1
|
Teixeira GP, Rocha L, Faria RX. The impact of membrane receptors on modulating empathic pain. Neuropharmacology 2025; 274:110471. [PMID: 40254122 DOI: 10.1016/j.neuropharm.2025.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Humans can estimate each other's pain and provide adapted care to reduce it. Empathetic skills are crucial for caregivers involved in pain management; consequently, educational programs and theories have emphasized the positive role of empathy in reducing pain intensity. It is also widely assumed that if caregivers lack empathy, they will underestimate pain intensity in their patients, and this unempathetic attitude can negatively influence pain intensity perception. Empathy for pain is thought to activate the affective‒motivational components of the pain matrix, which includes the anterior insula, middle and anterior cingulate cortices and amygdala, as indicated by functional magnetic resonance imaging and other methodologies. Activity in this core neural network reflects the affective experience that activates our responses to pain and lays the neural foundation for our understanding of our own emotions and those of others. Additionally, a variety of factors can regulate the intensity of empathy for pain, such as oxytocin and vasopressin receptors. Therefore, we selectively review the molecular mechanisms by which membrane receptors modulate this pain modality.
Collapse
Affiliation(s)
- Guilherme Pegas Teixeira
- Laboratory for Evaluation and Promotion of Environmental Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Post-Graduation Program in Vegetal Biotechnology and Bioprocesses, Rio de Janeiro Federal University, Rio de Janeiro, CEP, 21941-902, Brazil.
| | - Leandro Rocha
- Laboratory of Natural Products Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Doutor Mário Viana 523, Santa Rosa, Niterói, CEP, 24241-002, Brazil; Post-Graduation Program in Vegetal Biotechnology and Bioprocesses, Rio de Janeiro Federal University, Rio de Janeiro, CEP, 21941-902, Brazil.
| | - Robson Xavier Faria
- Laboratory for Evaluation and Promotion of Environmental Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kujur PP, Ellappan S, Mondal AC. Neuronal and therapeutic perspectives on empathic pain: A rational insight. Neuropharmacology 2025; 272:110414. [PMID: 40081793 DOI: 10.1016/j.neuropharm.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/08/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Empathy is the capacity to experience and understand the feelings of others, thereby playing a key role in a person's mental well-being essentially by promoting kindness and a sense of belongingness to the group. However, too much empathy may result in psychological problems such as empathic distress, compassion fatigue, and burnout, collectively termed empathic pain. Several brain regions are implicated in processing empathic pain perception. Neuroimaging investigations bring in the context of brain structures involved in this emotional exchange, pointing toward the anterior insula (AI) and anterior cingulate cortex (ACC), indicating an overlap between the neural representation of direct and simulative pain. To discern such overlaps, therapeutic techniques for managing empathic pain require understanding different brain regions and their respective neural networks. At the moment, empathic pain is being treated using various methods, including pharmacological treatments such as antidepressants and psychological treatments such as mindfulness or meditation. For instance, researchers have been exploring the modulatory effects of neurotransmitters like serotonin, norepinephrine, and oxytocin on individuals' responses to empathic pain experience. Importantly, this review focuses on the specific brain parts and their unique roles in neurobiological pathways associated with emphatic pain and how shared neural networks play into available treatment options, suggesting possible future health benefits. Such an understanding of empathy can lead to more efficient management of types of care, focusing on enhancing social connections and mental well-being.
Collapse
Affiliation(s)
- Punit Prasanna Kujur
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences Jawaharlal Nehru University, New Delhi, 110067, India
| | - Surendar Ellappan
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Liu F, He Z, Wang Y. Neural mechanisms, influencing factors and interventions in empathic pain. Neuropharmacology 2025; 269:110349. [PMID: 39914620 DOI: 10.1016/j.neuropharm.2025.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Empathic pain, defined as the emotional resonance with the suffering of others, is akin to the observer's own experience of pain and is vital for building and sustaining positive interpersonal relationships. Despite its importance, the neural mechanism of empathic pain remains poorly understood. In this review, we integrated and summarized the currently knowledge on the neural networks associated with empathic pain, focusing on key brain regions such as the insula, anterior cingulate cortex (ACC), ventral tegmental area (VTA), nucleus accumbens (NAc), and locus coeruleus (LC)/norepinephrine (NE)-sympatho-adrenomedullar (LC/NE-SAM) system. We also reviewed the factors that affect empathic pain, including gender, personal beliefs, the intimacy of relationships, and the nature of interpersonal relationships, and highlighted the central role of the insula and ACC in the neural circuitry of empathy, the importance of the IC-BLA and ACC-NAc/VTA connections in modulating empathic pain, and the involvement of the LC/NE-SAM system in mediating pain empathy. We further discussed how gender significantly influences empathic pain, with women showing more intense emotional reactions to social distress than men. It also summarized the roles of personal pain history and empathy levels in modulating empathic responses. Furthermore, the review emphasized the impact of social factors such as the nature of interpersonal relationships and experiences of social exclusion on empathic pain. By providing a detailed exploration of the neural mechanisms and influencing factors of empathic pain, this review aims to establish a robust foundation for developing targeted therapeutic strategies and improving pain management in clinical settings.
Collapse
Affiliation(s)
- Furui Liu
- School of Pharmacy, Hangzhou Normal University, 311121, Zhejiang, China
| | - Ziwan He
- School of Pharmacy, Hangzhou Normal University, 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, 311121, Zhejiang, China.
| |
Collapse
|
4
|
Tian X, Zheng Z, Li R, Luo YJ, Feng C. Neural signatures underlying the effect of social structure on empathy and altruistic behaviors. Neuroimage 2025; 315:121267. [PMID: 40368058 DOI: 10.1016/j.neuroimage.2025.121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025] Open
Abstract
Humans inhabit complex social networks, monitoring social structures that encompass both direct and indirect relationships. However, previous research primarily focused on direct relationships, leaving the neural basis of how social structure influences socioemotional processes understudied. This study addressed this gap by investigating the neural pathways underlying the influence of social structure on empathy and altruistic behaviors. During fMRI scanning, participants viewed painful or non-painful stimulation to innocent strangers who shared preferences with targets who had either treated participants fairly or unfairly. Afterwards, participants rated the pain experienced by these innocents and shared money with other innocents. Participants showed reduced empathic and altruistic responses toward innocents resembling unfair (vs. fair) targets, accompanied by heightened activation in regions crucial for emotion regulation and mentalizing, such as the lateral and medial prefrontal cortex. Furthermore, whole-brain and local neural patterns in the anterior insula and premotor cortex robustly discriminated painful (but not non-painful) stimulation of different innocents, suggesting that social structure altered emotional and sensorimotor aspects of empathy. These alterations might be driven by top-down regulation, as indicated by heightened functional connectivity between the lateral prefrontal cortex and sensorimotor areas, as well as between the anterior insula and subgenual anterior cingulate cortex when witnessing the pain of innocents resembling fair (vs. unfair) targets. Together, our work is the first to uncover the neural underpinnings through which human empathy and altruistic behaviors are shaped by social structure beyond direct self-other relationships.
Collapse
Affiliation(s)
- Xia Tian
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixin Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Renhui Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Yue-Jia Luo
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China; Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Psychology, Chengdu Medical College, Chengdu 610500, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
5
|
Zhang X, Qing P, Liu Q, Liu C, Liu L, Gan X, Fu K, Lan C, Zhou X, Kendrick KM, Becker B, Zhao W. Neural Patterns of Social Pain in the Brain-Wide Representations Across Social Contexts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413795. [PMID: 40091697 PMCID: PMC12079339 DOI: 10.1002/advs.202413795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Empathy can be elicited by physiological pain, as well as in social contexts. Although physiological and different social contexts induce a strong subjective experience of empathy, the general and context-specific neural representations remain elusive. Here, it is combined fMRI with multivariate pattern analysis (MVPA) to establish neurofunctional models for social pain triggered by observing social exclusion and separation naturistic stimuli. The findings revealed that both social contexts engaged the empathy and social function networks. Notably, the intensity of pain empathy elicited by these two social stimuli does not significantly differentiate the neural representations of social exclusion and separation, suggesting context-specific neural representations underlying these experiences. Furthermore, this study established a model that traces the progression from physiological pain to social pain empathy. In conclusion, this study revealed the neural pathological foundations and interconnectedness of empathy induced by social and physiological stimuli and provide robust neuromarkers to precisely evaluate empathy across physiological and social domains.
Collapse
Affiliation(s)
- Xiaodong Zhang
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Peng Qing
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Qi Liu
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Can Liu
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Lei Liu
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Xianyang Gan
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Kun Fu
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Chunmei Lan
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Xinqi Zhou
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengdu610066China
| | - Keith M. Kendrick
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| | - Benjamin Becker
- Department of PsychologyState Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong Kong999077China
| | - Weihua Zhao
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental HealthSichuan Provincial People's Hospital University of Electronic Science and Technology of ChinaChengdu611731China
| |
Collapse
|
6
|
Wang X, Becker B, Tong SX. The power of pain: The temporal-spatial dynamics of empathy induced by body gestures and facial expressions. Neuroimage 2025; 310:121148. [PMID: 40096953 DOI: 10.1016/j.neuroimage.2025.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
Two non-verbal pain representations, body gestures and facial expressions, can communicate pain to others and elicit our own empathic responses. However, the specific impact of these representations on neural responses of empathy, particularly in terms of temporal and spatial neural mechanisms, remains unclear. To address this issue, the present study developed a kinetic pain empathy paradigm comprising short animated videos depicting a protagonist's "real life" pain and no-pain experiences through body gestures and facial expressions. Electroencephalographic (EEG) recordings were conducted on 52 neurotypical adults; while they viewed the animations. Results from multivariate pattern, event-related potential, event-related spectrum perturbation, and source localization analyses revealed that pain expressed through facial expressions, but not body gestures, elicited increased N200 and P200 responses and activated various brain regions, i.e., the anterior cingulate cortex, insula, thalamus, ventromedial prefrontal cortex, temporal gyrus, cerebellum, and right supramarginal gyrus. Enhanced theta power with distinct spatial distributions were observed during early affective arousal and late cognitive reappraisal stages of the pain event. Multiple regression analyses showed a negative correlation between the N200 amplitude and pain catastrophizing, and a positive correlation between the P200 amplitude and autism traits. These findings demonstrate the temporal evolution of empathy evoked by dynamic pain display, highlighting the significant impact of facial expression and its association with individuals' unique psychological traits.
