and O2 transport in high-altitude birds, providing an overview of the O2-transport cascade that principally draws on the literature from high-altitude waterfowl, the most well-studied group of high-altitude birds. We close by discussing two important avenues for future research: distinguishing between the influences of plasticity and evolution and investigating whether the morphological and physiological differences discussed contribute to enhanced locomotor or thermogenic performance, a potential critical link to fitness.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Sabine L. Laguë
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British ColumbiaV6T 1Z4, Canada
- Division of Pediatric Respirology, BC Children’s Hospital, 1C31A-4480 Oak Street, Vancouver, British ColumbiaV6H 3V4, Canada
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, OntarioL8S 4K1, Canada
- Department of Biology, Western University, London, OntarioN6A 3K7, Canada
| | - Julia M. York
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British ColumbiaV6T 1Z4, Canada
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S Goodwin Avenue, Urbana, IL61801, USA
| | - Neal J. Dawson
- Department of Biology, McMaster University, Hamilton, OntarioL8S 4K1, Canada
- Department of Biology, Department of Marine Biology and Ecology at the Rosenstiel School of Marine, Atmospheric, and Earth Science, and Human Genetics and Genomics at the Miller School of Medicine, University of Miami, 1301 Memorial Drive, Coral Gables, FL33146, USA
- School of Biodiveristy, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Beverly A. Chua
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Luis Alza
- Department of Biology, Casper College, Casper, WY, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, OntarioL8S 4K1, Canada
| | - Kevin G. McCracken
- Department of Biology, Department of Marine Biology and Ecology at the Rosenstiel School of Marine, Atmospheric, and Earth Science, and Human Genetics and Genomics at the Miller School of Medicine, University of Miami, 1301 Memorial Drive, Coral Gables, FL33146, USA
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - William K. Milsom
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British ColumbiaV6T 1Z4, Canada
| |
Collapse
|
4
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
5
|
Schell ER, Scott GR, Dawson NJ, Winker K, McCracken KG. Consistent changes in muscle phenotype and mitochondrial abundance underlie dive performance across multiple lineages of diving ducks. J Exp Biol 2024; 227:jeb247550. [PMID: 38989552 DOI: 10.1242/jeb.247550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Diving animals must sustain high muscle activity with finite oxygen (O2) to forage underwater. Studies have shown that some diving mammals exhibit changes in the metabolic phenotype of locomotory muscles compared with non-divers, but the pervasiveness of such changes across diving animals is unclear, particularly among diving birds. Here, we examined whether changes in muscle phenotype and mitochondrial abundance are associated with dive capacity across 17 species of ducks from three distinct evolutionary clades (tribes) in the subfamily Anatinae: the longest diving sea ducks, the mid-tier diving pochards and the non-diving dabblers. In the gastrocnemius (the primary swimming and diving muscle), mitochondrial volume density in both oxidative and glycolytic fiber types was 70% and 30% higher in sea ducks compared with dabblers, respectively. These differences were associated with preferential proliferation of the subsarcolemmal subfraction, the mitochondria adjacent to the cell membrane and nearest to capillaries, relative to the intermyofibrillar subfraction. Capillary density and capillary-to-fiber ratio were positively correlated with mitochondrial volume density, with no variation in the density of oxidative fiber types across tribes. In the pectoralis, sea ducks had greater abundance of oxidative fiber types than dabblers, whereas pochards were intermediate between the two. These data suggest that skeletal muscles of sea ducks have a heightened capacity for aerobic metabolism and an enhanced ability to utilize O2 stores in the blood and muscle while diving.
Collapse
Affiliation(s)
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Kevin G McCracken
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Wu DY, Han XZ, Li T, Sun BJ, Qin XY. How incubation temperature affects hatchling performance in reptiles: an integrative insight based on plasticity in metabolic enzyme. Curr Zool 2024; 70:195-203. [PMID: 38726248 PMCID: PMC11078047 DOI: 10.1093/cz/zoad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/29/2023] [Indexed: 05/12/2024] Open
Abstract
Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming. The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of oviparous species, but the physiological and biochemical basis of this developmental plasticity is largely unknown. In this study, we incubated eggs of the turtle Pelodiscus sinensis at low (24 °C), medium (28 °C), and high (32 °C) temperatures, and evaluated the effects of developmental temperature on offspring fitness, and metabolic enzymes in the neck and limb muscles of hatchlings. The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance (righting response and swimming capacity) and higher activities of metabolic enzymes (hexokinase, HK; lactate dehydrogenase, LDH) than hatchlings from the eggs incubated at high or low temperatures. In addition, the swimming speed and righting response were significantly correlated with the HK activities in limb (swimming speed) and neck (righting response) muscles, suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes. Integrating the fitness-related performance and the activities of metabolic enzymes, we predict that the P. sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32 °C.
