1
|
Erkamp NA, Farag M, Qiu Y, Qian D, Sneideris T, Wu T, Welsh TJ, Ausserwöger H, Krug TJ, Chauhan G, Weitz DA, Lew MD, Knowles TPJ, Pappu RV. Differential interactions determine anisotropies at interfaces of RNA-based biomolecular condensates. Nat Commun 2025; 16:3463. [PMID: 40216775 PMCID: PMC11992113 DOI: 10.1038/s41467-025-58736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Biomolecular condensates form via macromolecular phase separation. Here, we report results from our characterization of synthetic condensates formed by phase separation of mixtures comprising two types of RNA molecules and the biocompatible polymer polyethylene glycol. Purine-rich RNAs are scaffolds that drive phase separation via heterotypic interactions. Conversely, pyrimidine-rich RNA molecules are adsorbents defined by weaker heterotypic interactions. They adsorb onto and wet the interfaces of coexisting phases formed by scaffolds. Lattice-based simulations reproduce the phenomenology observed in experiments and these simulations predict that scaffolds and adsorbents have different non-random orientational preferences at interfaces. Dynamics at interfaces were probed using single-molecule tracking of fluorogenic probes bound to RNA molecules. These experiments revealed dynamical anisotropy at interfaces whereby motions of probe molecules parallel to the interface are faster than motions perpendicular to the interface. Taken together, our findings have broad implications for designing synthetic condensates with tunable interfacial properties.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mina Farag
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuanxin Qiu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical and Systems Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Tingting Wu
- Department of Electrical and Systems Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK
| | - Tommy J Krug
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Gaurav Chauhan
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Chemical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Matthew D Lew
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Electrical and Systems Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Rohit V Pappu
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602714. [PMID: 40161774 PMCID: PMC11952329 DOI: 10.1101/2024.07.09.602714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
Collapse
Affiliation(s)
- Melissa A. Tosiano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. PLoS Genet 2025; 21:e1011632. [PMID: 40096135 PMCID: PMC11975087 DOI: 10.1371/journal.pgen.1011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 04/07/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
Collapse
Affiliation(s)
- Melissa A. Tosiano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Cooper KF. Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast. Autophagy 2025; 21:500-512. [PMID: 39757721 PMCID: PMC11849947 DOI: 10.1080/15548627.2024.2447207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025] Open
Abstract
Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, Saccharomyces cerevisiae is a valuable model organism for deciphering molecular details that define macroautophagy pathways. In yeast, macroautophagic pathways fall into two subclasses: selective and nonselective (bulk) autophagy. Bulk autophagy is predominantly upregulated following TORC1 inhibition, triggered by nutrient stress, and degrades superfluous random cytosolic proteins and organelles. In contrast, selective autophagy pathways maintain cellular homeostasis when TORC1 is active by degrading damaged organelles and dysfunctional proteins. Here, selective autophagy receptors mediate cargo delivery to the vacuole. Now, two groups have discovered a new hybrid autophagy mechanism, coined cargo hitchhiking autophagy (CHA), that uses autophagic receptor proteins to deliver selected cargo to phagophores built in response to nutrient stress for the random destruction of cytosolic contents. In CHA, various autophagic receptors link their cargos to lipidated Atg8, located on growing phagophores. In addition, the sorting nexin heterodimer Snx4-Atg20 assists in the degradation of cargo during CHA, possibly by aiding the delivery of cytoplasmic cargos to phagophores and/or by delaying the closure of expanding phagophores. This review will outline this new mechanism, also known as Snx4-assisted autophagy, that degrades an assortment of cargos in yeast, including transcription factors, glycogen, and a subset of ribosomal proteins.
Collapse
Affiliation(s)
- Katrina F. Cooper
- Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| |
Collapse
|
5
|
Vashishtha S, Sabari BR. Disordered Regions of Condensate-promoting Proteins Have Distinct Molecular Signatures Associated with Cellular Function. J Mol Biol 2025; 437:168953. [PMID: 39826710 DOI: 10.1016/j.jmb.2025.168953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Disordered regions of proteins play crucial roles in cellular functions through diverse mechanisms. Some disordered regions function by promoting the formation of biomolecular condensates through dynamic multivalent interactions. While many have assumed that interactions among these condensate-promoting disordered regions are non-specific, recent studies have shown that distinct sequence compositions and patterning lead to specific condensate compositions associated with cellular function. Despite in-depth characterization of several key examples, the full chemical diversity of condensate-promoting disordered regions has not been surveyed. Here, we define a list of disordered regions of condensate-promoting proteins to survey the relationship between sequence and function. We find that these disordered regions show amino acid biases associated with different cellular functions. These amino acid biases are evolutionarily conserved in the absence of positional sequence conservation. Overall, our analysis highlights the relationship between sequence features and function for condensate-promoting disordered regions. This analysis suggests that molecular signatures encoded within disordered regions could impart functional specificity.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Wijegunawardana D, Nayak A, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Dev Cell 2025; 60:253-269.e5. [PMID: 39419034 DOI: 10.1016/j.devcel.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43 kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons in vivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.