Collapse
Affiliation(s)
- Xin Wang
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Benjamin Becker
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Shelley Xiuli Tong
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Oliva V, Riegner G, Dean J, Khatib LA, Allen A, Barrows D, Chen C, Fuentes R, Jacobson A, Lopez C, Mosbey D, Reyes M, Ross J, Uvarova A, Liu T, Mobley W, Zeidan F. I feel your pain: higher empathy is associated with higher posterior default mode network activity. Pain 2025; 166:e60-e67. [PMID: 39661395 DOI: 10.1097/j.pain.0000000000003434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/31/2024] [Indexed: 12/12/2024]
Abstract
ABSTRACT Empathy is characterized as the ability to share one's experience and is associated with altruism. Previous work using blood oxygen level-dependent (BOLD) functional MRI (fMRI) has found that empathy is associated with greater activation in brain mechanisms supporting mentalizing (temporoparietal junction), salience (anterior cingulate cortex; insula), and self-reference (medial prefrontal cortex; precuneus). However, BOLD fMRI has some limitations that may not reliably capture the tonic experience of empathy. To address this, the present study used a perfusion-based arterial spin labeling fMRI approach that provides direct a quantifiable measurement of cerebral blood flow (1 mL/100 g tissue/min) and is less susceptible to low-frequency fluctuations and empathy-based "carry-over" effects that may be introduced by BOLD fMRI-based block designs. Twenty-nine healthy females (mean age = 29 years) were administered noxious heat (48°C; left forearm) during arterial spin labeling fMRI. In the next 2 fMRI scans, female volunteers viewed a stranger (laboratory technician) and their romantic partner, respectively, receive pain-evoking heat (48°C; left forearm) in real-time and positioned proximal to the scanner during fMRI acquisition. Visual analog scale (0 = "not unpleasant"; 10 = "most unpleasant sensation imaginable") empathy ratings were collected after each condition. There was significantly ( P = 0.01) higher empathy while viewing a romantic partner in pain and greater cerebral blood flow in the right temporoparietal junction, amygdala, anterior insula, orbitofrontal cortex, and precuneus when compared with the stranger. Higher empathy was associated with greater precuneus and primary visual cortical activation. The present findings indicate that brain mechanisms supporting the embodiment of another's experience is associated with higher empathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William Mobley
- Neurosciences, UC San Diego, La Jolla, CA, United States
| | | |
Collapse
|
8
|
Son J, Cha M, Park S. Segmentation-Based Blood Blurring: Examining Eye-Response Differences in Gory Video Viewing. SENSORS (BASEL, SWITZERLAND) 2025; 25:2093. [PMID: 40218607 PMCID: PMC11991354 DOI: 10.3390/s25072093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Online video platforms have enabled unprecedented access to diverse content, but minors and other vulnerable viewers can also be exposed to highly graphic or violent materials. This study addresses the need for a nuanced method of filtering gore by developing a segmentation-based approach that selectively blurs blood. We recruited 37 participants to watch both blurred and unblurred versions of five gory video clips. Eye-based physiological and gaze data, including eye openness ratio, blink frequency, and eye fixations, were recorded via a webcam and eye tracker. Our results demonstrate that partial blood blurring substantially lowers perceived gore in more brutal scenes. Additionally, participants exhibited distinctive physiological reactions when viewing clips with higher gore, such as decreased eye openness and more frequent blinking. Notably, individuals with a stronger fear of blood showed an even greater tendency to blink, suggesting that personal sensitivities shape responses to graphic content. These findings highlight the potential of segmentation-based blurring as a balanced content moderation strategy, reducing distress without fully eliminating narrative details. By allowing users to remain informed while minimizing discomfort, this approach could prove valuable for video streaming services seeking to accommodate diverse viewer preferences and safeguard vulnerable audiences.
Collapse
Affiliation(s)
- Jiwon Son
- Department of Software Convergence, Kyung Hee University, Yongin 17104, Republic of Korea; (J.S.); (M.C.)
| | - Minjeong Cha
- Department of Software Convergence, Kyung Hee University, Yongin 17104, Republic of Korea; (J.S.); (M.C.)
| | - Sangkeun Park
- Department of Software Convergence, Kyung Hee University, Yongin 17104, Republic of Korea; (J.S.); (M.C.)
| |
Collapse
|
9
|
Mari T, Ali SH, Pacinotti L, Powsey S, Fallon N. Machine learning classification of active viewing of pain and non-pain images using EEG does not exceed chance in external validation samples. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01268-2. [PMID: 39966304 DOI: 10.3758/s13415-025-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Previous research has demonstrated that machine learning (ML) could not effectively decode passive observation of neutral versus pain photographs by using electroencephalogram (EEG) data. Consequently, the present study explored whether active viewing, i.e., requiring participant engagement in a task, of neutral and pain stimuli improves ML performance. Random forest (RF) models were trained on cortical event-related potentials (ERPs) during a two-alternative forced choice paradigm, whereby participants determined the presence or absence of pain in photographs of facial expressions and action scenes. Sixty-two participants were recruited for the model development sample. Moreover, a within-subject temporal validation sample was collected, consisting of 27 subjects. In line with our previous research, three RF models were developed to classify images into faces and scenes, neutral and pain scenes, and neutral and pain expressions. The results demonstrated that the RF successfully classified discrete categories of visual stimuli (faces and scenes) with accuracies of 78% and 66% on cross-validation and external validation, respectively. However, despite promising cross-validation results of 61% and 67% for the classification of neutral and pain scenes and neutral and pain faces, respectively, the RF models failed to exceed chance performance on the external validation dataset on both empathy classification attempts. These results align with previous research, highlighting the challenges of classifying complex states, such as pain empathy using ERPs. Moreover, the results suggest that active observation fails to enhance ML performance beyond previous passive studies. Future research should prioritise improving model performance to obtain levels exceeding chance, which would demonstrate increased utility.
Collapse
Affiliation(s)
- Tyler Mari
- Department of Psychology, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK.
| | - S Hasan Ali
- Department of Psychology, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK
| | - Lucrezia Pacinotti
- Department of Psychology, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK
| | - Sarah Powsey
- Department of Psychology, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK
| | - Nicholas Fallon
- Department of Psychology, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK
| |
Collapse
|
10
|
He J, Bore MC, Jiang H, Gan X, Wang J, Li J, Xu X, Wang L, Fu K, Li L, Zhou B, Kendrick K, Becker B. Neural Basis of Pain Empathy Dysregulations in Mental Disorders: A Preregistered Neuroimaging Meta-Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:127-137. [PMID: 39260566 DOI: 10.1016/j.bpsc.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Pain empathy represents a fundamental building block of several social functions, which have been demonstrated to be impaired across various mental disorders by accumulating evidence from case-control functional magnetic resonance imaging studies. However, it remains unclear whether the dysregulations are underpinned by robust neural alterations across mental disorders. METHODS This study utilized coordinate-based meta-analyses to quantitatively determine robust markers of altered pain empathy across mental disorders. To support the interpretation of the findings, exploratory network-level and behavioral meta-analyses were conducted. RESULTS Quantitative analysis of 11 case-control functional magnetic resonance imaging studies with data from 296 patients and 229 control participants revealed that patients with mental disorders exhibited increased pain empathic reactivity in the left anterior cingulate gyrus, adjacent medial prefrontal cortex, and right middle temporal gyrus but decreased activity in the left cerebellum IV/V and left middle occipital gyrus compared with control participants. The hyperactive regions showed network-level interactions with the core default mode network and were associated with affective and social cognitive domains. CONCLUSIONS The findings suggest that pain empathic alterations across mental disorders are underpinned by excessive empathic reactivity in brain systems involved in empathic distress and social processes, highlighting a shared therapeutic target to normalize basal social dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Jingxian He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Jiang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Leipzig, Germany
| | - Xiaolei Xu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Lan Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Fu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychology, the University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Navabpour S, Patrick MB, Omar NA, Kincaid SE, Bae Y, Abraham J, McGrew J, Musaus M, Ray WK, Helm RF, Jarome TJ. Indirectly acquired fear memories have distinct, sex-specific molecular signatures from directly acquired fear memories. PLoS One 2024; 19:e0315564. [PMID: 39715176 DOI: 10.1371/journal.pone.0315564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that affects women more than men. About 30% of patients suffering from PTSD develop the disorder by witnessing a traumatic event happen to someone else. However, as the focus has remained on those directly experiencing the traumatic event, whether indirectly acquired fear memories that underlie PTSD have the same molecular signature as those that are directly acquired remains unknown. Here, using a rodent indirect fear learning paradigm where one rat (observer) watches another rat (demonstrator) associate an auditory cue with foot shock, we found that fear can be indirectly acquired by both males and females regardless of the sex or novelty (familiarity) of the demonstrator animal. However, behaviorally, indirectly acquired fear responses resemble those of pseudoconditioning, a behavioral response that is thought to not represent learning. Despite this, using unbiased proteomics, we found that indirectly acquired fear memories have distinct protein degradation profiles in the amygdala and anterior cingulate cortex (ACC) relative to directly acquired fear memories and pseudoconditioning, which further differed significantly by sex. Additionally, Egr2 and c-fos expression in the retrosplenial cortex of observer animals resembled that of demonstrator rats but was significantly different than that of pseudoconditioned rats. Together, these findings reveal that indirectly acquired fear memories have sex-specific molecular signatures that differ from those of directly acquired fear memories or pseudoconditioning. These data have important implications for understanding the neurobiology of indirectly acquired fear memories that may underlie bystander PTSD.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Morgan B Patrick
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nour A Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Shannon E Kincaid
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Yeeun Bae
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Jennifer Abraham
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Jacobi McGrew
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Timothy J Jarome
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
12
|
Chen J, Putkinen V, Seppälä K, Hirvonen J, Ioumpa K, Gazzola V, Keysers C, Nummenmaa L. Endogenous opioid receptor system mediates costly altruism in the human brain. Commun Biol 2024; 7:1401. [PMID: 39462097 PMCID: PMC11513155 DOI: 10.1038/s42003-024-07084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Functional neuroimaging studies suggest that a large-scale brain network transforms others' pain into its vicarious representation in the observer, potentially modulating helping behavior. However, the neuromolecular basis of individual differences in vicarious pain and helping is poorly understood. We investigated the role of the endogenous μ-opioid receptor (MOR) system in altruistic costly helping. MOR density was measured using [11C]carfentanil. In a separate fMRI experiment, participants could donate money to reduce a confederate's pain from electric shocks. Participants were generally willing to help, and brain activity was observed in amygdala, anterior insula, anterior cingulate cortex (ACC), striatum, primary motor cortex, primary somatosensory cortex and thalamus when witnessing others' pain. Haemodynamic responses were negatively associated with MOR availability in emotion circuits. However, MOR availability positively associated with the ACC and hippocampus during helping. These findings suggest that the endogenous MOR system modulates altruism in the human brain.
