1
|
Accoti A, Becker M, Abu AEI, Vulcan J, Jun R, Widen SG, Sylla M, Popov VL, Dickson LB. Dehydration-induced Ae-Aper50 regulates midgut infection in Aedes aegypti mosquitoes. mBio 2025; 16:e0120724. [PMID: 39846744 PMCID: PMC11898677 DOI: 10.1128/mbio.01207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance. While temperature is known to impact interactions between mosquito and virus, the role of dehydration remains unknown. We identified two genetically diverse lines of the mosquito Aedes aegypti, a major arbovirus vector, with marked differences in desiccation tolerance. To determine the genetic response to dehydration between these contrasting lines, we compared gene expression profiles between desiccant- and non-desiccant-treated individuals in both the desiccation-tolerant and -susceptible lines by RNAseq. Gene expression analysis demonstrated that several genes are differentially expressed in response to desiccation stress between desiccation-tolerant and -susceptible lines. The most highly expressed transcript under desiccation stress in the desiccation-susceptible line encodes a peritrophin protein, Ae-Aper50. Peritrophins play a crucial role in peritrophic matrix formation in the mosquito midgut after a bloodmeal. Gene silencing of Ae-Aper50 by RNAi demonstrated that expression of Ae-Aper50 is required for survival of the desiccation-susceptible line under desiccation stress, but not for the desiccation-tolerant line. Moreover, the knockdown of Ae-Aper50 resulted in higher Zika virus (ZIKV) infection rates in the desiccation-tolerant line and increased ZIKV viral replication in the desiccation susceptible line, and higher chikungunya virus (CHIKV) infection rates in the desiccation-tolerant line. Altogether, these results provide a link between protection against desiccation and midgut infection, which has important implications in predicting how climate change will impact mosquito-borne viruses. IMPORTANCE Climate change will have profound impacts on the burden of viruses transmitted by mosquitoes. While we know how changes in temperature impact mosquito physiology and dynamics of viral replication within the mosquito, there is a complete lack of knowledge in how low humidity, or drought tolerance, will impact interactions between mosquitoes and arboviruses. Understanding how drought tolerance will alter mosquito infection with arboviruses is critical in predicting and preventing the impact that climate change will have on mosquito-borne viruses. This work demonstrates a functional link between dehydration tolerance and midgut infection. This knowledge significantly enhances our understanding of how the predicted increase in droughts could impact the dynamics of mosquito-borne viruses.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angel Elma I. Abu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruimei Jun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Massamba Sylla
- Laboratory Vectors and Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS, Kaffrine Campus, Kaffrine, Senegal
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- The West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele-specific expression. Proc Biol Sci 2024; 291:20241142. [PMID: 39288798 PMCID: PMC11407855 DOI: 10.1098/rspb.2024.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A. Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Eric R. Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Daniel P. McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Jon H. Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Chris S. Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, PO Box 7475, Kampala, Uganda
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Marc S. Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| |
Collapse
|
3
|
Girotti JR, Calderón-Fernández GM. Lipid Metabolism in Insect Vectors of Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38954247 DOI: 10.1007/5584_2024_811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.
Collapse
Affiliation(s)
- Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
4
|
Chen J, Liu C, Li W, Zhang W, Wang Y, Clark AG, Lu J. From sub-Saharan Africa to China: Evolutionary history and adaptation of Drosophila melanogaster revealed by population genomics. SCIENCE ADVANCES 2024; 10:eadh3425. [PMID: 38630810 PMCID: PMC11023512 DOI: 10.1126/sciadv.adh3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.