Collapse
Affiliation(s)
- Denethi Wijegunawardana
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sonali S Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Neha Venkatesh
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Holehouse AS, Alberti S. Molecular determinants of condensate composition. Mol Cell 2025; 85:290-308. [PMID: 39824169 PMCID: PMC11750178 DOI: 10.1016/j.molcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Zhou Y, Ćorović M, Hoch-Kraft P, Meiser N, Mesitov M, Körtel N, Back H, Naarmann-de Vries IS, Katti K, Obrdlík A, Busch A, Dieterich C, Vaňáčová Š, Hengesbach M, Zarnack K, König J. m6A sites in the coding region trigger translation-dependent mRNA decay. Mol Cell 2024; 84:4576-4593.e12. [PMID: 39577428 DOI: 10.1016/j.molcel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
N6-Methyladenosine (m6A) is the predominant internal RNA modification in eukaryotic messenger RNAs (mRNAs) and plays a crucial role in mRNA stability. Here, using human cells, we reveal that m6A sites in the coding sequence (CDS) trigger CDS-m6A decay (CMD), a pathway that is distinct from previously reported m6A-dependent degradation mechanisms. Importantly, CDS m6A sites act considerably faster and more efficiently than those in the 3' untranslated region, which to date have been considered the main effectors. Mechanistically, CMD depends on translation, whereby m6A deposition in the CDS triggers ribosome pausing and transcript destabilization. The subsequent decay involves the translocation of the CMD target transcripts to processing bodies (P-bodies) and recruitment of the m6A reader protein YT521-B homology domain family protein 2 (YTHDF2). Our findings highlight CMD as a previously unknown pathway, which is particularly important for controlling the expression of developmental regulators and retrogenes.
Collapse
Affiliation(s)
- You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Miona Ćorović
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany
| | | | - Nadine Körtel
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Hannah Back
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kritika Katti
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Aleš Obrdlík
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany; Institute for Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julian König
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
9
|
Ortiz-Rodríguez LA, Yassine H, Nandana V, Azaldegui CA, Cheng J, Schrader JM, Biteen JS. Stress Changes the Bacterial Biomolecular Condensate Material State and Shifts Function from mRNA Decay to Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623272. [PMID: 39605536 PMCID: PMC11601435 DOI: 10.1101/2024.11.12.623272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bacterial ribonucleoprotein bodies (BR-bodies) are dynamic biomolecular condensates that play a pivotal role in RNA metabolism. We investigated how BR-bodies significantly influence mRNA fate by transitioning between liquid- and solid-like states in response to stress. With a combination of single-molecule and bulk fluorescence microscopy, biochemical assays, and quantitative analyses, we determine that BR-bodies promote efficient mRNA decay in a liquid-like condensate during exponential growth. On the other hand, BR-bodies are repurposed from sites of mRNA decay to reservoirs for mRNA storage under stress, a functional change that is enabled by their transition to a more rigid state, marked by reduced internal dynamics, increased molecular density, and prolonged residence time of ribonuclease E. Furthermore, we manipulated ATP levels and translation rates and conclude that the accumulation of ribosome-depleted mRNA is a key factor driving these material state transitions, and that condensate maturation further contributes to this process. Upon nutrient replenishment, stationary-phase BR-bodies disassemble, releasing stored mRNAs for rapid translation, demonstrating that BR-body function is governed by a reversible mechanism for resource management. These findings reveal adaptive strategies by which bacteria regulate RNA metabolism through condensate-mediated control of mRNA decay and storage.
Collapse
|
10
|
Ambadi Thody S, Clements HD, Baniasadi H, Lyon AS, Sigman MS, Rosen MK. Small-molecule properties define partitioning into biomolecular condensates. Nat Chem 2024; 16:1794-1802. [PMID: 39271915 PMCID: PMC11527791 DOI: 10.1038/s41557-024-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates regulate cellular function by compartmentalizing molecules without a surrounding membrane. Condensate function arises from the specific exclusion or enrichment of molecules. Thus, understanding condensate composition is critical to characterizing condensate function. Whereas principles defining macromolecular composition have been described, understanding of small-molecule composition remains limited. Here we quantified the partitioning of ~1,700 biologically relevant small molecules into condensates composed of different macromolecules. Partitioning varied nearly a million-fold across compounds but was correlated among condensates, indicating that disparate condensates are physically similar. For one system, the enriched compounds did not generally bind macromolecules with high affinity under conditions where condensates do not form, suggesting that partitioning is not governed by site-specific interactions. Correspondingly, a machine learning model accurately predicts partitioning using only computed physicochemical features of the compounds, chiefly those related to solubility and hydrophobicity. These results suggest that a hydrophobic environment emerges upon condensate formation, driving the enrichment and exclusion of small molecules.
Collapse
Affiliation(s)
- Sabareesan Ambadi Thody
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Hanna D Clements
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamid Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew S Lyon
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
12
|
Dörig C, Marulli C, Peskett T, Volkmar N, Pantolini L, Studer G, Paleari C, Frommelt F, Schwede T, de Souza N, Barral Y, Picotti P. Global profiling of protein complex dynamics with an experimental library of protein interaction markers. Nat Biotechnol 2024:10.1038/s41587-024-02432-8. [PMID: 39415059 DOI: 10.1038/s41587-024-02432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Methods to systematically monitor protein complex dynamics are needed. We introduce serial ultrafiltration combined with limited proteolysis-coupled mass spectrometry (FLiP-MS), a structural proteomics workflow that generates a library of peptide markers specific to changes in PPIs by probing differences in protease susceptibility between complex-bound and monomeric forms of proteins. The library includes markers mapping to protein-binding interfaces and markers reporting on structural changes that accompany PPI changes. Integrating the marker library with LiP-MS data allows for global profiling of protein-protein interactions (PPIs) from unfractionated lysates. We apply FLiP-MS to Saccharomyces cerevisiae and probe changes in protein complex dynamics after DNA replication stress, identifying links between Spt-Ada-Gcn5 acetyltransferase activity and the assembly state of several complexes. FLiP-MS enables protein complex dynamics to be probed on any perturbation, proteome-wide, at high throughput, with peptide-level structural resolution and informing on occupancy of binding interfaces, thus providing both global and molecular views of a system under study.