Collapse
Affiliation(s)
- Jinglu Chen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.
| | - Vesa Putkinen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Kerttu Seppälä
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Kalliopi Ioumpa
- The Netherlands Institute for Neuroscience, KNAW research institute, Amsterdam, The Netherlands
| | - Valeria Gazzola
- The Netherlands Institute for Neuroscience, KNAW research institute, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Keysers
- The Netherlands Institute for Neuroscience, KNAW research institute, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Lauri Nummenmaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Golbabaei S, Borhani K. Nearsighted empathy: exploring the effect of empathy on distance perception, with eye movements as modulators. Sci Rep 2024; 14:25146. [PMID: 39448705 PMCID: PMC11502863 DOI: 10.1038/s41598-024-76731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Empathy, a cornerstone of social interaction, involves shared representation, eliciting vicarious emotions. However, its influence on shared perceptual representations, particularly in foundational domains such as distance perception, remains unexplored. In this study, we introduce a novel adaptation of the empathy for pain task to investigate empathy's influence on distance perception. We also examine how two personality traits, trait empathy and alexithymia, modulate this relationship. Utilizing eye-tracking technology, we examine how attention allocation to different facial and bodily features affects empathy's impact on distance perception. Our findings indicate that empathy biases individuals to perceive targets as closer, with trait empathy reinforcing this effect and alexithymia attenuating it. Furthermore, we demonstrate that heightened attention to eyes and face correlates with perceiving targets as closer, while attention to hand shows the opposite trend. These results underscore the broader influence of empathy beyond shared emotions, revealing its capacity to alter perceptual processes. By elucidating the interplay between personality traits and visual inputs in shaping these alterations, our study offers valuable insights for future research exploring the role of shared representation in empathy across various perceptual domains.
Collapse
Affiliation(s)
- Soroosh Golbabaei
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Velenjak, Tehran, Iran
| | - Khatereh Borhani
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Velenjak, Tehran, Iran.
| |
Collapse
|
14
|
Wang C, He J, Feng X, Qi X, Hong Z, Dun W, Zhang M, Liu J. Characteristics of pain empathic networks in healthy and primary dysmenorrhea women: an fMRI study. Brain Imaging Behav 2024; 18:1086-1099. [PMID: 38954259 DOI: 10.1007/s11682-024-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pain empathy enables us to understand and share how others feel pain. Few studies have investigated pain empathy-related functional interactions at the whole-brain level across all networks. Additionally, women with primary dysmenorrhea (PDM) have abnormal pain empathy, and the association among the whole-brain functional network, pain, and pain empathy remain unclear. Using resting-state functional magnetic resonance imaging (fMRI) and machine learning analysis, we identified the brain functional network connectivity (FNC)-based features that are associated with pain empathy in two studies. Specifically, Study 1 examined 41 healthy controls (HCs), while Study 2 investigated 45 women with PDM. Additionally, in Study 3, a classification analysis was performed to examine the differences in FNC between HCs and women with PDM. Pain empathy was evaluated using a visual stimuli experiment, and trait and state of menstrual pain were recorded. In Study 1, the results showed that pain empathy in HCs relied on dynamic interactions across whole-brain networks and was not concentrated in a single or two brain networks, suggesting the dynamic cooperation of networks for pain empathy in HCs. In Study 2, PDM exhibited a distinctive network for pain empathy. The features associated with pain empathy were concentrated in the sensorimotor network (SMN). In Study 3, the SMN-related dynamic FNC could accurately distinguish women with PDM from HCs and exhibited a significant association with trait menstrual pain. This study may deepen our understanding of the neural mechanisms underpinning pain empathy and suggest that menstrual pain may affect pain empathy through maladaptive dynamic interaction between brain networks.
Collapse
Affiliation(s)
- Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Juan He
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Xinyue Feng
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Xingang Qi
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China.
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
15
|
Song X, Liu Q, Zhang X, Liu C, Lan C, Zhang X, Xu T, Zhang R, Kendrick KM, Becker B, Zhao W. Neural underpinnings of a two-phase memory suppression process in the neural response to self-related and observed perspective views. Int J Clin Health Psychol 2024; 24:100509. [PMID: 39823094 PMCID: PMC11735992 DOI: 10.1016/j.ijchp.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/03/2024] [Indexed: 01/19/2025] Open
Abstract
Individuals often actively suppress intrusive memories to alleviate the distress they cause and maintain mental well-being. However, those with post-traumatic stress disorder (PTSD) often exhibit difficulties particularly in inhibiting or suppressing negative memories compared to individuals without PTSD. These memories can involve a physical threat either to the individual themselves or to others. Unfortunately, there is still limited understanding of the cognitive and neural mechanisms that underlie how suppression differs for self-related versus other-related memories. Here we capitalized on multivariate pattern analyses in combination with fMRI data acquired during a two-phase memory suppression paradigm where participants volitionally suppressed and subsequently recognized self-related and other-related stimuli. The results suggested that the recognition process following memory suppression demands more cognitive engagement for self-related stimuli than other-related stimuli, manifesting in increased activity in the dorsal anterior cingulate cortex (dACC). Furthermore, after memory suppression, we observed a stronger functional coupling between dACC identified during memory suppression, and both the middle frontal gyrus and the insula during self-related recognition compared to other-related recognition. An advanced multivariate pattern analysis substantiated that the limbic system and empathy network particularly contributed to accurately distinguishing between self-related and other-related recognition following memory suppression. Our findings demonstrated distinct neural representations of memory suppression related to self and others, suggesting that different strategies may be employed for suppressing intrusive memories originating from different sources.
Collapse
Affiliation(s)
- Xinwei Song
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaodong Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Can Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunmei Lan
- School of Sport Training, Chengdu Sport University, Chengdu, 610041, China
| | - Xiaolu Zhang
- Anhui Children's Hospital, Pediatric Hospital Affiliated to Fudan University, Hefei, 230051, China
| | - Ting Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ran Zhang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Keith M. Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
16
|
Lan C, Kou J, Liu Q, Qing P, Zhang X, Song X, Xu D, Zhang Y, Chen Y, Zhou X, Kendrick KM, Zhao W. Oral Oxytocin Blurs Sex Differences in Amygdala Responses to Emotional Scenes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1028-1038. [PMID: 38852918 DOI: 10.1016/j.bpsc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Sex differences are shaped both by innate biological differences and the social environment and are frequently observed in human emotional neural responses. Oral administration of oxytocin (OXT), as an alternative and noninvasive intake method, has been shown to produce sex-dependent effects on emotional face processing. However, it is unclear whether oral OXT produces similar sex-dependent effects on processing continuous emotional scenes. METHODS The current randomized, double-blind, placebo-controlled neuropsychopharmacological functional magnetic resonance imaging experiment was conducted in 147 healthy participants (OXT = 74, men/women = 37/37; placebo = 73, men/women = 36/37) to examine the oral OXT effect on plasma OXT concentrations and neural response to emotional scenes in both sexes. RESULTS At the neuroendocrine level, women showed lower endogenous OXT concentrations than men, but oral OXT increased OXT concentrations equally in both sexes. Regarding neural activity, emotional scenes evoked opposite valence-independent effects on right amygdala activation (women > men) and its functional connectivity with the insula (men > women) in men and women in the placebo group. This sex difference was either attenuated (amygdala response) or even completely eliminated (amygdala-insula functional connectivity) in the OXT group. Multivariate pattern analysis confirmed these findings by developing an accurate sex-predictive neural pattern that included the amygdala and the insula under the placebo but not the OXT condition. CONCLUSIONS The results of the current study suggest a pronounced sex difference in neural responses to emotional scenes that was eliminated by oral OXT, with OXT having opposite modulatory effects in men and women. This may reflect oral OXT enhancing emotional regulation to continuous emotional stimuli in both sexes by facilitating appropriate changes in sex-specific amygdala-insula circuitry.
Collapse
Affiliation(s)
- Chunmei Lan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qi Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Qing
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodong Zhang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinwei Song
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Yuanshu Chen
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Weihua Zhao
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Institute of Electronic and Information Engineering of University of Electronic Science and Technology of China in Guangdong, Dongguan, China.
| |
Collapse
|
17
|
Klugah-Brown B, Bore MC, Liu X, Gan X, Biswal BB, Kendrick KM, Chang DHF, Zhou B, Becker B. The neurostructural consequences of glaucoma and their overlap with disorders exhibiting emotional dysregulations: A voxel-based meta-analysis and tripartite system model. J Affect Disord 2024; 358:487-499. [PMID: 38705527 DOI: 10.1016/j.jad.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores overlaps with morphological alterations observed in anxiety and depression. METHODS A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with alterations in generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS While the study identified significant morphological alterations, the number of studies from both the glaucoma and GAD cohorts remains limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION The study proposes a tripartite brain model for glaucoma, with visual processing changes related to the lingual gyrus and additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of glaucoma.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy C Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, USA
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Rütgen M, Lamm C. Dissecting shared pain representations to understand their behavioral and clinical relevance. Neurosci Biobehav Rev 2024; 163:105769. [PMID: 38879099 DOI: 10.1016/j.neubiorev.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Accounts of shared representations posit that the experience of pain and pain empathy rely on similar neural mechanisms. Experimental research employing novel analytical and methodological approaches has made significant advances in both the identification and targeted manipulation of such shared experiences and their neural underpinnings. This revealed that painful experiences can be shared on different representational levels, from pain-specific to domain-general features, such as negative affect and its regulation. In view of direct links between such representations and social behaviors such as prosocial behavior, conditions characterized by aberrant pain processing may come along with heavy impairments in the social domain, depending on the affected representational level. This has wide potential implications in light of the high prevalence of pain-related clinical conditions, their management, and the overuse of pain medication. In this review and opinion paper, we aim to chart the path toward a better understanding of the link between shared affect and prosocial behavior.
Collapse
Affiliation(s)
- Markus Rütgen
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Gan X, Zhou F, Xu T, Liu X, Zhang R, Zheng Z, Yang X, Zhou X, Yu F, Li J, Cui R, Wang L, Yuan J, Yao D, Becker B. A neurofunctional signature of subjective disgust generalizes to oral distaste and socio-moral contexts. Nat Hum Behav 2024; 8:1383-1402. [PMID: 38641635 DOI: 10.1038/s41562-024-01868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
While disgust originates in the hard-wired mammalian distaste response, the conscious experience of disgust in humans strongly depends on subjective appraisal and may even extend to socio-moral contexts. Here, in a series of studies, we combined functional magnetic resonance imaging with machine-learning-based predictive modelling to establish a comprehensive neurobiological model of subjective disgust. The developed neurofunctional signature accurately predicted momentary self-reported subjective disgust across discovery (n = 78) and pre-registered validation (n = 30) cohorts and generalized across core disgust (n = 34 and n = 26), gustatory distaste (n = 30) and socio-moral (unfair offers; n = 43) contexts. Disgust experience was encoded in distributed cortical and subcortical systems, and exhibited distinct and shared neural representations with subjective fear or negative affect in interoceptive-emotional awareness and conscious appraisal systems, while the signatures most accurately predicted the respective target experience. We provide an accurate functional magnetic resonance imaging signature for disgust with a high potential to resolve ongoing evolutionary debates.