Collapse
Affiliation(s)
- Dan-Yang Wu
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing-Zhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Yan Qin
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
7
|
Garrett EJ, Prasad SK, Schweizer RM, McClelland GB, Scott GR. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2024; 326:R297-R310. [PMID: 38372126 PMCID: PMC11283899 DOI: 10.1152/ajpregu.00206.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), β-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.
Collapse
Affiliation(s)
- Emily J Garrett
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Srikripa K Prasad
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States
- United States Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, Utah, United States
| | | | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Graham AM, Lavretsky P, Wilson RE, McCracken KG. High-altitude adaptation is accompanied by strong signatures of purifying selection in the mitochondrial genomes of three Andean waterfowl. PLoS One 2024; 19:e0294842. [PMID: 38170710 PMCID: PMC10763953 DOI: 10.1371/journal.pone.0294842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Evidence from a variety of organisms points to convergent evolution on the mitochondria associated with a physiological response to oxygen deprivation or temperature stress, including mechanisms for high-altitude adaptation. Here, we examine whether demography and/or selection explains standing mitogenome nucleotide diversity in high-altitude adapted populations of three Andean waterfowl species: yellow-billed pintail (Anas georgica), speckled teal (Anas flavirostris), and cinnamon teal (Spatula cyanoptera). We compared a total of 60 mitogenomes from each of these three duck species (n = 20 per species) across low and high altitudes and tested whether part(s) or all of the mitogenome exhibited expected signatures of purifying selection within the high-altitude populations of these species. Historical effective population sizes (Ne) were inferred to be similar between high- and low-altitude populations of each species, suggesting that selection rather than genetic drift best explains the reduced genetic variation found in mitochondrial genes of high-altitude populations compared to low-altitude populations of the same species. Specifically, we provide evidence that establishment of these three Andean waterfowl species in the high-altitude environment, coincided at least in part with a persistent pattern of negative purifying selection acting on oxidative phosphorylation (OXPHOS) function of the mitochondria. Our results further reveal that the extent of gene-specific purifying selection has been greatest in the speckled teal, the species with the longest history of high-altitude occupancy.
Collapse
Affiliation(s)
- Allie M. Graham
- Eccles Institute for Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States of America
| | - Robert E. Wilson
- School of Natural Resources and Nebraska State Museum, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Kevin G. McCracken
- Department of Biology, University of Miami, Coral Gables, FL, United States of America
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States of America
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| |
Collapse
|
9
|
Luzuriaga-Neira N, Ennis K, Moens MA, Leon J, Reyes N, Luzuriaga-Neira A, Rau JR, Rojas-VeraPinto R. The Andean Ibis ( Theristicus branickii) in South America: potential distribution, presence in protected areas and anthropic threats. PeerJ 2023; 11:e16533. [PMID: 38099301 PMCID: PMC10720468 DOI: 10.7717/peerj.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
The avifauna of South America is one of the most widely studied groups of vertebrates. However, certain species, such as the Andean Ibis (Theristicus branickii), have received limited attention regarding their ecological patterns, biology, current distribution, and environmental requirements. This study analyzed observation data from the Global Biodiversity Information Facility (GBIF) on the Andean Ibis in four countries to identify and understand critical variables that determine the species' presence, assess the proportion of its habitat within protected areas and identify possible threats to the species. Additionally, this study considered environmental and ecological variables to model ecological niches using the maximum entropy approach in MaxEnt to map the suitable habitat of the species. The findings revealed the extent of suitable Andean Ibis habitats in Ecuador, Peru, Bolivia and Chile. The variables that most determined the presence of the species were: altitude (36.57%), distance to lakes (23.29%) and ecological isothermality (13.34%). The distribution area of the Andean Ibis totaled 300,095.00 km2, spanning both sides of the Andean mountains range. Human activities have left a significant impact on the Andean Ibis habitat, with 48% of this area impacted by the human footprint and only 10% of the territory falling within protected areas designated by the respective countries. The results of this study show that the Andean Ibis presents characteristics of a specialist species due to its adaptation to the climate conditions of the plateau and highlands, including low temperatures, herbaceous vegetation and the presence of water bodies. The species is distributed in disconnected Andean landscape areas, whose functionality could be compromised by increased human activities. Complementary studies will be necessary to understand the ecological role and effectiveness of protected areas for conserving the species.