Collapse
Affiliation(s)
- Christian Dörig
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cathy Marulli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Thomas Peskett
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Norbert Volkmar
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenzo Pantolini
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Camilla Paleari
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Frommelt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Netzer A, Baruch Leshem A, Veretnik S, Edelstein I, Lampel A. Regulation of Peptide Liquid-Liquid Phase Separation by Aromatic Amino Acid Composition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401665. [PMID: 38804888 DOI: 10.1002/smll.202401665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Membraneless organelles are cellular biomolecular condensates that are formed by liquid-liquid phase separation (LLPS) of proteins and nucleic acids. LLPS is driven by multiple weak attractive forces, including intermolecular interactions mediated by aromatic amino acids. Considering the contribution of π-electron bearing side chains to protein-RNA LLPS, systematically study sought to how the composition of aromatic amino acids affects the formation of heterotypic condensates and their physical properties. For this, a library of minimalistic peptide building blocks is designed containing varying number and compositions of aromatic amino acids. It is shown that the number of aromatics in the peptide sequence affect LLPS propensity, material properties and (bio)chemical stability of peptide/RNA heterotypic condensates. The findings shed light on the contribution of aromatics' composition to the formation of heterotypic condensates. These insights can be applied for regulation of condensate material properties and improvement of their (bio)chemical stability, for various biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Amit Netzer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shirel Veretnik
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ilan Edelstein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
14
|
Boyd-Shiwarski CR, Shiwarski DJ, Subramanya AR. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates. Physiology (Bethesda) 2024; 39:0. [PMID: 38624245 PMCID: PMC11460533 DOI: 10.1152/physiol.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel J Shiwarski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
15
|
Yao Z, Liu Y, Chen Q, Chen X, Zhu Z, Song S, Ma X, Yang P. The divergent effects of G3BP orthologs on human stress granule assembly imply a centric role for the core protein interaction network. Cell Rep 2024; 43:114617. [PMID: 39120973 DOI: 10.1016/j.celrep.2024.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.
Collapse
Affiliation(s)
- Zhiying Yao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yi Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qi Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoxin Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhenshuo Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peiguo Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Qian D, Ausserwoger H, Sneideris T, Farag M, Pappu RV, Knowles TPJ. Dominance analysis to assess solute contributions to multicomponent phase equilibria. Proc Natl Acad Sci U S A 2024; 121:e2407453121. [PMID: 39102550 PMCID: PMC11331137 DOI: 10.1073/pnas.2407453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments.
Collapse
Affiliation(s)
- Daoyuan Qian
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Hannes Ausserwoger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Tomas Sneideris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HECambridge, United Kingdom
| |
Collapse
|
17
|
Chen F, Jacobs WM. Emergence of Multiphase Condensates from a Limited Set of Chemical Building Blocks. J Chem Theory Comput 2024. [PMID: 39078082 DOI: 10.1021/acs.jctc.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Biomolecules composed of a limited set of chemical building blocks can colocalize into distinct, spatially segregated compartments known as biomolecular condensates. While many condensates are known to form spontaneously via phase separation, it has been unclear how immiscible condensates with precisely controlled molecular compositions assemble from a small number of chemical building blocks. We address this question by establishing a connection between the specificity of biomolecular interactions and the thermodynamic stability of coexisting condensates. By computing the minimum interaction specificity required to assemble condensates with target molecular compositions, we show how to design heteropolymer mixtures that produce compositionally complex condensates by using only a small number of monomer types. Our results provide insight into how compositional specificity arises in naturally occurring multicomponent condensates and demonstrate a rational algorithm for engineering complex artificial condensates from simple chemical building blocks.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Xie Y, Shu T, Liu T, Spindler MC, Mahamid J, Hocky GM, Gresham D, Holt LJ. Polysome collapse and RNA condensation fluidize the cytoplasm. Mol Cell 2024; 84:2698-2716.e9. [PMID: 39059370 PMCID: PMC11539954 DOI: 10.1016/j.molcel.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The cell interior is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cellular physiology. Cellular stress responses almost universally lead to inhibition of translation, resulting in polysome collapse and release of mRNA. The released mRNA molecules condense with RNA-binding proteins to form ribonucleoprotein (RNP) condensates known as processing bodies and stress granules. Here, we show that polysome collapse and condensation of RNA transiently fluidize the cytoplasm, and coarse-grained molecular dynamic simulations support this as a minimal mechanism for the observed biophysical changes. Increased mesoscale diffusivity correlates with the efficient formation of quality control bodies (Q-bodies), membraneless organelles that compartmentalize misfolded peptides during stress. Synthetic, light-induced RNA condensation also fluidizes the cytoplasm. Together, our study reveals a functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to enable efficient response of cells to stress conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marie-Christin Spindler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Glen M Hocky
- Department of Chemistry and Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, USA.
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Chen X, Seyboldt R, Sommer JU, Jülicher F, Harmon T. Droplet Differentiation by a Chemical Switch. PHYSICAL REVIEW LETTERS 2024; 133:028402. [PMID: 39073969 DOI: 10.1103/physrevlett.133.028402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
A fundamental question about biomolecular condensates is how distinct condensates can emerge from the interplay of different components. Here we present a minimal model of droplet differentiation where phase separated droplets demix into two types with different chemical modifications triggered by enzymatic reactions. We use numerical solutions to Cahn-Hilliard equations with chemical reactions and an effective droplet model to reveal the switchlike behavior. Our work shows how condensate identities in cells could result from competing enzymatic actions.