Collapse
Affiliation(s)
- Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Xinqi Zhou
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Leipzig, Germany
| | - Ruifang Cui
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Dezhong Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Mu J, Wu L, Wang C, Dun W, Hong Z, Feng X, Zhang M, Liu J. Individual differences of white matter characteristic along the anterior insula-based fiber tract circuit for pain empathy in healthy women and women with primary dysmenorrhea. Neuroimage 2024; 293:120624. [PMID: 38657745 DOI: 10.1016/j.neuroimage.2024.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
Pain empathy, defined as the ability of one person to understand another person's pain, shows large individual variations. The anterior insula is the core region of the pain empathy network. However, the relationship between white matter (WM) properties of the fiber tracts connecting the anterior insula with other cortical regions and an individual's ability to modulate pain empathy remains largely unclear. In this study, we outline an automatic seed-based fiber streamline (sFS) analysis method and multivariate pattern analysis (MVPA) to predict the levels of pain empathy in healthy women and women with primary dysmenorrhoea (PDM). Using the sFS method, the anterior insula-based fiber tract network was divided into five fiber cluster groups. In healthy women, interindividual differences in pain empathy were predicted only by the WM properties of the five fiber cluster groups, suggesting that interindividual differences in pain empathy may rely on the connectivity of the anterior insula-based fiber tract network. In women with PDM, pain empathy could be predicted by a single cluster group. The mean WM properties along the anterior insular-rostroventral area of the inferior parietal lobule further mediated the effect of pain on empathy in patients with PDM. Our results suggest that chronic periodic pain may lead to maladaptive plastic changes, which could further impair empathy by making women with PDM feel more pain when they see other people experiencing pain. Our study also addresses an important gap in the analysis of the microstructural characteristics of seed-based fiber tract network.
Collapse
Affiliation(s)
- Junya Mu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Leiming Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Xinyue Feng
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Jixin Liu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China.
| |
Collapse
|
21
|
Ioumpa K, Gallo S, Keysers C, Gazzola V. Neural mechanisms of costly helping in the general population and mirror-pain synesthetes. Sci Rep 2024; 14:11617. [PMID: 38773183 PMCID: PMC11109206 DOI: 10.1038/s41598-024-62422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
It has been argued that experiencing the pain of others motivates helping. Here, we investigate the contribution of somatic feelings while witnessing the pain of others onto costly helping decisions, by contrasting the choices and brain activity of participants that report feeling somatic feelings (self-reported mirror-pain synesthetes) against those that do not. Participants in fMRI witnessed a confederate receiving pain stimulations whose intensity they could reduce by donating money. The pain intensity could be inferred either from the facial expressions of the confederate in pain (Face condition) or from the kinematics of the pain-receiving hand (Hand condition). Our results show that self-reported mirror-pain synesthetes increase their donation more steeply, as the intensity of the observed pain increases, and their somatosensory brain activity (SII and the adjacent IPL) was more tightly associated with donation in the Hand condition. For all participants, activation in insula, SII, TPJ, pSTS, amygdala and MCC correlated with the trial by trial donation made in the Face condition, while SI and MTG activation was correlated with the donation in the Hand condition. These results further inform us about the role of somatic feelings while witnessing the pain of others in situations of costly helping.
Collapse
Affiliation(s)
- Kalliopi Ioumpa
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
| | - Selene Gallo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Li M, Racey C, Rae CL, Strawson W, Critchley HD, Ward J. Can the neural representation of physical pain predict empathy for pain in others? Soc Cogn Affect Neurosci 2024; 19:nsae023. [PMID: 38481007 PMCID: PMC11008503 DOI: 10.1093/scan/nsae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
The question of whether physical pain and vicarious pain have some shared neural substrates is unresolved. Recent research has argued that physical and vicarious pain are represented by dissociable multivariate brain patterns by creating biomarkers for physical pain (Neurologic Pain Signature, NPS) and vicarious pain (Vicarious Pain Signature, VPS), respectively. In the current research, the NPS and two versions of the VPS were applied to three fMRI datasets (one new, two published) relating to vicarious pain which focused on between-subject differences in vicarious pain (Datasets 1 and 3) and within-subject manipulations of perspective taking (Dataset 2). Results show that (i) NPS can distinguish brain responses to images of pain vs no-pain and to a greater extent in vicarious pain responders who report experiencing pain when observing pain and (ii) neither version of the VPS mapped on to individual differences in vicarious pain and the two versions differed in their success in predicting vicarious pain overall. This study suggests that the NPS (created to detect physical pain) is, under some circumstances, sensitive to vicarious pain and there is significant variability in VPS measures (created to detect vicarious pain) to act as generalizable biomarkers of vicarious pain.
Collapse
Affiliation(s)
- M Li
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - C Racey
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - C L Rae
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - W Strawson
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - H D Critchley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - J Ward
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| |
Collapse
|
23
|
Zheng X, Zhou F, Fu M, Xu L, Wang J, Li J, Li K, Sindermann C, Montag C, Becker B, Zhan Y, Kendrick KM. Patterns of neural activity in response to threatening faces are predictive of autistic traits: modulatory effects of oxytocin receptor genotype. Transl Psychiatry 2024; 14:168. [PMID: 38553454 PMCID: PMC10980722 DOI: 10.1038/s41398-024-02889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zhou
- Southwest University, Chongqing, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiayuan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Keshuang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cornelia Sindermann
- University of Stuttgart, Computational Digital Psychology, Interchange Forum for Reflecting on Intelligent Systems, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hongkong, Hongkong, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
25
|
Gerrans P. Pain suffering and the self. An active allostatic inference explanation. Neurosci Conscious 2024; 2024:niae002. [PMID: 38348334 PMCID: PMC10860504 DOI: 10.1093/nc/niae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Distributed processing that gives rise to pain experience is anchored by a multidimensional self-model. I show how the phenomenon of pain asymbolia and other atypical pain-related conditions (Insensitivity to Pain, Chronic Pain, 'Social' Pain, Insensitivity to Pain, Chronic Pain, 'Social' Pain, empathy for pain and suffering) can be explained by this idea. It also explains the patterns of association and dissociation among neural correlates without importing strong modular assumptions. It treats pain processing as a species of allostatic active inference in which the mind co-ordinates its processing resources to optimize basic bodily functioning at different time scales. The self is inferred to be source and target of regulation in this process. The self-modelling account reconciles conflicting deaffectualization and depersonalization accounts of pain asymbolia by showing how depersonalization and pain asymbolia arise at different levels of hierarchical self modelling.
Collapse
Affiliation(s)
- Philip Gerrans
- Department of Philosophy, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
26
|
Gamble RS, Henry JD, Decety J, Vanman EJ. The role of external factors in affect-sharing and their neural bases. Neurosci Biobehav Rev 2024; 157:105540. [PMID: 38211739 DOI: 10.1016/j.neubiorev.2024.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Affect-sharing, the ability to vicariously feel another person's emotions, is the primary component of empathy that is typically thought to rely on the observer's capacity to feel the emotions of others. However, external signals, such as the target's physical characteristics, have been demonstrated to influence affect-sharing in the neuroscientific literature that speaks to the underappreciated role of external factors in eliciting affect-sharing. We consider factors that influence affect-sharing, including physical cues, emotional cues, situational factors, and observer-target relationships, as well as the neural circuits involved in these processes. Our review reveals that, while neural network activation is primarily responsible for processing affect-sharing, external factors also co-activate a top-down cognitive processing network to modulate the conscious process of affect-sharing. From this knowledge, an integrative framework of external factor interactions with affect-sharing are explained in detail. Finally, we identify critical areas for future research in social and affective neuroscience, including research gaps and incorporation of ecologically valid paradigms.
Collapse
Affiliation(s)
- Roger S Gamble
- School of Psychology, The University of Queensland, St Lucia, 4072 Brisbane, QLD, Australia.
| | - Julie D Henry
- School of Psychology, The University of Queensland, St Lucia, 4072 Brisbane, QLD, Australia
| | - Jean Decety
- Department of Psychology, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Eric J Vanman
- School of Psychology, The University of Queensland, St Lucia, 4072 Brisbane, QLD, Australia
| |
Collapse
|
27
|
Li S, He M, Lin L, Chen Q, Ru T, Zhou G. Altered neurophysiological responses during empathy for pain in insomnia: evidence from an EEG study in non-clinical samples. J Physiol Anthropol 2024; 43:4. [PMID: 38172965 PMCID: PMC10765821 DOI: 10.1186/s40101-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND This study aims to investigate the behavioral and neurophysiological changes accompanying the empathy for pain among individuals with insomnia in nonclinical samples, which has been scarcely explored in the existing literature despite the deleterious effects of sleep disturbance on social behavior, and interactions had been well-documented. METHODS Twenty-one individuals with insomnia in nonclinical samples and 20 healthy individuals as normal controls participated in the study. Electroencephalograph (EEG) was continuously recorded, while the participants underwent an empathy for pain task. RESULTS Subjective ratings of pain for painful and non-painful images revealed no statistically significant differences between the insomnia and control groups. The painful images induced a smaller P2 compared to non-painful images in the insomnia group, whereas no such difference was revealed for the controls. Moreover, a higher power density of the alpha and theta2 bands in the posterior brain regions was found in the insomnia group compared to the control group. CONCLUSION These findings suggest that individuals with insomnia exhibit altered neurophysiological responses to pain stimuli and a lower capacity to share empathy for pain. These alterations may be associated with changes in attentional mechanisms.
Collapse
Affiliation(s)
- Siyu Li
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Meiheng He
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Li Lin
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Chen
- Lab of Light and Physio-Psychological Health, National Center for International Research On Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Taotao Ru
- Lab of Light and Physio-Psychological Health, National Center for International Research On Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Guofu Zhou
- Lab of Light and Physio-Psychological Health, National Center for International Research On Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
28
|
Badrulhisham F, Pogatzki-Zahn E, Segelcke D, Spisak T, Vollert J. Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav Immun 2024; 115:470-479. [PMID: 37972877 DOI: 10.1016/j.bbi.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Artificial intelligence (AI) is often used to describe the automation of complex tasks that we would attribute intelligence to. Machine learning (ML) is commonly understood as a set of methods used to develop an AI. Both have seen a recent boom in usage, both in scientific and commercial fields. For the scientific community, ML can solve bottle necks created by complex, multi-dimensional data generated, for example, by functional brain imaging or *omics approaches. ML can here identify patterns that could not have been found using traditional statistic approaches. However, ML comes with serious limitations that need to be kept in mind: their tendency to optimise solutions for the input data means it is of crucial importance to externally validate any findings before considering them more than a hypothesis. Their black-box nature implies that their decisions usually cannot be understood, which renders their use in medical decision making problematic and can lead to ethical issues. Here, we present an introduction for the curious to the field of ML/AI. We explain the principles as commonly used methods as well as recent methodological advancements before we discuss risks and what we see as future directions of the field. Finally, we show practical examples of neuroscience to illustrate the use and limitations of ML.