Collapse
Affiliation(s)
- Junhao Chen
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Liu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weixuan Li
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenxia Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- College of Biology, Hunan University, Changsha 410082, China
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Xu C, Fu N, Cai X, Li Z, Bian L, Xiu C, Chen Z, Ma L, Luo Z. Identification of Candidate Genes Associated with Type-II Sex Pheromone Biosynthesis in the Tea Geometrid ( Ectropis obliqua) (Lepidoptera: Geometridae). INSECTS 2024; 15:276. [PMID: 38667406 PMCID: PMC11050716 DOI: 10.3390/insects15040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Ectropis obliqua, a notorious tea pest, produces a Type-II sex pheromone blend for mate communication. This blend contains (Z,Z,Z)-3,6,9-octadecatriene, (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene, and (Z,Z)-3,9-cis-6,7-epoxy-nonadecadiene. To elucidate the genes related to the biosynthesis of these sex pheromone components, transcriptome sequencing of the female E. obliqua pheromone gland and the abdomen without pheromone gland was performed. Comparative RNAseq analyses identified 52 putative genes, including 7 fatty acyl-CoA elongases (ELOs), 9 fatty acyl-CoA reductases (FARs), 1 decarbonylase (DEC), 3 lipophorins (LIPs), and 32 cytochrome P450 enzymes (CYPs). Tissue expression profiles revealed that two ELOs (ELO3 and ELO5), two FARs (FAR2 and FAR9), one DEC (CYP4G173), and one LIP (LIP1) displayed either abdomen-centric or -specific expression, suggesting potential roles in sex pheromone biosynthesis within the oenocytes of E. obliqua. Furthermore, the tissue expression patterns, combined with phylogenetic analysis, showed that CYP340BD1, which was expressed specifically and predominantly only in the pheromone gland, was clustered with the previously reported epoxidases, highlighting its potential role in the epoxidation of the unsaturated polytriene sex pheromone components. Collectively, our research provides valuable insights into the genes linked to sex pheromone biosynthesis.
Collapse
Affiliation(s)
- Changxia Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Nanxia Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Long Ma
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
6
|
Bajda SA, Wybouw N, Nguyễn VH, De Clercq P, Van Leeuwen T. Adaptation of an arthropod predator to a challenging environment is associated with a loss of a genome-wide plastic transcriptional response. PEST MANAGEMENT SCIENCE 2024; 80:2021-2031. [PMID: 38110295 DOI: 10.1002/ps.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Structural and chemical plant defence traits may reduce the efficacy of biological control agents in integrated pest management. Breeding programmes have shown arthropod predators' potential to acclimate to challenging host plants. However, whether and how these predators adapt to novel plant environments remain unclear. Using the predatory mite Phytoseiulus persimilis - herbivorous mite Tetranychus urticae system in an experimental evolution setup, we studied the adaptation mechanisms to tomato and cucumber, plants that possess a distinct repertoire of defensive traits. RESULTS Experimental evolution experiments on whole plants revealed that allowing P. persimilis to adapt to tomatoes led to an ~100% larger population size. Independent feeding assays showed that tomato- and cucumber-adapted prey reduced predator fecundity. The deleterious effect of ingesting low-quality prey persisted after adaptation of the predator to both cucumber and tomato. We demonstrated that jasmonic acid (JA)-dependent defences reduce prey quality by evaluating predator performance on prey fed on JA defence-deficient tomato plants. Transcriptomic profiling of the replicated P. persimilis lines showed that long-term propagation on tomato and cucumber plants produces distinctive gene-expression levels. Predator adaptation to tomatoes results in the loss of a large transcriptional response, in which predicted cuticle-building rather than detoxification pathways are affected. CONCLUSION We showed that the adaptation of predatory arthropods to a novel, challenging plant does not necessarily occur via the prey, but rather through the physical environment of the plant. We provided first insights into the underlying molecular mechanisms. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sabina A Bajda
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Việt Hà Nguyễn
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Wang T, Liu X, Luo Z, Cai X, Li Z, Bian L, Xiu C, Chen Z, Li Q, Fu N. Transcriptome-Wide Identification of Cytochrome P450s in Tea Black Tussock Moth ( Dasychira baibarana) and Candidate Genes Involved in Type-II Sex Pheromone Biosynthesis. INSECTS 2024; 15:139. [PMID: 38392558 PMCID: PMC10889520 DOI: 10.3390/insects15020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
The tea black tussock moth (Dasychira baibarana), a devastating pest in Chinese tea plantations, uses a ternary Type-II pheromone blend containing (3Z,6Z)-cis-9,10-epoxyhenicosa-3,6-diene (Z3,Z6,epo9-21:H), (3Z,6Z,11E)-cis-9,10-epoxyhenicosa-3,6,11-triene (Z3,Z6,epo9,E11-21:H), and (3Z,6Z)-henicosa-3,6-dien-11-one (Z3,Z6-21:11-one) for mate communication. To elucidate the P450 candidates associated with the biosynthesis of these sex pheromone components, we sequenced the female D. baibarana pheromone gland and the abdomen excluding the pheromone gland. A total of 75 DbP450s were identified. Function annotation suggested six CYPs were orthologous genes that are linked to molting hormone metabolism, and eight antennae specifically and significantly up-regulated CYPs may play roles in odorant processing. Based on a combination of comparative RNAseq, phylogenetic, and tissue expression pattern analysis, one CYP4G with abdomen specifically predominant expression pattern was likely to be the P450 decarbonylase, while the pheromone-gland specifically and most abundant CYP341B65 was the most promising epoxidase candidate for the D. baibarana sex pheromone biosynthesis. Collectively, our research laid a valuable basis not only for further functional elucidation of the candidate P450 decarbonylase and epoxidase for the sex pheromone biosynthesis but also for understanding the physiological functions and functional diversity of the CYP gene superfamily in the D. baibarana.