Collapse
Affiliation(s)
| | | | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung, Institut Theorie der Polymere, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Institute for Theoretical Physics, TU Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstrasse 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
20
|
Zhan W, Li Z, Zhang J, Liu Y, Liu G, Li B, Shen R, Jiang Y, Shang W, Gao S, Wu H, Wang Y, Chen W, Wang Z. Energy stress promotes P-bodies formation via lysine-63-linked polyubiquitination of HAX1. EMBO J 2024; 43:2759-2788. [PMID: 38769438 PMCID: PMC11217408 DOI: 10.1038/s44318-024-00120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.
Collapse
Affiliation(s)
- Wanqi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Zhiyang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yongfeng Liu
- Radiation Medicine Institute, The First Affiliated Hospital, ZhengZhou University, ZhengZhou, Henan, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Bingsong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Jinfeng Laboratory, Chongqing, China
| | - Rong Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ya'nan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
21
|
Rathnayaka-Mudiyanselage IW, Nandana V, Schrader JM. Proteomic composition of eukaryotic and bacterial RNA decay condensates suggests convergent evolution. Curr Opin Microbiol 2024; 79:102467. [PMID: 38569418 PMCID: PMC11162941 DOI: 10.1016/j.mib.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.
Collapse
Affiliation(s)
- I W Rathnayaka-Mudiyanselage
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA; Wayne State University, Department of Chemistry, Detroit, MI, USA
| | - V Nandana
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA
| | - J M Schrader
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA.
| |
Collapse
|
22
|
Musaev D, Abdelmessih M, Vejnar CE, Yartseva V, Weiss LA, Strayer EC, Takacs CM, Giraldez AJ. UPF1 regulates mRNA stability by sensing poorly translated coding sequences. Cell Rep 2024; 43:114074. [PMID: 38625794 PMCID: PMC11259039 DOI: 10.1016/j.celrep.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).
Collapse
Affiliation(s)
- Damir Musaev
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mario Abdelmessih
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; AstraZeneca, Waltham, MA 02451, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Kenai Therapeutics, San Diego, CA, USA
| | - Linnea A Weiss
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ethan C Strayer
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; University of New Haven, West Haven, CT 06516, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Cassani M, Seydoux G. P-body-like condensates in the germline. Semin Cell Dev Biol 2024; 157:24-32. [PMID: 37407370 PMCID: PMC10761593 DOI: 10.1016/j.semcdb.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
P-bodies are cytoplasmic condensates that accumulate low-translation mRNAs for temporary storage before translation or degradation. P-bodies have been best characterized in yeast and mammalian tissue culture cells. We describe here related condensates in the germline of animal models. Germline P-bodies have been reported at all stages of germline development from primordial germ cells to gametes. The activity of the universal germ cell fate regulator, Nanos, is linked to the mRNA decay function of P-bodies, and spatially-regulated condensation of P-body like condensates in embryos is required to localize mRNA regulators to primordial germ cells. In most cases, however, it is not known whether P-bodies represent functional compartments or non-functional condensation by-products that arise when ribonucleoprotein complexes saturate the cytoplasm. We speculate that the ubiquity of P-body-like condensates in germ cells reflects the strong reliance of the germline on cytoplasmic, rather than nuclear, mechanisms of gene regulation.
Collapse
Affiliation(s)
- Madeline Cassani
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
25
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
26
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
27
|
Nandana V, Rathnayaka-Mudiyanselage IW, Muthunayake NS, Hatami A, Mousseau CB, Ortiz-Rodríguez LA, Vaishnav J, Collins M, Gega A, Mallikaarachchi KS, Yassine H, Ghosh A, Biteen JS, Zhu Y, Champion MM, Childers WS, Schrader JM. The BR-body proteome contains a complex network of protein-protein and protein-RNA interactions. Cell Rep 2023; 42:113229. [PMID: 37815915 PMCID: PMC10842194 DOI: 10.1016/j.celrep.2023.113229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Bacterial ribonucleoprotein bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here, we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis. We find 111 BR-body-enriched proteins showing that BR-bodies are more complex than previously assumed. We identify five BR-body-enriched proteins that undergo RNA-dependent phase separation in vitro with a complex network of condensate mixing. We observe that some RNP condensates co-assemble with preferred directionality, suggesting that RNA may be trafficked through RNP condensates in an ordered manner to facilitate mRNA processing/decay, and that some BR-body-associated proteins have the capacity to dissolve the condensate. Altogether, these results suggest that a complex network of protein-protein and protein-RNA interactions controls BR-body phase separation and RNA processing.
Collapse
Affiliation(s)
- Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Imalka W Rathnayaka-Mudiyanselage
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | - Ali Hatami
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA
| | - C Bruce Mousseau
- Department of Chemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Jamuna Vaishnav
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA
| | - Michael Collins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Hadi Yassine
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Aishwarya Ghosh
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA
| | - Matthew M Champion
- Department of Chemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
28
|
Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023; 186:4737-4756. [PMID: 37890457 PMCID: PMC10617657 DOI: 10.1016/j.cell.2023.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
Ribonucleoprotein (RNP) granules are diverse membrane-less organelles that form through multivalent RNA-RNA, RNA-protein, and protein-protein interactions between RNPs. RNP granules are implicated in many aspects of RNA physiology, but in most cases their functions are poorly understood. RNP granules can be described through four key principles. First, RNP granules often arise because of the large size, high localized concentrations, and multivalent interactions of RNPs. Second, cells regulate RNP granule formation by multiple mechanisms including posttranslational modifications, protein chaperones, and RNA chaperones. Third, RNP granules impact cell physiology in multiple manners. Finally, dysregulation of RNP granules contributes to human diseases. Outstanding issues in the field remain, including determining the scale and molecular mechanisms of RNP granule function and how granule dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
29
|
Farag M, Borcherds WM, Bremer A, Mittag T, Pappu RV. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat Commun 2023; 14:5527. [PMID: 37684240 PMCID: PMC10491635 DOI: 10.1038/s41467-023-41274-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Prion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via phase separation coupled to percolation. Intracellular condensates often encompass numerous distinct proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA-binding proteins, hnRNPA1 and FUS. Using simulations and experiments, we find that 1:1 mixtures of A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own due to complementary electrostatic interactions. Tie line analysis reveals that stoichiometric ratios of different components and their sequence-encoded interactions contribute jointly to the driving forces for condensate formation. Simulations also show that the spatial organization of PLCDs within condensates is governed by relative strengths of homotypic versus heterotypic interactions. We uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins.