Collapse
Affiliation(s)
- Nivia Luzuriaga-Neira
- Unidad de Estudios de la Vida Silvestre-Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| | - Keenan Ennis
- School of Natural Resources, Knoxville College, Knoxville, TN, United States of America
| | | | - Jose Leon
- Fundación de Conservación Jocotoco, Quito, Pichincha, Ecuador
| | - Nathaly Reyes
- Unidad de Estudios de la Vida Silvestre-Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito, Pichincha, Ecuador
| | - Agusto Luzuriaga-Neira
- Department of Ornithology, American Museum of Natural History, New York, NY, United States of America
- Biology Department, University of Nevada - Reno, Reno, NV, United States of America
| | - Jaime R. Rau
- Laboratorio de Ecología, Departamento de Ciencias Biológicas & Biodiversidad, Universidad de los Lagos, Osorno, Chile
| | | |
Collapse
|
10
|
Palacios C, Wang P, Wang N, Brown MA, Capatosto L, Du J, Jiang J, Zhang Q, Dahal N, Lamichhaney S. Genomic Variation, Population History, and Long-Term Genetic Adaptation to High Altitudes in Tibetan Partridge (Perdix hodgsoniae). Mol Biol Evol 2023; 40:msad214. [PMID: 37768198 PMCID: PMC10583571 DOI: 10.1093/molbev/msad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Species residing across elevational gradients display adaptations in response to environmental changes such as oxygen availability, ultraviolet radiation, and temperature. Here, we study genomic variation, gene expression, and long-term adaptation in Tibetan Partridge (Perdix hodgsoniae) populations residing across the elevational gradient of the Tibetan Plateau. We generated a high-quality draft genome and used it to carry out downstream population genomic and transcriptomic analysis. The P. hodgsoniae populations residing across various elevations were genetically distinct, and their phylogenetic clustering was consistent with their geographic distribution. We identified possible evidence of gene flow between populations residing in <3,000 and >4,200 m elevation that is consistent with known habitat expansion of high-altitude populations of P. hodgsoniae to a lower elevation. We identified a 60 kb haplotype encompassing the Estrogen Receptor 1 (ESR1) gene, showing strong genetic divergence between populations of P. hodgsoniae. We identified six single nucleotide polymorphisms within the ESR1 gene fixed for derived alleles in high-altitude populations that are strongly conserved across vertebrates. We also compared blood transcriptome profiles and identified differentially expressed genes (such as GAPDH, LDHA, and ALDOC) that correlated with differences in altitude among populations of P. hodgsoniae. These candidate genes from population genomics and transcriptomics analysis were enriched for neutrophil degranulation and glycolysis pathways, which are known to respond to hypoxia and hence may contribute to long-term adaptation to high altitudes in P. hodgsoniae. Our results highlight Tibetan Partridges as a useful model to study molecular mechanisms underlying long-term adaptation to high altitudes.