Collapse
Affiliation(s)
- Tiekuang Wang
- Qinghai Academy of Agriculture and Forestry Science, Qinghai University, Xining 810016, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xufei Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Qiurong Li
- Qinghai Academy of Agriculture and Forestry Science, Qinghai University, Xining 810016, China
| | - Nanxia Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
8
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele specific expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568226. [PMID: 38045426 PMCID: PMC10690255 DOI: 10.1101/2023.11.22.568226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and cis-regulatory module sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele specific expression in hybrids of insecticide susceptible and resistant strains, suggesting cis regulation is an important mechanism of gene expression regulation in Anopheles gambiae. The genes showing allele specific expression included a higher proportion of Anopheles specific genes on average younger than genes those with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Daniel P McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jon H Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Henry D Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, P.O.Box 7475, Kampala, Uganda
| | - Craig S Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Marc S Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, New York 14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, New York 14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
9
|
Adams KL, Selland EK, Willett BC, Carew JW, Vidoudez C, Singh N, Catteruccia F. Selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles. PLoS Pathog 2023; 19:e1011448. [PMID: 37339122 DOI: 10.1371/journal.ppat.1011448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Insecticide resistance is under strong selective pressure in Anopheles mosquitoes due to widespread usage of insecticides in vector control strategies. Resistance mechanisms likely cause changes that profoundly affect mosquito physiology, yet it remains poorly understood how selective pressures imposed by insecticides may alter the ability of the mosquito to host and transmit a Plasmodium infection. From pyrethroid-resistant field-derived Anopheles gambiae s.l. mosquitoes, we established resistant (RES) and susceptible (SUS) colonies by either selection for, or loss of insecticide resistance. We show increased oocyst intensity and growth rate as well as increased sporozoite prevalence and intensity in RES compared to SUS females infected with Plasmodium falciparum. The increase in infection intensity in RES females was not associated with the presence of the kdrL1014F mutation and was not impacted by inhibition of Cytochrome P450s. The lipid transporter lipophorin (Lp), which was upregulated in RES compared to SUS, was at least partly implicated in the increased intensity of P. falciparum but not directly involved in the insecticide resistance phenotype. Interestingly, we observed that although P. falciparum infections were not affected when RES females were exposed to permethrin, these females had decreased lipid abundance in the fat body following exposure, pointing to a possible role for lipid mobilization in response to damage caused by insecticide challenge. The finding that selection for insecticide resistance can increase P. falciparum infection intensities and growth rate reinforces the need to assess the overall impact on malaria transmission dynamics caused by selective pressures mosquitoes experience during repeated insecticide challenge.