Collapse
Affiliation(s)
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Tamas Spisak
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, Department of Neurology, University Medicine Essen, Essen, Germany
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom; Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
29
|
Corradi‐Dell'Acqua C, Hofstetter C, Sharvit G, Hugli O, Vuilleumier P. Healthcare experience affects pain-specific responses to others' suffering in the anterior insula. Hum Brain Mapp 2023; 44:5655-5671. [PMID: 37608624 PMCID: PMC10619377 DOI: 10.1002/hbm.26468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
Medical students and professional healthcare providers often underestimate patients' pain, together with decreased neural responses to pain information in the anterior insula (AI), a brain region implicated in self-pain processing and negative affect. However, the functional significance and specificity of these neural changes remains debated. Across two experiments, we recruited university medical students and emergency nurses to test the role of healthcare experience on the brain reactivity to other's pain, emotions, and beliefs, using both pictorial and verbal cues. Brain responses to self-pain was also assessed and compared with those to observed pain. Our results confirmed that healthcare experience decreased the activity in AI in response to others' suffering. This effect was independent from stimulus modality (pictures or texts), but specific for pain, as it did not generalize to inferences about other mental or affective states. Furthermore, representational similarity and multivariate pattern analysis revealed that healthcare experience impacted specifically a component of the neural representation of others' pain that is shared with that of first-hand nociception, and related more to AI than to other pain-responsive regions. Taken together, our study suggests a decreased propensity to appraise others' suffering as one's own, associated with a reduced recruitment of pain-specific information in AI. These findings provide new insights into neural mechanisms leading to pain underestimation by caregivers in clinical settings.
Collapse
Affiliation(s)
- Corrado Corradi‐Dell'Acqua
- Theory of Pain Laboratory, Department of Psychology, Faculty of Psychology and Educational Sciences (FPSE)University of GenevaGenevaSwitzerland
- Geneva Neuroscience CenterUniversity of GenevaGenevaSwitzerland
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
| | - Christoph Hofstetter
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
| | - Gil Sharvit
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
- Swiss Center for Affective Sciences, University of GenevaGenevaSwitzerland
- Balgrist University Hospital and University of ZurichZurichSwitzerland
| | - Olivier Hugli
- Emergency Department, University Hospital of Lausanne (UHL)LausanneSwitzerland
| | - Patrik Vuilleumier
- Geneva Neuroscience CenterUniversity of GenevaGenevaSwitzerland
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
- Swiss Center for Affective Sciences, University of GenevaGenevaSwitzerland
| |
Collapse
|
30
|
Schmidt L, Zabelberg S, Schlatter S, Adams I, Douplat M, Perchet C, Lilot M, Rey AE, Mazza S. The impact of shift work on pain recognition, a robust ability among intensive care nurses. Eur J Pain 2023; 27:1203-1215. [PMID: 37434490 DOI: 10.1002/ejp.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Pain empathy is essential for high-quality of care. The cognitive ability to identify and understand the pain in others remains underexplored in the context of hospital shift work. This study aimed to observe the early subliminal ability to detect pain in other faces and to investigate pain intensity evaluations during day and night shifts. METHODS Twenty-one nurses (31 ± 7 years, 20 women) from cardio-paediatric intensive care participated in this study. Eighteen nurses completed all testing in the morning and evening hours, before and after the 12-hour day and night shift. In the first test, the nurses had to decide if facial stimuli presented subliminally showed pain or not. During the second test, they consciously determined the intensity of the painful faces on a numerical scale. Sleep, sleepiness and empathy were also measured. RESULTS Recognition accuracy and pain sensitivity remained stable over time, only sensitivity increased following the work shift (F(1,15) = 7.10, p = 0.018). Intensity ratings remained stable. Sleepiness at the end of the night shift was negatively correlated with accuracy (ρ = -0.51, p = 0.018) and positively correlated with prior night shifts (ρ = -0.50, p = 0.022). CONCLUSION The judgement of facial pain expressions seems robust across shift types, only individual factors such as sleepiness interfere with pain recognition. Pain sensitivity may be enhanced during working hours. SIGNIFICANCE STATEMENT Some professions need to know how to assess pain 24/7 and a lack of sleep can disrupt the cognitive processes necessary for this assessment. Night shifts provoke a bias in pain management, and sleep deprivation, a decrease in pain evaluation. By conducting a repeated measure study in the field that applied a different paradigm (subliminal recognition of facial cues) we add evidence to the understanding of pain recognition and the impact of sleep deprivation on the early processing of pain in others.
Collapse
Affiliation(s)
- Laura Schmidt
- Université Claude Bernard Lyon 1, Research on Healthcare Performance RESHAPE, INSERM U1290, Lyon, France
| | | | - Sophie Schlatter
- Université Claude Bernard Lyon 1, Research on Healthcare Performance RESHAPE, INSERM U1290, Lyon, France
- Université Claude Bernard Lyon 1, Centre Lyonnais d'enseignement par la simulation en Santé, CLESS, SimuLyon, Lyon, France
| | - Inga Adams
- Universität zu Köln, Psychologie, Cologne, Germany
| | - Marion Douplat
- Hospices Civils de Lyon, Département des Urgences, Hôpital Lyon Sud, Lyon, France
| | - Caroline Perchet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500, Bron, France
| | - Marc Lilot
- Université Claude Bernard Lyon 1, Research on Healthcare Performance RESHAPE, INSERM U1290, Lyon, France
- Université Claude Bernard Lyon 1, Centre Lyonnais d'enseignement par la simulation en Santé, CLESS, SimuLyon, Lyon, France
- Hospices Civils de Lyon, Département d'Anesthésie-Réanimation, Hôpital Louis Pradel, Groupement Hospitalier Est, Lyon, France
| | - Amandine Eve Rey
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500, Bron, France
| | - Stéphanie Mazza
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500, Bron, France
| |
Collapse
|
31
|
Zhuang Q, Qiao L, Xu L, Yao S, Chen S, Zheng X, Li J, Fu M, Li K, Vatansever D, Ferraro S, Kendrick KM, Becker B. The right inferior frontal gyrus as pivotal node and effective regulator of the basal ganglia-thalamocortical response inhibition circuit. PSYCHORADIOLOGY 2023; 3:kkad016. [PMID: 38666118 PMCID: PMC10917375 DOI: 10.1093/psyrad/kkad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 04/28/2024]
Abstract
Background The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has been extensively mapped in animal models. However, the pivotal nodes and directed causal regulation within this inhibitory circuit in humans remains controversial. Objective The main aim of the present study was to determine the causal information flow and critical nodes in the basal ganglia-thalamocortical inhibitory circuits and also to examine whether these are modulated by biological factors (i.e. sex) and behavioral performance. Methods Here, we capitalize on the recent progress in robust and biologically plausible directed causal modeling (DCM-PEB) and a large response inhibition dataset (n = 250) acquired with concomitant functional magnetic resonance imaging to determine key nodes, their causal regulation and modulation via biological variables (sex) and inhibitory performance in the inhibitory circuit encompassing the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). Results The entire neural circuit exhibited high intrinsic connectivity and response inhibition critically increased causal projections from the rIFG to both rCau and rThal. Direct comparison further demonstrated that response inhibition induced an increasing rIFG inflow and increased the causal regulation of this region over the rCau and rThal. In addition, sex and performance influenced the functional architecture of the regulatory circuits such that women displayed increased rThal self-inhibition and decreased rThal to GP modulation, while better inhibitory performance was associated with stronger rThal to rIFG communication. Furthermore, control analyses did not reveal a similar key communication in a left lateralized model. Conclusions Together, these findings indicate a pivotal role of the rIFG as input and causal regulator of subcortical response inhibition nodes.
Collapse
Affiliation(s)
- Qian Zhuang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Lei Qiao
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Psychology, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
32
|
Cormie MA, Kaya B, Hadjis GE, Mouseli P, Moayedi M. Insula-cingulate structural and functional connectivity: an ultra-high field MRI study. Cereb Cortex 2023; 33:9787-9801. [PMID: 37429832 PMCID: PMC10656949 DOI: 10.1093/cercor/bhad244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
The insula and the cingulate are key brain regions with many heterogenous functions. Both regions are consistently shown to play integral roles in the processing of affective, cognitive, and interoceptive stimuli. The anterior insula (aINS) and the anterior mid-cingulate cortex (aMCC) are two key hubs of the salience network (SN). Beyond the aINS and aMCC, previous 3 Tesla (T) magnetic resonance imaging studies have suggested both structural connectivity (SC) and functional connectivity (FC) between other insular and cingulate subregions. Here, we investigate the SC and FC between insula and cingulate subregions using ultra-high field 7T diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI). DTI revealed strong SC between posterior INS (pINS) and posterior MCC (pMCC), and rs-fMRI revealed strong FC between the aINS and aMCC that was not supported by SC, indicating the likelihood of a mediating structure. Finally, the insular pole had the strongest SC to all cingulate subregions, with a slight preference for the pMCC, indicative of a potential relay node of the insula. Together these finding shed new light on the understanding of insula-cingulate functioning, both within the SN and other cortical processes, through a lens of its SC and FC.
Collapse
Affiliation(s)
- Matthew A Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Batu Kaya
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Georgia E Hadjis
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Pedram Mouseli
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
33
|
Stankewitz A, Mayr A, Irving S, Witkovsky V, Schulz E. Pain and the emotional brain: pain-related cortical processes are better reflected by affective evaluation than by cognitive evaluation. Sci Rep 2023; 13:8273. [PMID: 37217563 DOI: 10.1038/s41598-023-35294-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
The experience of pain has been dissociated into two interwoven aspects: a sensory-discriminative aspect and an affective-motivational aspect. We aimed to explore which of the pain descriptors is more deeply rooted in the human brain. Participants were asked to evaluate applied cold pain. The majority of the trials showed distinct ratings: some were rated higher for unpleasantness and others for intensity. We compared the relationship between functional data recorded from 7 T MRI with unpleasantness and intensity ratings and revealed a stronger relationship between cortical data and unpleasantness ratings. The present study underlines the importance of the emotional-affective aspects of pain-related cortical processes in the brain. The findings corroborate previous studies showing a higher sensitivity to pain unpleasantness compared to ratings of pain intensity. For the processing of pain in healthy subjects, this effect may reflect the more direct and intuitive evaluation of emotional aspects of the pain system, which is to prevent harm and to preserve the physical integrity of the body.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neuroradiology, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Astrid Mayr
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, A: Marchioninistr. 15, 81377, München, Germany
| | - Stephanie Irving
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Enrico Schulz
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, A: Marchioninistr. 15, 81377, München, Germany.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
34
|
Liu Q, Song X, Zhou X, Huang L, Zhang X, Wang L, Zhu S, Lan C, Yang W, Zhao W. Regional superficial amygdala resting-state functional connectivity in adults infers childhood maltreatment severity. PSYCHORADIOLOGY 2023; 3:kkad004. [PMID: 38666120 PMCID: PMC11003424 DOI: 10.1093/psyrad/kkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2024]
Abstract
Background Childhood maltreatment (CM) is a potential risk factor for some neuropsychiatric disorders in adulthood (e.g. depression and anxiety) and alters trajectories of brain development. Accumulating evidence suggests that functional connectivity of the limbic system, especially the amygdala, is highly associated with childhood maltreatment, although not all studies have found this. These inconsistent results may be due to differential alterations of amygdala resting-state functional connectivity (rsFC) following childhood maltreatment. Objective Our aim was to investigate the relationship between the rsFC of amygdala subregions and CM severity, as well as to develop a stable rsFC-based model for inferring the severity of CM. Methods In this study, we employed the Childhood Trauma Questionnaire (CTQ) to assess CM severity in each individual. We explored the relationship between the rsFC of amygdala subregions (i.e. centromedial -CMA, basolateral -BLA, superficial-SFA amygdala) and CM experience in a discovery dataset of n = 110 healthy Chinese participants by linear multiple regression analysis. Subsequent dimensional and categorical approach were performed to elucidate the relationship between rsFCs and CM severity and CM subtypes, respectively. A support vector regression model was then conducted to validate the associations between rsFCs and total CTQ scores. Moreover, we also verified the model into another independent replication dataset (n = 38). Results Our findings suggested that childhood maltreatment was negatively associated with rsFC between the right superficial amygdala and perigenual anterior cingulate cortex (pgACC)/postcentral gyrus (PCG) but not the other two amygdala subregions. Moreover, SFA-pgACC coupling was more associated with physical neglect whereas the SFA-PCG was more related to emotional neglect. In addition, supervised machine learning confirmed that using these two rsFCs as predictors could stably estimate continuous maltreatment severity in both discovery and replication datasets. Conclusion The current study supports that the rsFCs of superficial amygdala are related to childhood maltreatment and which may be a potential biomarker for the effects of childhood maltreatment-related psychiatric disorders (i.e. depression and anxiety).