Collapse
Affiliation(s)
- Catalina Palacios
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Nan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Megan A Brown
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lukas Capatosto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jiahu Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingze Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Nishma Dahal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
11
|
Schell ER, McCracken KG, Scott GR, White J, Lavretsky P, Dawson NJ. Consistent changes in muscle metabolism underlie dive performance across multiple lineages of diving ducks. Proc Biol Sci 2023; 290:20231466. [PMID: 37752838 PMCID: PMC10523079 DOI: 10.1098/rspb.2023.1466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Diving animals must sustain high activity with limited O2 stores to successfully capture prey. Studies suggest that increasing body O2 stores supports breath-hold diving, but less is known about metabolic specializations that underlie underwater locomotion. We measured maximal activities of 10 key enzymes in locomotory muscles (gastrocnemius and pectoralis) to identify biochemical changes associated with diving in pathways of oxidative and substrate-level phosphorylation and compared them across three groups of ducks-the longest diving sea ducks (eight spp.), the mid-tier diving pochards (three spp.) and the non-diving dabblers (five spp.). Relative to dabblers, both diving groups had increased activities of succinate dehydrogenase and cytochrome c oxidase, and sea ducks further showed increases in citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HOAD). Both diving groups had relative decreases in capacity for anaerobic metabolism (lower ratio of lactate dehydrogenase to CS), with sea ducks also showing a greater capacity for oxidative phosphorylation and lipid oxidation (lower ratio of pyruvate kinase to CS, higher ratio of HOAD to hexokinase). These data suggest that the locomotory muscles of diving ducks are specialized for sustaining high rates of aerobic metabolism, emphasizing the importance of body O2 stores for dive performance in these species.
Collapse
Affiliation(s)
| | - Kevin G. McCracken
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Jeff White
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX 79968, USA
| | - Neal J. Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Williamson JL, Linck EB, Bautista E, Smiley A, McGuire JA, Dudley R, Witt CC. Hummingbird blood traits track oxygen availability across space and time. Ecol Lett 2023. [PMID: 37178017 DOI: 10.1111/ele.14235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Predictable trait variation across environments suggests shared adaptive responses via repeated genetic evolution, phenotypic plasticity or both. Matching of trait-environment associations at phylogenetic and individual scales implies consistency between these processes. Alternatively, mismatch implies that evolutionary divergence has changed the rules of trait-environment covariation. Here we tested whether species adaptation alters elevational variation in blood traits. We measured blood for 1217 Andean hummingbirds of 77 species across a 4600-m elevational gradient. Unexpectedly, elevational variation in haemoglobin concentration ([Hb]) was scale independent, suggesting that physics of gas exchange, rather than species differences, determines responses to changing oxygen pressure. However, mechanisms of [Hb] adjustment did show signals of species adaptation: Species at either low or high elevations adjusted cell size, whereas species at mid-elevations adjusted cell number. This elevational variation in red blood cell number versus size suggests that genetic adaptation to high altitude has changed how these traits respond to shifts in oxygen availability.
Collapse
Affiliation(s)
- Jessie L Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell University Museum of Vertebrates, Cornell University, Ithaca, New York, USA
| | - Ethan B Linck
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Emil Bautista
- Centro de Ornitología y Biodiversidad (CORBIDI), Lima, Peru
| | - Ashley Smiley
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Robert Dudley
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Salmón P, Millet C, Selman C, Monaghan P, Dawson NJ. Tissue-specific reductions in mitochondrial efficiency and increased ROS release rates during ageing in zebra finches, Taeniopygia guttata. GeroScience 2022; 45:265-276. [PMID: 35986126 PMCID: PMC9886749 DOI: 10.1007/s11357-022-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative damage have long been suggested as critically important mechanisms underlying the ageing process in animals. However, conflicting data exist on whether this involves increased production of mitochondrial reactive oxygen species (ROS) during ageing. We employed high-resolution respirometry and fluorometry on flight muscle (pectoralis major) and liver mitochondria to simultaneously examine mitochondrial function and ROS (H2O2) release rates in young (3 months) and old (4 years) zebra finches (Taeniopygia guttata). Respiratory capacities for oxidative phosphorylation did not differ between the two age groups in either tissue. Respiratory control ratios (RCR) of liver mitochondria also did not differ between the age classes. However, RCR in muscle mitochondria was 55% lower in old relative to young birds, suggesting that muscle mitochondria in older individuals are less efficient. Interestingly, this observed reduction in muscle RCR was driven almost entirely by higher mitochondrial LEAK-state respiration. Maximum mitochondrial ROS release rates were found to be greater in both flight muscle (1.3-fold) and the liver (1.9-fold) of old birds. However, while maximum ROS (H2O2) release rates from mitochondria increased with age across both liver and muscle tissues, the liver demonstrated a proportionally greater age-related increase in ROS release than muscle. This difference in age-related increases in ROS release rates between muscle and liver tissues may be due to increased mitochondrial leakiness in the muscle, but not the liver, of older birds. This suggests that age-related changes in cellular function seem to occur in a tissue-specific manner in zebra finches, with flight muscle exhibiting signs of minimising age-related increase in ROS release, potentially to reduce damage to this crucial tissue in older individuals.