Collapse
Affiliation(s)
- Kelsey L Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Emily K Selland
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Bailey C Willett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - John W Carew
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
10
|
Moris VC, Podsiadlowski L, Martin S, Oeyen JP, Donath A, Petersen M, Wilbrandt J, Misof B, Liedtke D, Thamm M, Scheiner R, Schmitt T, Niehuis O. Intrasexual cuticular hydrocarbon dimorphism in a wasp sheds light on hydrocarbon biosynthesis genes in Hymenoptera. Commun Biol 2023; 6:147. [PMID: 36737661 PMCID: PMC9898505 DOI: 10.1038/s42003-022-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/13/2022] [Indexed: 02/05/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) cover the cuticle of insects and serve as desiccation barrier and as semiochemicals. While the main enzymatic steps of CHC biosynthesis are well understood, few of the underlying genes have been identified. Here we show how exploitation of intrasexual CHC dimorphism in a mason wasp, Odynerus spinipes, in combination with whole-genome sequencing and comparative transcriptomics facilitated identification of such genes. RNAi-mediated knockdown of twelve candidate gene orthologs in the honey bee, Apis mellifera, confirmed nine genes impacting CHC profile composition. Most of them have predicted functions consistent with current knowledge of CHC metabolism. However, we found first-time evidence for a fatty acid amide hydrolase also influencing CHC profile composition. In situ hybridization experiments furthermore suggest trophocytes participating in CHC biosynthesis. Our results set the base for experimental CHC profile manipulation in Hymenoptera and imply that the evolutionary origin of CHC biosynthesis predates the arthropods' colonization of land.
Collapse
Affiliation(s)
- Victoria C. Moris
- grid.5963.9Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany ,grid.4989.c0000 0001 2348 0746Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Lars Podsiadlowski
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Sebastian Martin
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Jan Philip Oeyen
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Alexander Donath
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Malte Petersen
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300High Performance Computing & Analytics Lab, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
| | - Jeanne Wilbrandt
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging — Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| | - Bernhard Misof
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Daniel Liedtke
- grid.8379.50000 0001 1958 8658Institute of Human Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Thamm
- grid.8379.50000 0001 1958 8658Department of Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- grid.8379.50000 0001 1958 8658Department of Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Schmitt
- grid.8379.50000 0001 1958 8658Department of Animal Ecology and Tropical Biology Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Liu S, Zhou J, Kong L, Cai Y, Liu H, Xie Z, Xiao X, James AA, Chen XG. Clock genes regulate mating activity rhythms in the vector mosquitoes, Aedes albopictus and Culex quinquefasciatus. PLoS Negl Trop Dis 2022; 16:e0010965. [PMID: 36455055 DOI: 10.1371/journal.pntd.0010965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiquan Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Qiao JW, Fan YL, Wu BJ, Bai TT, Wang YH, Zhang ZF, Wang D, Liu TX. Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. INSECT SCIENCE 2022; 29:1105-1119. [PMID: 34723412 DOI: 10.1111/1744-7917.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is involved in the metabolism of endogenous and exogenous substances, and detoxification of insecticides. RNA interference (RNAi) of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides. However, the CPR of Acyrthosiphon pisum has not been characterized, and its function is still not understood. In this study, we investigated the biochemical functions of A. pisum CPR (ApCPR). ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage, and in the gut, head, and abdominal cuticle. After optimizing the dose and silencing duration of RNAi for downregulating ApCPR, we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents, and of cuticular waxy coatings. Deficiency in cuticular hydrocarbons (CHCs) decreased the survival rate of A. pisum under desiccation stress and increased its susceptibility to contact insecticides. Moreover, desiccation stress induced a significant increase in ApCPR mRNA levels. We further confirmed that ApCPR participates in CHC production. These results indicate that ApCPR modulates CHC production, desiccation tolerance, and insecticide susceptibility in A. pisum, and presents a novel target for pest control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ying-Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Kelley M, Uhran M, Herbert C, Yoshida G, Watts ER, Limbach PA, Benoit JB. Abundances of transfer RNA modifications and transcriptional levels of tRNA-modifying enzymes are sex-associated in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103741. [PMID: 35181477 PMCID: PMC9034435 DOI: 10.1016/j.ibmb.2022.103741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 06/03/2023]
Abstract
As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis. A critical factor in the function of tRNAs is chemical modifications which contribute to codon-anticodon interactions. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine the correlation of transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males for three mosquito species. Analysis of previous male and female RNA-seq datasets indicated a similar increase in transcript levels of tRNA-modifying enzymes in females among six mosquito species, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed higher transcript levels for tRNA-modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control through suppression of fecundity.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA.