Collapse
Affiliation(s)
- Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Linghong Huang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaodong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunmei Lan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenxu Yang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China
| |
Collapse
|
35
|
Xu S, Zhang Z, Li L, Zhou Y, Lin D, Zhang M, Zhang L, Huang G, Liu X, Becker B, Liang Z. Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience. Neuroimage 2023; 269:119941. [PMID: 36791897 DOI: 10.1016/j.neuroimage.2023.119941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Determining and decoding emotional brain processes under ecologically valid conditions remains a key challenge in affective neuroscience. The current functional Magnetic Resonance Imaging (fMRI) based emotion decoding studies are mainly based on brief and isolated episodes of emotion induction, while sustained emotional experience in naturalistic environments that mirror daily life experiences are scarce. Here we used 12 different 10-minute movie clips as ecologically valid emotion-evoking procedures in n = 52 individuals to explore emotion-specific fMRI functional connectivity (FC) profiles on the whole-brain level at high spatial resolution (432 parcellations including cortical and subcortical structures). Employing machine-learning based decoding and cross validation procedures allowed to investigate FC profiles contributing to classification that can accurately distinguish sustained happiness and sadness and that generalize across subjects, movie clips, and parcellations. Both functional brain network-based and subnetwork-based emotion classification results suggested that emotion manifests as distributed representation of multiple networks, rather than a single functional network or subnetwork. Further, the results showed that the Visual Network (VN) and Default Mode Network (DMN) associated functional networks, especially VN-DMN, exhibited a strong contribution to emotion classification. To further estimate the temporal accumulative effect of naturalistic long-term movie-based video-evoking emotions, we divided the 10-min episode into three stages: early stimulation (1∼200 s), middle stimulation (201∼400 s), and late stimulation (401∼600 s) and examined the emotion classification performance at different stimulation stages. We found that the late stimulation contributes most to the classification (accuracy=85.32%, F1-score=85.62%) compared to early and middle stimulation stages, implying that continuous exposure to emotional stimulation can lead to more intense emotions and further enhance emotion-specific distinguishable representations. The present work demonstrated that sustained happiness and sadness under naturalistic conditions are presented in emotion-specific network profiles and these expressions may play different roles in the generation and modulation of emotions. These findings elucidated the importance of network level adaptations for sustained emotional experiences during naturalistic contexts and open new venues for imaging network level contributions under naturalistic conditions.
Collapse
Affiliation(s)
- Shuyue Xu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhiguo Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China; Peng Cheng Laboratory, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, China
| | - Danyi Lin
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Min Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China.
| |
Collapse
|
36
|
Fornari L, Ioumpa K, Nostro AD, Evans NJ, De Angelis L, Speer SPH, Paracampo R, Gallo S, Spezio M, Keysers C, Gazzola V. Neuro-computational mechanisms and individual biases in action-outcome learning under moral conflict. Nat Commun 2023; 14:1218. [PMID: 36878911 PMCID: PMC9988878 DOI: 10.1038/s41467-023-36807-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Learning to predict action outcomes in morally conflicting situations is essential for social decision-making but poorly understood. Here we tested which forms of Reinforcement Learning Theory capture how participants learn to choose between self-money and other-shocks, and how they adapt to changes in contingencies. We find choices were better described by a reinforcement learning model based on the current value of separately expected outcomes than by one based on the combined historical values of past outcomes. Participants track expected values of self-money and other-shocks separately, with the substantial individual difference in preference reflected in a valuation parameter balancing their relative weight. This valuation parameter also predicted choices in an independent costly helping task. The expectations of self-money and other-shocks were biased toward the favored outcome but fMRI revealed this bias to be reflected in the ventromedial prefrontal cortex while the pain-observation network represented pain prediction errors independently of individual preferences.
Collapse
Affiliation(s)
- Laura Fornari
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Kalliopi Ioumpa
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Alessandra D Nostro
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Nathan J Evans
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Lorenzo De Angelis
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Sebastian P H Speer
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Selene Gallo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Michael Spezio
- Psychology, Neuroscience, & Data Science, Scripps College, 1030 Columbia Ave, CA 91711, Claremont, CA, USA
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.,Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands. .,Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Speer SPH, Keysers C, Barrios JC, Teurlings CJS, Smidts A, Boksem MAS, Wager TD, Gazzola V. A multivariate brain signature for reward. Neuroimage 2023; 271:119990. [PMID: 36878456 DOI: 10.1016/j.neuroimage.2023.119990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023] Open
Abstract
The processing of reinforcers and punishers is crucial to adapt to an ever changing environment and its dysregulation is prevalent in mental health and substance use disorders. While many human brain measures related to reward have been based on activity in individual brain regions, recent studies indicate that many affective and motivational processes are encoded in distributed systems that span multiple regions. Consequently, decoding these processes using individual regions yields small effect sizes and limited reliability, whereas predictive models based on distributed patterns yield larger effect sizes and excellent reliability. To create such a predictive model for the processes of rewards and losses, termed the Brain Reward Signature (BRS), we trained a model to predict the signed magnitude of monetary rewards on the Monetary Incentive Delay task (MID; N = 39) and achieved a highly significant decoding performance (92% for decoding rewards versus losses). We subsequently demonstrate the generalizability of our signature on another version of the MID in a different sample (92% decoding accuracy; N = 12) and on a gambling task from a large sample (73% decoding accuracy, N = 1084). We further provided preliminary data to characterize the specificity of the signature by illustrating that the signature map generates estimates that significantly differ between rewarding and negative feedback (92% decoding accuracy) but do not differ for conditions that differ in disgust rather than reward in a novel Disgust-Delay Task (N = 39). Finally, we show that passively viewing positive and negatively valenced facial expressions loads positively on our signature, in line with previous studies on morbid curiosity. We thus created a BRS that can accurately predict brain responses to rewards and losses in active decision making tasks, and that possibly relates to information seeking in passive observational tasks.
Collapse
Affiliation(s)
- Sebastian P H Speer
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, The Netherlands
| | | | - Cas J S Teurlings
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ale Smidts
- Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, The Netherlands
| | - Maarten A S Boksem
- Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, The Netherlands
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Wang L, Zhou X, Song X, Gan X, Zhang R, Liu X, Xu T, Jiao G, Ferraro S, Bore MC, Yu F, Zhao W, Montag C, Becker B. Fear of missing out (FOMO) associates with reduced cortical thickness in core regions of the posterior default mode network and higher levels of problematic smartphone and social media use. Addict Behav 2023; 143:107709. [PMID: 37004381 DOI: 10.1016/j.addbeh.2023.107709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND AIMS Fear of missing out (FOMO) promotes the desire or urge to stay continuously connected with a social reference group and updated on their activities, which may result in escalating and potentially addictive smartphone and social media use. The present study aimed to determine whether the neurobiological basis of FOMO encompasses core regions of the reward circuitry or social brain, and associations with levels of problematic smartphone or social media use. METHODS We capitalized on a dimensional neuroimaging approach to examine cortical thickness and subcortical volume associations in a sample of healthy young individuals (n = 167). Meta-analytic network and behavioral decoding analyses were employed to further characterize the identified regions. RESULTS Higher levels of FOMO associated with lower cortical thickness in the right precuneus. In contrast, no associations between FOMO and variations in striatal morphology were observed. Meta-analytic decoding revealed that the identified precuneus region exhibited a strong functional interaction with the default mode network (DMN) engaged in social cognitive and self-referential domains. DISCUSSION AND CONCLUSIONS Together the present findings suggest that individual variations in FOMO are associated with the brain structural architecture of the right precuneus, a core hub within a large-scale functional network resembling the DMN and involved in social and self-referential processes. FOMO may promote escalating social media and smartphone use via social and self-referential processes rather than reward-related processes per se.
Collapse
Affiliation(s)
- Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
39
|
Zhang R, Zhao W, Qi Z, Xu T, Zhou F, Becker B. Angiotensin II Regulates the Neural Expression of Subjective Fear in Humans: A Precision Pharmaco-Neuroimaging Approach. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:262-270. [PMID: 36174930 DOI: 10.1016/j.bpsc.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Rodent models and pharmacological neuroimaging studies in humans have been used to test novel pharmacological agents to reduce fear. However, these strategies are limited with respect to determining process-specific effects on the actual subjective experience of fear, which represents the key symptom that motivates patients to seek treatment. In this study, we used a novel precision pharmacological functional magnetic resonance imaging approach based on process-specific neuroaffective signatures to determine effects of the selective angiotensin II type 1 receptor (AT1R) antagonist losartan on the subjective experience of fear. METHODS In a double-blind, placebo-controlled, randomized pharmacological functional magnetic resonance imaging design, healthy participants (N = 87) were administered 50 mg losartan or placebo before they underwent an oddball paradigm that included neutral, novel, and fear oddballs. Effects of losartan on brain activity and connectivity as well as on process-specific multivariate neural signatures were examined. RESULTS AT1R blockade selectively reduced neurofunctional reactivity to fear-inducing visual oddballs in terms of attenuating dorsolateral prefrontal activity and amygdala-ventral anterior cingulate communication. Neurofunctional decoding further demonstrated fear-specific effects in that AT1R blockade reduced the neural expression of subjective fear but not of threat or nonspecific negative affect and did not influence reactivity to novel oddballs. CONCLUSIONS These results show a specific role of the AT1R in regulating the subjective fear experience and demonstrate the feasibility of a precision pharmacological functional magnetic resonance imaging approach to the affective characterization of novel receptor targets for fear in humans.