Collapse
Affiliation(s)
- Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Wade M Borcherds
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
30
|
Liu D, Riggi M, Lee HO, Currie SL, Goodsell DS, Iwasa JH, Rog O. Depicting a cellular space occupied by condensates. Mol Biol Cell 2023; 34:tp2. [PMID: 37590933 PMCID: PMC10551707 DOI: 10.1091/mbc.e22-11-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023] Open
Abstract
Condensates have emerged as a new way to understand how cells are organized, and have been invoked to play crucial roles in essentially all cellular processes. In this view, the cell is occupied by numerous assemblies, each composed of member proteins and nucleic acids that preferentially interact with each other. However, available visual representations of condensates fail to communicate the growing body of knowledge about how condensates form and function. The resulting focus on only a subset of the potential implications of condensates can skew interpretations of results and hinder the generation of new hypotheses. Here we summarize the discussion from a workshop that brought together cell biologists, visualization and computation specialists, and other experts who specialize in thinking about space and ways to represent it. We place the recent advances in condensate research in a historical perspective that describes evolving views of the cell; highlight different attributes of condensates that are not well-served by current visual conventions; and survey potential approaches to overcome these challenges. An important theme of these discussions is that the new understanding on the roles of condensates exposes broader challenges in visual representations that apply to cell biological research more generally.
Collapse
Affiliation(s)
- Daniel Liu
- Historisches Seminar, Abt. Wissenschaftsgeschichte, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | | | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Simon L. Currie
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - David S. Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | | | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
31
|
Wilby EL, Weil TT. Relating the Biogenesis and Function of P Bodies in Drosophila to Human Disease. Genes (Basel) 2023; 14:1675. [PMID: 37761815 PMCID: PMC10530015 DOI: 10.3390/genes14091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila has been a premier model organism for over a century and many discoveries in flies have furthered our understanding of human disease. Flies have been successfully applied to many aspects of health-based research spanning from behavioural addiction, to dysplasia, to RNA dysregulation and protein misfolding. Recently, Drosophila tissues have been used to study biomolecular condensates and their role in multicellular systems. Identified in a wide range of plant and animal species, biomolecular condensates are dynamic, non-membrane-bound sub-compartments that have been observed and characterised in the cytoplasm and nuclei of many cell types. Condensate biology has exciting research prospects because of their diverse roles within cells, links to disease, and potential for therapeutics. In this review, we will discuss processing bodies (P bodies), a conserved biomolecular condensate, with a particular interest in how Drosophila can be applied to advance our understanding of condensate biogenesis and their role in disease.
Collapse
Affiliation(s)
| | - Timothy T. Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
| |
Collapse
|
32
|
Rademacher DJ, Bello AI, May JP. CASC3 Biomolecular Condensates Restrict Turnip Crinkle Virus by Limiting Host Factor Availability. J Mol Biol 2023; 435:167956. [PMID: 36642157 PMCID: PMC10338645 DOI: 10.1016/j.jmb.2023.167956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The exon-junction complex (EJC) plays a role in post-transcriptional gene regulation and exerts antiviral activity towards several positive-strand RNA viruses. However, the spectrum of RNA viruses that are targeted by the EJC or the underlying mechanisms are not well understood. EJC components from Arabidopsis thaliana were screened for antiviral activity towards Turnip crinkle virus (TCV, Tombusviridae). Overexpression of the accessory EJC component CASC3 inhibited TCV accumulation > 10-fold in Nicotiana benthamiana while knock-down of endogenous CASC3 resulted in a > 4-fold increase in TCV accumulation. CASC3 forms cytoplasmic condensates and deletion of the conserved SELOR domain reduced condensate size 7-fold and significantly decreased antiviral activity towards TCV. Mass spectrometry of CASC3 complexes did not identify endogenous stress granule or P-body markers and CASC3 failed to co-localize with an aggresome-specific dye suggesting that CASC3 condensates are distinct from well-established membraneless compartments. Mass spectrometry and bimolecular fluorescence complementation assays revealed that CASC3 sequesters Heat shock protein 70 (Hsp70-1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), two host factors with roles in tombusvirus replication. Overexpression of Hsp70-1 or GAPDH reduced the antiviral activity of CASC3 2.1-fold and 2.8-fold, respectively, and suggests that CASC3 inhibits TCV by limiting host factor availability. Unrelated Tobacco mosaic virus (TMV) also depends on Hsp70-1 and CASC3 overexpression restricted TMV accumulation 4-fold and demonstrates that CASC3 antiviral activity is not TCV-specific. Like CASC3, Auxin response factor 19 (ARF19) forms poorly dynamic condensates but ARF19 overexpression failed to inhibit TCV accumulation and suggests that CASC3 has antiviral activities that are not ubiquitous among cytoplasmic condensates.