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Emmarie R Watts
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA.
| |
Collapse
|
14
|
Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids. INSECTS 2022; 13:insects13030247. [PMID: 35323544 PMCID: PMC8955173 DOI: 10.3390/insects13030247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Targeting mosquitoes with insecticides is one of the most effective methods to prevent malaria transmission. Although numbers of malaria cases have declined substantially this century, this pattern is not universal and Burkina Faso has one of the highest burdens of malaria; it is also a hotspot for the evolution of insecticide resistance in malaria vectors. We have established laboratory colonies from multiple species within the An. gambiae complex, the most efficient group of malaria vectors in the world, from larval collections in southwest Burkina Faso. Using bioassays with different insecticides widely used to control public health pests, we provide a profile of insecticide resistance in each of these colonies and, using molecular tools, reveal the genetic changes underpinning this resistance. We show that, whilst many resistance mechanisms are shared between species, there are some important differences which may affect resistance to current and future insecticide classes. The complexity, and diversity of resistance mechanisms highlights the importance of screening any potential new insecticide intended for use in malaria control against a wide range of populations. These stable laboratory colonies provide a valuable resource for insecticide discovery, and for further studies on the evolution and dispersal of insecticide resistance within and between species. Abstract Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance.
Collapse
|
15
|
Xin Y, Chen N, Wang Y, Ni R, Zhao H, Yang P, Li M, Qiu X. CYP4G8 is responsible for the synthesis of methyl-branched hydrocarbons in the polyphagous caterpillar of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103701. [PMID: 34890799 DOI: 10.1016/j.ibmb.2021.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Insect cuticular hydrocarbons (CHCs) have dual functions as physical barrier and chemical signals. The last step of CHC biosynthesis is known to be catalyzed by cytochrome P450 CYP4G in a number of insects. Until recently, studies on CYP4Gs in the context of functional evolution are rare. In this study, we analyzed sequence similarity and temporal-spatial expression patterns of the five CYP4G genes in the cotton bollworm Helicoverpa armigera, an important agricultural pest and also typical representative of lepidopteran insects. Moreover, the CRISPR/Cas9-induced knockout was used to clarify the roles of the five CYP4Gs in CHC biosynthesis. Temporal-spatial expression patterns revealed that CYP4G8 was highly expressed at all developmental stages and in most tissues examined. Larvae with CYP4G8 knocked out could not produce methyl-branched CHCs and failed to pupate, while larvae with the other four CYP4G genes knocked out (4G1-type-KO) showed no significant changes in their CHC profiles, weight gain and survival. Comparative transcriptomics revealed that knocking out CYP4G8 affected the global gene expression in larvae, especially down-regulated the expression of genes in the fatty acid biosynthetic pathway, while no significant change in 4G1-type-KO transcriptome was observed. These findings indicate that the five members of the CYP4G subfamily have undergone functional divergence: CYP4G8 maintains the essential function in CHC biosynthesis, while the function of the other four CYP4G genes remains unclear. Intriguingly, CYP4G8 has evolved to be a P450 enzyme responsible for the synthesis of larval methyl-branched hydrocarbons. The observation that CYP4G8 knockout is lethal strongly suggest that CYP4G8 may serve as a candidate target for the development of insecticidal agents for the control of cotton bollworms.
Collapse
Affiliation(s)
- Yucui Xin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongrui Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiqi Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
17
|
Szymczak-Cendlak M, Gołębiowski M, Chowański S, Pacholska-Bogalska J, Marciniak P, Rosiński G, Słocińska M. Sulfakinins influence lipid composition and insulin-like peptides level in oenocytes of Zophobas atratus beetles. J Comp Physiol B 2021; 192:15-25. [PMID: 34415387 PMCID: PMC8816747 DOI: 10.1007/s00360-021-01398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/05/2022]
Abstract
Insect sulfakinins are pleiotropic neuropeptides with the homology to vertebrate gastrin/cholecystokinin peptide family. They have been identified in many insect species and affect different metabolic processes. They have a strong influence on feeding and digestion as well as on carbohydrate and lipid processing. Our study reveals that sulfakinins influence fatty acids composition in Zophobas atratus oenocytes and regulate insulin-like peptides (ILPs) level in these cells. Oenocytes are cells responsible for maintenance of the body homeostasis and have an important role in the regulation of intermediary metabolism, especially of lipids. To analyze the lipid composition in oenocytes after sulfakinins injections we used gas chromatography combined with mass spectrometry and for ILPs level determination an immunoenzymatic test was used. Because sulfakinin peptides and their receptors are the main components of sulfakinin signaling, we also analyzed the presence of sulfakinin receptor transcript (SKR2) in insect tissues. We have identified for the first time the sulfakinin receptor transcript (SKR2) in insect oenocytes and found its distribution more widespread in the peripheral tissues (gut, fat body and haemolymph) as well as in the nervous and neuro-endocrine systems (brain, ventral nerve cord, corpora cardiaca/corpora allata CC/CA) of Z. atratus larvae. The presence of sulfakinin receptor transcript (SKR2) in oenocytes suggests that observed effects on oenocytes lipid and ILPs content may result from direction action of these peptides on oenocytes.