Collapse
Affiliation(s)
- Ran Zhang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyu Qi
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, ChongQing, China; Key Laboratory of Cognition and Personality, Ministry of Education, ChongQing, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
40
|
Khatibi A, Roy M, Chen JI, Gill LN, Piche M, Rainville P. Brain responses to the vicarious facilitation of pain by facial expressions of pain and fear. Soc Cogn Affect Neurosci 2023; 18:6750003. [PMID: 36201353 PMCID: PMC9949570 DOI: 10.1093/scan/nsac056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Observing pain in others facilitates self-pain in the observer. Vicarious pain facilitation mechanisms are poorly understood. We scanned 21 subjects while they observed pain, fear and neutral dynamic facial expressions. In 33% of the trials, a noxious electrical stimulus was delivered. The nociceptive flexion reflex (NFR) and pain ratings were recorded. Both pain and fear expressions increased self-pain ratings (fear > pain) and the NFR amplitude. Enhanced response to self-pain following pain and fear observation involves brain regions including the insula (INS) (pain > fear in anterior part), amygdala, mid-cingulate cortex (MCC), paracentral lobule, precuneus, supplementary motor area and pre-central gyrus. These results are consistent with the motivational priming account where vicarious pain facilitation involves a global enhancement of pain-related responses by negatively valenced stimuli. However, a psychophysiological interaction analysis centered on the left INS revealed increased functional connectivity with the aMCC in response to the painful stimulus following pain observation compared to fear. The opposite connectivity pattern (fear > pain) was observed in the fusiform gyrus, cerebellum (I-IV), lingual gyrus and thalamus, suggesting that pain and fear expressions influence pain-evoked brain responses differentially. Distinctive connectivity patterns demonstrate a stronger effect of pain observation in the cingulo-insular network, which may reflect partly overlapping networks underlying the representation of pain in self and others.
Collapse
Affiliation(s)
- Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada
| | - Mathieu Roy
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Psychology, McGill University, Montréal, QC H3A 1G1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jen-I Chen
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Stomatology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Louis-Nascan Gill
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada
| | - Mathieu Piche
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Pierre Rainville
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Stomatology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
41
|
Klugah-Brown B, Wang P, Jiang Y, Becker B, Hu P, Uddin LQ, Biswal B. Structural-functional connectivity mapping of the insular cortex: a combined data-driven and meta-analytic topic mapping. Cereb Cortex 2023; 33:1726-1738. [PMID: 35511500 DOI: 10.1093/cercor/bhac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we examined structural and functional profiles of the insular cortex and mapped associations with well-described functional networks throughout the brain using diffusion tensor imaging (DTI) and resting-state functional connectivity (RSFC) data. We used a data-driven method to independently estimate the structural-functional connectivity of the insular cortex. Data were obtained from the Human Connectome Project comprising 108 adult participants. Overall, we observed moderate to high associations between the structural and functional mapping scores of 3 different insular subregions: the posterior insula (associated with the sensorimotor network: RSFC, DTI = 50% and 72%, respectively), dorsal anterior insula (associated with ventral attention: RSFC, DTI = 83% and 83%, respectively), and ventral anterior insula (associated with the frontoparietal: RSFC, DTI = 42% and 89%, respectively). Further analyses utilized meta-analytic decoding maps to demonstrate specific cognitive and affective as well as gene expression profiles of the 3 subregions reflecting the core properties of the insular cortex. In summary, given the central role of the insular in the human brain, our results revealing correspondence between DTI and RSFC mappings provide a complementary approach and insight for clinical researchers to identify dysfunctional brain organization in various neurological disorders associated with insular pathology.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731 Chengdu, China
| | - Pan Wang
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731 Chengdu, China
| | - Yuan Jiang
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731 Chengdu, China
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731 Chengdu, China
| | - Peng Hu
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731 Chengdu, China
| | - Lucina Q Uddin
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, United States
| | - Bharat Biswal
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731 Chengdu, China.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States
| |
Collapse
|
42
|
The Angiotensin Antagonist Losartan Modulates Social Reward Motivation and Punishment Sensitivity via Modulating Midbrain-Striato-Frontal Circuits. J Neurosci 2023; 43:472-483. [PMID: 36639890 PMCID: PMC9864573 DOI: 10.1523/jneurosci.1114-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Social deficits and dysregulations in dopaminergic midbrain-striato-frontal circuits represent transdiagnostic symptoms across psychiatric disorders. Animal models suggest that interactions between the dopamine (DA) and renin-angiotensin system (RAS) may modulate learning and reward-related processes. The present study therefore examined the behavioral and neural effects of the Angiotensin II type 1 receptor (AT1R) antagonist losartan on social reward and punishment processing in humans. A preregistered randomized double-blind placebo-controlled between-subject pharmacological design was combined with a social incentive delay (SID) functional MRI (fMRI) paradigm during which subjects could avoid social punishment or gain social reward. Healthy volunteers received a single-dose of losartan (50 mg, n = 43, female = 17) or placebo (n = 44, female = 20). We evaluated reaction times (RTs) and emotional ratings as behavioral and activation and functional connectivity as neural outcomes. Relative to placebo, losartan modulated the reaction time and arousal differences between social punishment and social reward. On the neural level the losartan-enhanced motivational salience of social rewards was accompanied by stronger ventral striatum-prefrontal connectivity during reward anticipation. Losartan increased the reward-neutral difference in the ventral tegmental area (VTA) and attenuated VTA associated connectivity with the bilateral insula in response to punishment during the outcome phase. Thus, losartan modulated approach-avoidance motivation and emotional salience during social punishment versus social reward via modulating distinct core nodes of the midbrain-striato-frontal circuits. The findings document a modulatory role of the renin-angiotensin system in these circuits and associated social processes, suggesting a promising treatment target to alleviate social dysregulations.SIGNIFICANCE STATEMENT Social deficits and anhedonia characterize several mental disorders and have been linked to the midbrain-striato-frontal circuits of the brain. Based on initial findings from animal models we here combine the pharmacological blockade of the Angiotensin II type 1 receptor (AT1R) via losartan with functional MRI (fMRI) to demonstrate that AT1R blockade enhances the motivational salience of social rewards and attenuates the negative impact of social punishment via modulating the communication in the midbrain-striato-frontal circuits in humans. The findings demonstrate for the first time an important role of the AT1R in social reward processing in humans and render the AT1R as promising novel treatment target for social and motivational deficits in mental disorders.
Collapse
|
43
|
Yu F, Li J, Xu L, Zheng X, Fu M, Li K, Yao S, Kendrick KM, Montag C, Becker B. Opposing associations of Internet Use Disorder symptom domains with structural and functional organization of the striatum: A dimensional neuroimaging approach. J Behav Addict 2022; 11:1068-1079. [PMID: 36422683 PMCID: PMC9881660 DOI: 10.1556/2006.2022.00078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests brain structural and functional alterations in Internet Use Disorder (IUD). However, conclusions are strongly limited due to the retrospective case-control design of the studies, small samples, and the focus on general rather than symptom-specific approaches. METHODS We here employed a dimensional multi-methodical MRI-neuroimaging design in a final sample of n = 203 subjects to examine associations between levels of IUD and its symptom-dimensions (loss of control/time management, craving/social problems) with brain structure, resting state and task-based (pain empathy, affective go/no-go) brain function. RESULTS Although the present sample covered the entire range of IUD, including normal, problematic as well as pathological levels, general IUD symptom load was not associated with brain structural or functional alterations. However, the symptom-dimensions exhibited opposing associations with the intrinsic and structural organization of the brain, such that loss of control/time management exhibited negative associations with intrinsic striatal networks and hippocampal volume, while craving/social problems exhibited a positive association with intrinsic striatal networks and caudate volume. CONCLUSIONS Our findings provided the first evidence for IUD symptom-domain specific associations with progressive alterations in the intrinsic structural and functional organization of the brain, particularly of striatal systems involved in reward, habitual and cognitive control processes.
Collapse
Affiliation(s)
- Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Corresponding author. E-mail:
| |
Collapse
|
44
|
Zhao Y, Zhang L, Rütgen M, Sladky R, Lamm C. Effective connectivity reveals distinctive patterns in response to others' genuine affective experience of disgust. Neuroimage 2022; 259:119404. [PMID: 35750254 DOI: 10.1016/j.neuroimage.2022.119404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Empathy is significantly influenced by the identification of others' emotions. In a recent study, we have found increased activation in the anterior insular cortex (aIns) that could be attributed to affect sharing rather than perceptual saliency, when seeing another person genuinely experiencing pain as opposed to merely acting to be in pain. In that prior study, effective connectivity between aIns and the right supramarginal gyrus (rSMG) was revealed to represent what another person really feels. In the present study, we used a similar paradigm to investigate the corresponding neural signatures in the domain of empathy for disgust - with participants seeing others genuinely sniffing unpleasant odors as compared to pretending to smell something disgusting (in fact the disgust expressions in both conditions were acted for reasons of experimental control). Consistent with the previous findings on pain, we found stronger activations in aIns associated with affect sharing for genuine disgust (inferred) compared with pretended disgust. However, instead of rSMG we found engagement of the olfactory cortex. Using dynamic causal modeling (DCM), we estimated the neural dynamics of aIns and the olfactory cortex between the genuine and pretended conditions. This revealed an increased excitatory modulatory effect for genuine disgust compared to pretended disgust. For genuine disgust only, brain-to-behavior regression analyses highlighted a link between the observed modulatory effect and a few empathic traits. Altogether, the current findings complement and expand our previous work, by showing that perceptual saliency alone does not explain responses in the insular cortex. Moreover, it reveals that different brain networks are implicated in a modality-specific way when sharing the affective experiences associated with pain vs. disgust.
Collapse
Affiliation(s)
- Yili Zhao
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria; Vienna Cognitive Science Hub, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria; Vienna Cognitive Science Hub, University of Vienna, Liebiggasse 5, Vienna 1010, Austria.
| |
Collapse
|
45
|
Learning about threat from friends and strangers is equally effective: An fMRI study on observational fear conditioning. Neuroimage 2022; 263:119648. [PMID: 36162633 DOI: 10.1016/j.neuroimage.2022.119648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Humans often benefit from social cues when learning about the world. For instance, learning about threats from others can save the individual from dangerous first-hand experiences. Familiarity is believed to increase the effectiveness of social learning, but it is not clear whether it plays a role in learning about threats. Using functional magnetic resonance imaging, we undertook a naturalistic approach and investigated whether there was a difference between observational fear learning from friends and strangers. Participants (observers) witnessed either their friends or strangers (demonstrators) receiving aversive (shock) stimuli paired with colored squares (observational learning stage). Subsequently, participants watched the same squares, but without receiving any shocks (direct-expression stage). We observed a similar pattern of brain activity in both groups of observers. Regions related to threat responses (amygdala, anterior insula, anterior cingulate cortex) and social perception (fusiform gyrus, posterior superior temporal sulcus) were activated during the observational phase, possibly reflecting the emotional contagion process. The anterior insula and anterior cingulate cortex were also activated during the subsequent stage, indicating the expression of learned threat. Because there were no differences between participants observing friends and strangers, we argue that social threat learning is independent of the level of familiarity with the demonstrator.