Collapse
Affiliation(s)
- Dana J Rademacher
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Abudu I Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
33
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
34
|
Xie Y, Liu T, Gresham D, Holt LJ. mRNA condensation fluidizes the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542963. [PMID: 37398029 PMCID: PMC10312499 DOI: 10.1101/2023.05.30.542963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The intracellular environment is packed with macromolecules of mesoscale size, and this crowded milieu significantly influences cell physiology. When exposed to stress, mRNAs released after translational arrest condense with RNA binding proteins, resulting in the formation of membraneless RNA protein (RNP) condensates known as processing bodies (P-bodies) and stress granules (SGs). However, the impact of the assembly of these condensates on the biophysical properties of the crowded cytoplasmic environment remains unclear. Here, we find that upon exposure to stress, polysome collapse and condensation of mRNAs increases mesoscale particle diffusivity in the cytoplasm. Increased mesoscale diffusivity is required for the efficient formation of Q-bodies, membraneless organelles that coordinate degradation of misfolded peptides that accumulate during stress. Additionally, we demonstrate that polysome collapse and stress granule formation has a similar effect in mammalian cells, fluidizing the cytoplasm at the mesoscale. We find that synthetic, light-induced RNA condensation is sufficient to fluidize the cytoplasm, demonstrating a causal effect of RNA condensation. Together, our work reveals a new functional role for stress-induced translation inhibition and formation of RNP condensates in modulating the physical properties of the cytoplasm to effectively respond to stressful conditions.
Collapse
Affiliation(s)
- Ying Xie
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
- Department of Biology, New York University, New York, New York, United States
| | - Tiewei Liu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
| | - David Gresham
- Department of Biology, New York University, New York, New York, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, New York, United States
| |
Collapse
|
35
|
Nandana V, Rathnayaka-Mudiyanselage IW, Muthunayak NS, Hatami A, Mousseau CB, Ortiz-Rodríguez LA, Vaishnav J, Collins M, Gega A, Mallikaarachchi KS, Yassine H, Ghosh A, Biteen JS, Zhu Y, Champion MM, Childers WS, Schrader JM. The BR-body proteome contains a complex network of protein-protein and protein-RNA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524314. [PMID: 36712072 PMCID: PMC9882336 DOI: 10.1101/2023.01.18.524314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacterial RNP bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis. We found 111 BR-body enriched proteins, including several RNA binding proteins, many of which are also recruited directly to in vitro reconstituted RNase E droplets, showing BR-bodies are more complex than previously assumed. While most BR-body enriched proteins that were tested cannot phase separate, we identified five that undergo RNA-dependent phase separation in vitro, showing other RNP condensates interface with BR-bodies. RNA degradosome protein clients are recruited more strongly to RNase E droplets than droplets of other RNP condensates, implying that client specificity is largely achieved through direct protein-protein interactions. We observe that some RNP condensates assemble with preferred directionally, suggesting that RNA may be trafficked through RNP condensates in an ordered manner to facilitate mRNA processing/decay, and that some BR-body associated proteins have the capacity to dissolve the condensate. Finally, we find that RNA dramatically stimulates the rate of RNase E phase separation in vitro, explaining the dissolution of BR-bodies after cellular mRNA depletion observed previously. Altogether, these results suggest that a complex network of protein-protein and protein-RNA interactions controls BR-body phase separation and RNA processing.
Collapse
Affiliation(s)
- V Nandana
- Wayne State University, Department of Biological Sciences, Detroit, MI
| | - I W Rathnayaka-Mudiyanselage
- Wayne State University, Department of Biological Sciences, Detroit, MI
- Wayne State University, Department of Chemistry, Detroit, MI
| | - N S Muthunayak
- Wayne State University, Department of Biological Sciences, Detroit, MI
| | - A Hatami
- Wayne State University, Department of Chemical Engineering and Materials Science, Detroit, MI
| | - C B Mousseau
- University of Notre Dame, Department of Chemistry, Notre Dame, IN
| | | | - J Vaishnav
- Wayne State University, Department of Chemical Engineering and Materials Science, Detroit, MI
| | - M Collins
- University of Pittsburgh, Department of Chemistry, Pittsburgh, PA
| | - A Gega
- Wayne State University, Department of Biological Sciences, Detroit, MI
| | | | - H Yassine
- Wayne State University, Department of Biological Sciences, Detroit, MI
| | - A Ghosh
- Wayne State University, Department of Biological Sciences, Detroit, MI
| | - J S Biteen
- University of Michigan, Department of Chemistry, Ann Arbor, MI
| | - Y Zhu
- Wayne State University, Department of Chemical Engineering and Materials Science, Detroit, MI
| | - M M Champion
- University of Notre Dame, Department of Chemistry, Notre Dame, IN
| | - W S Childers
- University of Pittsburgh, Department of Chemistry, Pittsburgh, PA
| | - J M Schrader
- Wayne State University, Department of Biological Sciences, Detroit, MI
| |
Collapse
|
36
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|
37
|
Moon S, Namkoong S. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023; 13:1027. [PMID: 37509063 PMCID: PMC10377603 DOI: 10.3390/biom13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
38
|
Abstract
Biomolecular condensates constitute a newly recognized form of spatial organization in living cells. Although many condensates are believed to form as a result of phase separation, the physicochemical properties that determine the phase behavior of heterogeneous biomolecular mixtures are only beginning to be explored. Theory and simulation provide invaluable tools for probing the relationship between molecular determinants, such as protein and RNA sequences, and the emergence of phase-separated condensates in such complex environments. This review covers recent advances in the prediction and computational design of biomolecular mixtures that phase-separate into many coexisting phases. First, we review efforts to understand the phase behavior of mixtures with hundreds or thousands of species using theoretical models and statistical approaches. We then describe progress in developing analytical theories and coarse-grained simulation models to predict multiphase condensates with the molecular detail required to make contact with biophysical experiments. We conclude by summarizing the challenges ahead for modeling the inhomogeneous spatial organization of biomolecular mixtures in living cells.