Collapse
Affiliation(s)
- Pablo Salmón
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - Caroline Millet
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Neal J. Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| |
Collapse
|
14
|
Sharma V, Varshney R, Sethy NK. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum Genomics 2022; 16:21. [PMID: 35841113 PMCID: PMC9287971 DOI: 10.1186/s40246-022-00395-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Both genomics- and proteomics-based investigations have identified several essential genes, proteins, and pathways that may facilitate human adaptive genotype/phenotype in a population-specific manner. This comprehensive review provides an up-to-date list of genes and proteins identified for human adaptive responses to high altitudes. Genomics studies for indigenous high-altitude populations like Tibetans, Andeans, Ethiopians, and Sherpas have identified 169 genes under positive natural selection. Similarly, global proteomics studies have identified 258 proteins (± 1.2-fold or more) for Tibetan, Sherpa, and Ladakhi highlanders. The primary biological processes identified for genetic signatures include hypoxia-inducible factor (HIF)-mediated oxygen sensing, angiogenesis, and erythropoiesis. In contrast, major biological processes identified for proteomics signatures include 14–3-3 mediated sirtuin signaling, integrin-linked kinase (ILK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and integrin signaling. Comparing genetic and protein signatures, we identified 7 common genes/proteins (HBB/hemoglobin subunit beta, TF/serotransferrin, ANGPTL4/angiopoietin-related protein 4, CDC42/cell division control protein 42 homolog, GC/vitamin D-binding protein, IGFBP1/insulin-like growth factor-binding protein 1, and IGFBP2/insulin-like growth factor-binding protein 2) involved in crucial molecular functions like IGF-1 signaling, LXR/RXR activation, ferroptosis signaling, iron homeostasis signaling and regulation of cell cycle. Our combined multi-omics analysis identifies common molecular targets and pathways for human adaptation to high altitude. These observations further corroborate convergent positive selection of hypoxia-responsive molecular pathways in humans and advocate using multi-omics techniques for deciphering human adaptive responses to high altitude.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
15
|
Dawson NJ, Scott GR. Adaptive increases in respiratory capacity and O 2 affinity of subsarcolemmal mitochondria from skeletal muscle of high-altitude deer mice. FASEB J 2022; 36:e22391. [PMID: 35661419 DOI: 10.1096/fj.202200219r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Aerobic energy demands have led to the evolution of complex mitochondrial reticula in highly oxidative muscles, but the extent to which metabolic challenges can be met with adaptive changes in physiology of specific mitochondrial fractions remains unresolved. We examined mitochondrial mechanisms supporting adaptive increases in aerobic performance in deer mice (Peromyscus maniculatus) adapted to the hypoxic environment at high altitude. High-altitude and low-altitude mice were born and raised in captivity, and exposed as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 weeks). Subsarcolemmal and intermyofibrillar mitochondria were isolated from the gastrocnemius, and a comprehensive substrate titration protocol was used to examine mitochondrial physiology and O2 kinetics by high-resolution respirometry and fluorometry. High-altitude mice had greater yield, respiratory capacity for oxidative phosphorylation, and O2 affinity (lower P50 ) of subsarcolemmal mitochondria compared to low-altitude mice across environments, but there were no species difference in these traits in intermyofibrillar mitochondria. High-altitude mice also had greater capacities of complex II relative to complexes I + II and higher succinate dehydrogenase activities in both mitochondrial fractions. Exposure to chronic hypoxia reduced reactive oxygen species (ROS) emission in high-altitude mice but not in low-altitude mice. Our findings suggest that functional changes in subsarcolemmal mitochondria contribute to improving aerobic performance in hypoxia in high-altitude deer mice. Therefore, physiological variation in specific mitochondrial fractions can help overcome the metabolic challenges of life at high altitude.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Cheng Y, Miller MJ, Zhang D, Xiong Y, Hao Y, Jia C, Cai T, Li SH, Johansson US, Liu Y, Chang Y, Song G, Qu Y, Lei F. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proc Natl Acad Sci U S A 2021; 118:e2023918118. [PMID: 34873033 PMCID: PMC8685689 DOI: 10.1073/pnas.2023918118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 12/01/2022] Open
Abstract