Collapse
Affiliation(s)
- M Szymczak-Cendlak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - M Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - S Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - J Pacholska-Bogalska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - G Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - M Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
18
|
Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors. Commun Biol 2021; 4:911. [PMID: 34312484 PMCID: PMC8313523 DOI: 10.1038/s42003-021-02434-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where traits underlying male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be determinants of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results suggest that CHC abundance may be subject to sexual selection in addition to selection by insecticide pressure. This has implications for insecticide resistance management, as these traits may be sustained in the population due to their benefits in mating even in the absence of insecticides. In this study, Adams et al. investigate the effect of cuticular hydrocarbons on mating success in natural mosquito mating swarms. These hydrocarbons confer both higher mating success and increased resistance to pyrethroid, suggesting sexual selection for insecticide resistance in this population secondary to mating success.
Collapse
|
19
|
Dietary and Plasmodium challenge effects on the cuticular hydrocarbon profile of Anopheles albimanus. Sci Rep 2021; 11:11258. [PMID: 34045618 PMCID: PMC8159922 DOI: 10.1038/s41598-021-90673-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
The cuticular hydrocarbon (CHC) profile reflects the insects' physiological states. These include age, sex, reproductive stage, and gravidity. Environmental factors such as diet, relative humidity or exposure to insecticides also affect the CHC composition in mosquitoes. In this work, the CHC profile was analyzed in two Anopheles albimanus phenotypes with different degrees of susceptibility to Plasmodium, the susceptible-White and resistant-Brown phenotypes, in response to the two dietary regimes of mosquitoes: a carbon-rich diet (sugar) and a protein-rich diet (blood) alone or containing Plasmodium ookinetes. The CHCs were analyzed by gas chromatography coupled to mass spectrometry or flame ionization detection, identifying 19 CHCs with chain lengths ranging from 20 to 37 carbons. Qualitative and quantitative changes in CHCs composition were dependent on diet, a parasite challenge, and, to a lesser extent, the phenotype. Blood-feeding caused up to a 40% reduction in the total CHC content compared to sugar-feeding. If blood contained ookinetes, further changes in the CHC profile were observed depending on the Plasmodium susceptibility of the phenotypes. Higher infection prevalence caused greater changes in the CHC profile. These dietary and infection-associated modifications in the CHCs could have multiple effects on mosquito fitness, impacts on disease transmission, and tolerance to insecticides.
Collapse
|
20
|
Grigoraki L, Grau-Bové X, Carrington Yates H, Lycett GJ, Ranson H. Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. eLife 2020; 9:e58019. [PMID: 32538778 PMCID: PMC7351493 DOI: 10.7554/elife.58019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 12/29/2022] Open
Abstract
The surface of insects is coated in cuticular hydrocarbons (CHCs); variations in the composition of this layer affect a range of traits including adaptation to arid environments and defence against pathogens and toxins. In the African malaria vector, Anopheles gambiae quantitative and qualitative variance in CHC composition have been associated with speciation, ecological habitat and insecticide resistance. Understanding how these modifications arise will inform us of how mosquitoes are responding to climate change and vector control interventions. CHCs are synthesised in sub-epidermal cells called oenocytes that are very difficult to isolate from surrounding tissues. Here we utilise a transgenic line with fluorescent oenocytes to purify these cells for the first time. Comparative transcriptomics revealed the enrichment of biological processes related to long chain fatty acyl-CoA biosynthesis and elongation of mono-, poly-unsaturated and saturated fatty acids and enabled us to delineate, and partially validate, the hydrocarbon biosynthetic pathway in An. gambiae.
Collapse
Affiliation(s)
- Linda Grigoraki
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| | - Xavier Grau-Bové
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| | | | - Gareth J Lycett
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Vector Biology DepartmentLiverpoolUnited Kingdom
| |
Collapse
|