Collapse
Affiliation(s)
- William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
39
|
Bortoletto AS, Parchem RJ. KRAS Hijacks the miRNA Regulatory Pathway in Cancer. Cancer Res 2023; 83:1563-1572. [PMID: 36946612 PMCID: PMC10183808 DOI: 10.1158/0008-5472.can-23-0296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Extensive studies have focused on the misregulation of individual miRNAs in cancer. More recently, mutations in the miRNA biogenesis and processing machinery have been implicated in several malignancies. Such mutations can lead to global miRNA misregulation, which may promote many of the well-known hallmarks of cancer. Interestingly, recent evidence also suggests that oncogenic Kristen rat sarcoma viral oncogene homolog (KRAS) mutations act in part by modulating the activity of members of the miRNA regulatory pathway. Here, we highlight the vital role mutations in the miRNA core machinery play in promoting malignant transformation. Furthermore, we discuss how mutant KRAS can simultaneously impact multiple steps of miRNA processing and function to promote tumorigenesis. Although the ability of KRAS to hijack the miRNA regulatory pathway adds a layer of complexity to its oncogenic nature, it also provides a potential therapeutic avenue that has yet to be exploited in the clinic. Moreover, concurrent targeting of mutant KRAS and members of the miRNA core machinery represents a potential strategy for treating cancer.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Department of Neuroscience, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
41
|
Bharudin I, Caddick MX, Connell SR, Lamaudière MTF, Morozov IY. Disruption of Dcp1 leads to a Dcp2-dependent aberrant ribosome profiles in Aspergillus nidulans. Mol Microbiol 2023; 119:630-639. [PMID: 37024243 PMCID: PMC11497226 DOI: 10.1111/mmi.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.
Collapse
Affiliation(s)
- Izwan Bharudin
- Institute of Systems, Molecular and Integrative BiologyThe University of LiverpoolBiosciences Building, Crown StreetLiverpoolL69 7ZBUK
- Department of Biological Sciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangi43600 UKMSelangorMalaysia
| | - Mark X. Caddick
- Institute of Systems, Molecular and Integrative BiologyThe University of LiverpoolBiosciences Building, Crown StreetLiverpoolL69 7ZBUK
| | - Sean R. Connell
- BioCruces Bizkaia Health Research InstitutePlaza Cruces s/nBarakaldo48903Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48011Spain
| | - Matthew T. F. Lamaudière
- Coventry University, Centre for Health & Life SciencesAlison Gingell Building, 20 Whitefriars StreetCoventryCV1 5FBUK
| | - Igor Y. Morozov
- Coventry University, Centre for Health & Life SciencesAlison Gingell Building, 20 Whitefriars StreetCoventryCV1 5FBUK
| |
Collapse
|
42
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
43
|
Farag M, Borcherds WM, Bremer A, Mittag T, Pappu RV. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532828. [PMID: 36993212 PMCID: PMC10055064 DOI: 10.1101/2023.03.15.532828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Prion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via coupled associative and segregative phase transitions. We previously deciphered how evolutionarily conserved sequence features drive phase separation of PLCDs through homotypic interactions. However, condensates typically encompass a diverse mixture of proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA binding proteins namely, hnRNPA1 and FUS. We find that 1:1 mixtures of the A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own. The enhanced driving forces for phase separation of mixtures of A1-LCD and FUS-LCD arise partly from complementary electrostatic interactions between the two proteins. This complex coacervation-like mechanism adds to complementary interactions among aromatic residues. Further, tie line analysis shows that stoichiometric ratios of different components and their sequence-encoded interactions jointly contribute to the driving forces for condensate formation. These results highlight how expression levels might be tuned to regulate the driving forces for condensate formation in vivo . Simulations also show that the organization of PLCDs within condensates deviates from expectations based on random mixture models. Instead, spatial organization within condensates will reflect the relative strengths of homotypic versus heterotypic interactions. We also uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins. Overall, our findings emphasize the network-like organization of molecules within multicomponent condensates, and the distinctive, composition-specific conformational features of condensate interfaces. Significance Statement Biomolecular condensates are mixtures of different protein and nucleic acid molecules that organize biochemical reactions in cells. Much of what we know about how condensates form comes from studies of phase transitions of individual components of condensates. Here, we report results from studies of phase transitions of mixtures of archetypal protein domains that feature in distinct condensates. Our investigations, aided by a blend of computations and experiments, show that the phase transitions of mixtures are governed by a complex interplay of homotypic and heterotypic interactions. The results point to how expression levels of different protein components can be tuned in cells to modulate internal structures, compositions, and interfaces of condensates, thus affording distinct ways to control the functions of condensates.
Collapse
|
44
|
DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends Biochem Sci 2023; 48:244-258. [PMID: 36344372 DOI: 10.1016/j.tibs.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
RNA-dependent DEAD-box ATPases (DDXs) are emerging as major regulators of RNA-containing membrane-less organelles (MLOs). On the one hand, oligomerizing DDXs can promote condensate formation 'in cis', often using RNA as a scaffold. On the other hand, DDXs can disrupt RNA-RNA and RNA-protein interactions and thereby 'in trans' remodel the multivalent interactions underlying MLO formation. In this review, we discuss the best studied examples of DDXs modulating MLOs in cis and in trans. Further, we illustrate how this contributes to the dynamic assembly and turnover of MLOs which might help cells to modulate RNA sequestration and processing in a temporal and spatial manner.