Parallel evolution can be expected among closely related taxa exposed to similar selective pressures. However, parallelism is typically stronger at the phenotypic level, while genetic solutions to achieve these phenotypic similarities may differ. For polygenic traits, the availability of standing genetic variation (i.e., heterozygosity) may influence such genetic nonparallelism. Here, we examine the extent to which high-elevation adaptation is parallel-and whether the level of parallelism is affected by heterozygosity-by analyzing genomes of 19 Paridae species distributed across East Asia with a dramatic east-west elevation gradient. We find that western highlands endemic parids have consistently lower levels of heterozygosity-likely the result of late-Pleistocene demographic contraction-than do parids found exclusively in eastern lowlands, which remained unglaciated during the late Pleistocene. Three widespread species (east to west) have high levels of heterozygosity similar to that observed in eastern species, although their western populations are less variable than eastern ones. Comparing genomic responses to extreme environments of the Qinghai-Tibet Plateau, we find that the most differentiated genomic regions between each high-elevation taxon and its low-elevation relative are significantly enriched for genes potentially related to the oxygen transport cascade and/or thermogenesis. Despite no parallelism at particular genes, high similarity in gene function is found among comparisons. Furthermore, parallelism is not higher in more heterozygous widespread parids than in highland endemics. Thus, in East Asian parids, parallel functional response to extreme elevation appears to rely on different genes, with differences in heterozygosity having no effect on the degree of genetic parallelism.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthew J Miller
- Reneco International Wildlife Consultants, LLC, Abu Dhabi, UAE
- University of Alaska Museum, University of Alaska Fairbanks, AK
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianlong Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Hsien Li
- Department of Life Sciences, National Taiwan Normal University, Taipei, 116, Taiwan, China
| | - Ulf S Johansson
- Department of Zoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
17
|
Soulsbury CD, Dobson J, Deeming DC, Minias P. Energetic Lifestyle Drives Size and Shape of Avian Erythrocytes. Integr Comp Biol 2021; 62:71-80. [PMID: 34581789 PMCID: PMC9375138 DOI: 10.1093/icb/icab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The size and shape of red blood cells (erythrocytes) is determined by key life history strategies in vertebrates. They have a fundamental role to deliver oxygen to tissues, and their ability to do so is shaped by the tissue's need and their shape. Despite considerable interest in how other components of blood are shaped by ecology and life history, few studies have considered erythrocytes themselves. We tested how erythrocyte size and shape varied in relation to energetically demanding activities using a dataset of 631 bird species. We found that in general, birds undergoing greater activities such as long distance migration had smaller and more elongated cells, while those with greater male-male competition had smaller and rounder cells. Smaller, more elongated erythrocytes allow more rapid oxygenation/deoxygenation and support greater aerobic activity. The rounder erythrocytes found in species with strong male–male competition may stem from younger erythrocytes deriving from androgen-induced erythropoiesis rates. Finally, diving species of bird had larger erythrocytes, indicating that erythrocytes are acting as a vital oxygen store. In summary, erythrocyte size and shape in birds are driven by the need to deliver oxygen during energetically costly activities.
Collapse
Affiliation(s)
- Carl D Soulsbury
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS
| | - Jessica Dobson
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS
| | - D Charles Deeming
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
18
|
Závorka L, Crespel A, Dawson NJ, Papatheodoulou M, Killen SS, Kainz MJ. Climate change‐induced deprivation of dietary essential fatty acids can reduce growth and mitochondrial efficiency of wild juvenile salmon. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem Research Lunz am See Austria
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Amelie Crespel
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Neal J. Dawson
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Magdalene Papatheodoulou
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Shaun S. Killen
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Martin J. Kainz
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem Research Lunz am See Austria
| |
Collapse
|