Collapse
|
46
|
Caspar EA, Ioumpa K, Arnaldo I, Di Angelis L, Gazzola V, Keysers C. Commanding or Being a Simple Intermediary: How Does It Affect Moral Behavior and Related Brain Mechanisms? eNeuro 2022; 9:ENEURO.0508-21.2022. [PMID: 36171058 PMCID: PMC9581580 DOI: 10.1523/eneuro.0508-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022] Open
Abstract
Psychology and neuroscience research have shown that fractioning operations among several individuals along a hierarchical chain allows diffusing responsibility between components of the chain, which has the potential to disinhibit antisocial actions. Here, we present two studies, one using fMRI (Study 1) and one using EEG (Study 2), designed to help understand how commanding or being in an intermediary position impacts the sense of agency and empathy for pain. In the age of military drones, we also explored whether commanding a human or robot agent influences these measures. This was done within a single behavioral paradigm in which participants could freely decide whether or not to send painful shocks to another participant in exchange for money. In Study 1, fMRI reveals that activation in social cognition-related and empathy-related brain regions was equally low when witnessing a victim receive a painful shock while participants were either commander or simple intermediary transmitting an order, compared with being the agent directly delivering the shock. In Study 2, results indicated that the sense of agency did not differ between commanders and intermediary, no matter whether the executing agent was a robot or a human. However, we observed that the neural response over P3 event-related potential was higher when the executing agent was a robot compared with a human. Source reconstruction of the EEG signal revealed that this effect was mediated by areas including the insula and ACC. Results are discussed regarding the interplay between the sense of agency and empathy for pain for decision-making.
Collapse
Affiliation(s)
- Emilie A Caspar
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- The Moral & Social Brain Lab, Department of Experimental Psychology, Ghent University, B-9000 Ghent, Belgium
| | - Kalliopi Ioumpa
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Irene Arnaldo
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Lorenzo Di Angelis
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Morris LS, Grehl MM, Rutter SB, Mehta M, Westwater ML. On what motivates us: a detailed review of intrinsic v. extrinsic motivation. Psychol Med 2022; 52:1801-1816. [PMID: 35796023 PMCID: PMC9340849 DOI: 10.1017/s0033291722001611] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022]
Abstract
Motivational processes underlie behaviors that enrich the human experience, and impairments in motivation are commonly observed in psychiatric illness. While motivated behavior is often examined with respect to extrinsic reinforcers, not all actions are driven by reactions to external stimuli; some are driven by 'intrinsic' motivation. Intrinsically motivated behaviors are computationally similar to extrinsically motivated behaviors, in that they strive to maximize reward value and minimize punishment. However, our understanding of the neurocognitive mechanisms that underlie intrinsically motivated behavior remains limited. Dysfunction in intrinsic motivation represents an important trans-diagnostic facet of psychiatric symptomology, but due to a lack of clear consensus, the contribution of intrinsic motivation to psychopathology remains poorly understood. This review aims to provide an overview of the conceptualization, measurement, and neurobiology of intrinsic motivation, providing a framework for understanding its potential contributions to psychopathology and its treatment. Distinctions between intrinsic and extrinsic motivation are discussed, including divergence in the types of associated rewards or outcomes that drive behavioral action and choice. A useful framework for understanding intrinsic motivation, and thus separating it from extrinsic motivation, is developed and suggestions for optimization of paradigms to measure intrinsic motivation are proposed.
Collapse
Affiliation(s)
- Laurel S. Morris
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mora M. Grehl
- Department of Psychology, Temple University, Philadelphia, PA 19122 USA
| | - Sarah B. Rutter
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Marishka Mehta
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Margaret L. Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
48
|
Xu X, Xin F, Liu C, Chen Y, Yao S, Zhou X, Zhou F, Huang Y, Dai J, Wang J, Zou Z, Kendrick KM, Zhou B, Becker B. Disorder- and cognitive demand-specific neurofunctional alterations during social emotional working memory in generalized anxiety disorder and major depressive disorder. J Affect Disord 2022; 308:98-105. [PMID: 35427713 DOI: 10.1016/j.jad.2022.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Generalized Anxiety Disorder (GAD) and Major Depressive Disorder (MDD) are both characterized by cognitive and social impairments. Determining disorder-specific neurobiological alterations in GAD and MDD by means of functional magnetic resonance imaging (fMRI) may promote determination of precise diagnostic markers. METHODS This study aimed to examine disorder-specific behavioral and neural alterations at the intersection of social and cognitive processing in treatment-naïve first-episode GAD (n = 35) and MDD (n = 37) patients compared to healthy controls (n = 35) by employing a social-emotional n-back fMRI paradigm. RESULTS No behavioral differences between patients and healthy controls were observed. However, GAD patients exhibited decreased bilateral dorsomedial prefrontal cortex (dmPFC) engagement during the 0-back condition yet increased dmPFC engagement during the 1-back condition compared to MDD and healthy participants. In contrast, MDD patients exhibited increased dmPFC-insula coupling during 0-back, yet decreased coupling during 1-back, compared to GAD and healthy participants. Dimensional symptom-load analysis confirmed that increased dmPFC-insula connectivity during 0-back was positively associated with depressive symptom load. LIMITATIONS The moderate sample size in the present study did not allow us to further explore gender differences. In addition, some patients exhibited GAD and MDD comorbidity according to the M.I.N.I. interview. Finally, the paradigm we used did not allow to further disentangle emotion-specific effects on working memory. CONCLUSIONS These findings suggest that the dmPFC engaged in integrating affective and cognitive components and self-other processing exhibits GAD-specific neurofunctional dysregulations whereas functional dmPFC communication with the insula, a region involved in salience processing, may represent an MDD-specific neurofunctional deficit.
Collapse
Affiliation(s)
- Xiaolei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; School of Psychology, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Congcong Liu
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Yuanshu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yulan Huang
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Chengdu Mental Health Center, The Fourth People's Hospital of Chengdu, Chengdu, Sichuan 610036, China
| | - Jinyu Wang
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Zhili Zou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Bo Zhou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| |
Collapse
|
49
|
Yoder KJ, Harenski CL, Kiehl KA, Decety J. Psychopathic traits modulate functional connectivity during pain perception and perspective-taking in female inmates. Neuroimage Clin 2022; 34:102984. [PMID: 35276604 PMCID: PMC8907686 DOI: 10.1016/j.nicl.2022.102984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
PCL-R scores are associated with altered functional connectivity in female inmates. PCL-R Factor 1 and Factor 2 subscores predicted opposite shifts in connectivity. Functional connectivity in the salience network is altered during pain perception. Connectivity in the social cognition network is altered during perspective-taking.
The ability to share and understand the distress of others is critical for successful social interactions and is a fundamental building block of morality. Psychopathy is a personality disorder that includes lack of empathy and concern for others. In the present study, functional MRI was used to examine neural responses and functional connectivity associated with empathy and affective perspective-taking in female inmates (N = 109) with various levels of psychopathic traits, as measured with Psychopathy Checklist-Revised (PCL-R). Participants viewed hands and feet in painful or non-painful situations while adopting a first person or third person perspective. All participants demonstrated robust neural responses in anterior insula (aINS), anterior cingulate (ACC), temporoparietal junction (TPJ) and supplementary motor area (SMA) when viewing pain, both during imagine-self and imagine-other blocks. Psychopathy shifted the functional connectivity seeded in core nodes of the salience and social cognition networks. Perceiving stimuli depicting somatic pain led to decreased functional coupling from right temporoparietal junction to superior temporal sulcus, which correlated with scores on PCL-R Factor 1 (Affective/Interpersonal). In contrast, connectivity from right insula to precuneus increased with Factor 2 (Lifestyle/Antisocial) scores. When adopting a third-person perspective, psychopathic traits modulated connectivity from the social cognition network, but not the salience network, with Factor 1 scores associated with increased connectivity to sensorimotor cortex and temporal pole, while Factor 2 scores were associated with decreased connectivity with ACC/SMA and inferior frontal gyrus. Overall, these results demonstrate that psychopathic traits in incarcerated females are associated with atypical functional connectivity within the salience network during pain-empathy processing and within the social cognition network during affective perspective-taking.
Collapse
Affiliation(s)
- Keith J Yoder
- Department of Psychology, University of Chicago, Chicago, IL, United States.
| | - Carla L Harenski
- The Mind Research Network and Lovelace Biomedical, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Kent A Kiehl
- The Mind Research Network and Lovelace Biomedical, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jean Decety
- Department of Psychology, University of Chicago, Chicago, IL, United States; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
Vaccaro AG, Heydari P, Christov-Moore L, Damasio A, Kaplan JT. Perspective-taking is associated with increased discriminability of affective states in the ventromedial prefrontal cortex. Soc Cogn Affect Neurosci 2022; 17:1082-1090. [PMID: 35579186 PMCID: PMC9714424 DOI: 10.1093/scan/nsac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 01/12/2023] Open
Abstract
Recent work using multivariate-pattern analysis (MVPA) on functional magnetic resonance imaging (fMRI) data has found that distinct affective states produce correspondingly distinct patterns of neural activity in the cerebral cortex. However, it is unclear whether individual differences in the distinctiveness of neural patterns evoked by affective stimuli underlie empathic abilities such as perspective-taking (PT). Accordingly, we examined whether we could predict PT tendency from the classification of blood-oxygen-level-dependent (BOLD) fMRI activation patterns while participants (n = 57) imagined themselves in affectively charged scenarios. We used an MVPA searchlight analysis to map where in the brain activity patterns permitted the classification of four affective states: happiness, sadness, fear and disgust. Classification accuracy was significantly above chance levels in most of the prefrontal cortex and in the posterior medial cortices. Furthermore, participants' self-reported PT was positively associated with classification accuracy in the ventromedial prefrontal cortex and insula. This finding has implications for understanding affective processing in the prefrontal cortex and for interpreting the cognitive significance of classifiable affective brain states. Our multivariate approach suggests that PT ability may rely on the grain of internally simulated affective representations rather than simply the global strength.
Collapse
Affiliation(s)
- Anthony G Vaccaro
- Jon Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Panthea Heydari
- Jon Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Leonardo Christov-Moore
- Jon Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Antonio Damasio
- Jon Brain and Creativity Institute, Department of Psychology, University of Southern California, Los Angeles, CA 90089-0001, USA
| | - Jonas T Kaplan
- Correspondence should be addressed to Jonas T. Kaplan, Brain and Creativity Institute, 3620A McClintock Ave, Los Angeles, CA 90089, USA. E-mail:
| |
Collapse
|