Collapse
|
45
|
Staples MI, Frazer C, Fawzi NL, Bennett RJ. Phase separation in fungi. Nat Microbiol 2023; 8:375-386. [PMID: 36782025 PMCID: PMC10081517 DOI: 10.1038/s41564-022-01314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
Phase separation, in which macromolecules partition into a concentrated phase that is immiscible with a dilute phase, is involved with fundamental cellular processes across the tree of life. We review the principles of phase separation and highlight how it impacts diverse processes in the fungal kingdom. These include the regulation of autophagy, cell signalling pathways, transcriptional circuits and the establishment of asymmetry in fungal cells. We describe examples of stable, phase-separated assemblies including membraneless organelles such as the nucleolus as well as transient condensates that also arise through phase separation and enable cells to rapidly and reversibly respond to important environmental cues. We showcase how research into phase separation in model yeasts, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe, in conjunction with that in plant and human fungal pathogens, such as Ashbya gossypii and Candida albicans, is continuing to enrich our understanding of fundamental molecular processes.
Collapse
Affiliation(s)
- Mae I Staples
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
46
|
Wijegunawardana D, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43, drive ribonucleoprotein condensate transport dysfunction and suppress local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526372. [PMID: 36778347 PMCID: PMC9915502 DOI: 10.1101/2023.01.30.526372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered RNA metabolism is a common pathogenic mechanism linked to familial and sporadic Amyotrophic lateral sclerosis (ALS). ALS is characterized by mislocalization and aggregation of TDP-43, an RNA-binding protein (RBP) with multiple roles in post-transcriptional RNA processing. Recent studies have identified genetic interactions between TDP-43 and Ataxin-2, a polyglutamine (polyQ) RBP in which intermediate length polyQ expansions confer increased ALS risk. Here, we used live-cell confocal imaging, photobleaching and translation reporter assays to study the localization, transport dynamics and mRNA regulatory functions of TDP-43/Ataxin-2 in rodent primary cortical neurons. We show that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within ribonucleoprotein (RNP) condensates, and disrupt both its motility along the axon and liquid-like properties. Our data suggest that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, these results indicate Ataxin-2 polyQ expansions have detrimental effects on stability, localization, and translation of transcripts critical for axonal and cytoskeletal integrity, particularly important for motor neurons.
Collapse
|
47
|
Luca CD, Gupta A, Bortvin A. Ribonucleoprotein condensation driven by retrotransposon LINE-1 sustains RNA integrity and translation in mouse spermatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523313. [PMID: 36712121 PMCID: PMC9882024 DOI: 10.1101/2023.01.09.523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
|
48
|
Different states and the associated fates of biomolecular condensates. Essays Biochem 2022; 66:849-862. [PMID: 36350032 DOI: 10.1042/ebc20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Biomolecular condensates are functional assemblies, which can enrich intrinsically disordered proteins (IDPs) and/or RNAs at concentrations that are orders of magnitude higher than the bulk. In their native functional state, these structures can exist in multiple physical states including liquid-droplet phase, hydrogels, and solid assemblies. On the other hand, an aberrant transition between these physical states can result in loss-of-function or a gain-of-toxic-function. A prime example of such an aberrant transition is droplet aging—a phenomenon where some condensates may progressively transition into less dynamic material states at biologically relevant timescales. In this essay, we review structural and viscoelastic roots of aberrant liquid–solid transitions. Also, we highlight the different checkpoints and experimentally tunable handles, both active (ATP-dependent enzymes, post-translational modifications) and passive (colocalization of RNA molecules), that could alter the material state of assemblies.
Collapse
|
49
|
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21:841-862. [PMID: 35974095 PMCID: PMC9380678 DOI: 10.1038/s41573-022-00505-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.
Collapse
|
50
|
Bremer A, Posey AE, Borgia MB, Borcherds WM, Farag M, Pappu RV, Mittag T. Quantifying Coexistence Concentrations in Multi-Component Phase-Separating Systems Using Analytical HPLC. Biomolecules 2022; 12:biom12101480. [PMID: 36291688 PMCID: PMC9599810 DOI: 10.3390/biom12101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Over the last decade, evidence has accumulated to suggest that numerous instances of cellular compartmentalization can be explained by the phenomenon of phase separation. This is a process by which a macromolecular solution separates spontaneously into dense and dilute coexisting phases. Semi-quantitative, in vitro approaches for measuring phase boundaries have proven very useful in determining some key features of biomolecular condensates, but these methods often lack the precision necessary for generating quantitative models. Therefore, there is a clear need for techniques that allow quantitation of coexisting dilute and dense phase concentrations of phase-separating biomolecules, especially in systems with more than one type of macromolecule. Here, we report the design and deployment of analytical High-Performance Liquid Chromatography (HPLC) for in vitro separation and quantification of distinct biomolecules that allows us to measure dilute and dense phase concentrations needed to reconstruct coexistence curves in multicomponent mixtures. This approach is label-free, detects lower amounts of material than is accessible with classic UV-spectrophotometers, is applicable to a broad range of macromolecules of interest, is a semi-high-throughput technique, and if needed, the macromolecules can be recovered for further use. The approach promises to provide quantitative insights into the balance of homotypic and heterotypic interactions in multicomponent phase-separating systems.
Collapse
Affiliation(s)
- Anne Bremer
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ammon E. Posey
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Madeleine B. Borgia
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wade M. Borcherds
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Correspondence: (R.V.P.); (T.M.)
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Correspondence: (R.V.P.); (T.M.)
| |
Collapse
|