1
|
Thies AB, Rangarajan-Paul M, Wangpraseurt D, Tresguerres M. Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana. J Exp Biol 2025; 228:jeb249849. [PMID: 40110628 DOI: 10.1242/jeb.249849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The upside-down jellyfish Cassiopea spp. host their algal symbionts inside a subset of amoebocytes, phagocytic cells that also play innate immune functions akin to macrophages from vertebrate animals. Amoebocyte precursors phagocytose algae from the jellyfish gut and store them inside intracellular compartments called symbiosomes. Subsequently, the precursors migrate to the mesoglea, differentiate into symbiotic amoebocytes, and roam throughout the jellyfish body, where the algae remain photosynthetically active and supply the jellyfish host with a significant portion of their organic carbon needs. Here, we show that the amoebocyte symbiosome membrane contains V-H+-ATPase (VHA), the proton pump that acidifies phagosomes and lysosomes in all eukaryotes. Many symbiotic amoebocytes also abundantly express a carbonic anhydrase (CA), an enzyme that reversibly hydrates CO2 into H+ and HCO3-. Moreover, we found that the symbiosome lumen is pronouncedly acidic and that pharmacological inhibition of VHA or CA activities significantly decreases photosynthetic oxygen production in live jellyfish. These results point to a carbon concentrating mechanism (CCM) that co-opts VHA and CA from the phago-lysosomal machinery that ubiquitously mediates food digestion and innate immune responses. Analogous VHA-dependent CCMs have been previously described in reef-building corals, anemones and giant clams; however, these other two cnidarians host their dinoflagellate algae inside gastrodermal cells - not in amoebocytes - and the clam hosts theirs within the gut lumen. Thus, our study identifies an example of convergent evolution at the cellular level that might broadly apply to invertebrate-microbe photosymbioses while also providing evolutionary links with intracellular and extracellular food digestion and the immune system.
Collapse
Affiliation(s)
- Angus B Thies
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maitri Rangarajan-Paul
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Gendron RL, Kwabiah RR, Paradis H, Tucker D, Boyce D, Santander J. Novel Application of Non-Invasive Methodological Approaches in Biomedical Sciences Towards Better Understanding of Marine Teleost Ocular Health and Disease. JOURNAL OF FISH DISEASES 2025; 48:e14072. [PMID: 39679642 DOI: 10.1111/jfd.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Seafood is an important resource for global nutrition and food security, with both land and marine aquaculture playing pivotal roles. High visual acuity is key for health and survival of farmed, cultured, and wild fish. Cleaner fish technology to control parasite infestation has become important in marine aquaculture and highlights the importance of visual acuity in the efficacy of cleaner fish species. New clinical diagnostic approaches towards understanding and optimising fish visual health could benefit both aquacultured and wild fish populations. Opportunities for developing and using advanced non-invasive clinical assessment and diagnosis of ocular health in wild, cultured, and experimental fish are key to more rapidly realising how threats to eye health in these animals might be better understood and mitigated. Ophthalmoscopy can rapidly and non-invasively image anatomical aspects of retinal and anterior ocular tissues and has been used in mammalian biomedicine since the turn of the 20th century. More now than ever, labour-intensive post-mortem approaches for ocular analysis such as histology are increasingly being replaced or supplemented by application of various forms of optical coherence tomography (OCT) imaging of ocular tissues in mammalian biomedicine. Advances and availability of other methodological approaches such as three-dimensional printing and computer science make instrument customisation affordable and adaptable. This review article will outline how ophthalmoscopy, OCT, and other methodologies are being applied towards understanding ocular health in teleost fish species and will describe some of the future opportunities that technological advances might afford in advancing ocular imaging in fish health and disease in general.
Collapse
Affiliation(s)
- Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Rebecca R Kwabiah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- Marine Microbial Pathogenesis and Vaccinology Lab, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Denise Tucker
- The Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
3
|
Harter TS, Smith EA, Salmerón C, Thies AB, Delgado B, Wilson RW, Tresguerres M. Soluble adenylyl cyclase is an acid-base sensor in rainbow trout red blood cells that regulates intracellular pH and haemoglobin-oxygen binding. Acta Physiol (Oxf) 2024; 240:e14205. [PMID: 39031444 DOI: 10.1111/apha.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/22/2024]
Abstract
AIM To identify the physiological role of the acid-base sensing enzyme, soluble adenylyl cyclase (sAC), in red blood cells (RBC) of the model teleost fish, rainbow trout. METHODS We used: (i) super-resolution microscopy to determine the subcellular location of sAC protein; (ii) live-cell imaging of RBC intracellular pH (pHi) with specific sAC inhibition (KH7 or LRE1) to determine its role in cellular acid-base regulation; (iii) spectrophotometric measurements of haemoglobin-oxygen (Hb-O2) binding in steady-state conditions; and (iv) during simulated arterial-venous transit, to determine the role of sAC in systemic O2 transport. RESULTS Distinct pools of sAC protein were detected in the RBC cytoplasm, at the plasma membrane and within the nucleus. Inhibition of sAC decreased the setpoint for RBC pHi regulation by ~0.25 pH units compared to controls, and slowed the rates of RBC pHi recovery after an acid-base disturbance. RBC pHi recovery was entirely through the anion exchanger (AE) that was in part regulated by HCO3 --dependent sAC signaling. Inhibition of sAC decreased Hb-O2 affinity during a respiratory acidosis compared to controls and reduced the cooperativity of O2 binding. During in vitro simulations of arterial-venous transit, sAC inhibition decreased the amount of O2 that is unloaded by ~11%. CONCLUSION sAC represents a novel acid-base sensor in the RBCs of rainbow trout, where it participates in the modulation of RBC pHi and blood O2 transport though the regulation of AE activity. If substantiated in other species, these findings may have broad implications for our understanding of cardiovascular physiology in vertebrates.
Collapse
Affiliation(s)
- Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Emma A Smith
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Cristina Salmerón
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Angus B Thies
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Bryan Delgado
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Rod W Wilson
- Biosciences Department, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Wang T, Berenbrink M. Rapid restoration of intracellular pH in erythrocytes protects oxygen transport. Acta Physiol (Oxf) 2024; 240:e14218. [PMID: 39148445 DOI: 10.1111/apha.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Tobias Wang
- Department of Biology, Section for Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Michael Berenbrink
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Harter TS, Dichiera AM, Esbaugh AJ. The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes. J Comp Physiol B 2024; 194:717-737. [PMID: 38842596 DOI: 10.1007/s00360-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Carbonic anhydrase (CA) activity is ubiquitously found in all vertebrate species, tissues and cellular compartments. Most species have plasma-accessible CA (paCA) isoforms at the respiratory surfaces, where the enzyme catalyzes the conversion of plasma bicarbonate to carbon dioxide (CO2) that can be excreted by diffusion. A notable exception are the teleost fishes that appear to lack paCA at their gills. The present review: (i) recapitulates the significance of CA activity and distribution in vertebrates; (ii) summarizes the current evidence for the presence or absence of paCA at the gills of fishes, from the basal cyclostomes to the derived teleosts and extremophiles such as the Antarctic icefishes; (iii) explores the contribution of paCA to organismal CO2 excretion in fishes; and (iv) the functional significance of its absence at the gills, for the specialized system of O2 transport in most teleosts; (v) outlines the multiplicity and isoform distribution of membrane-associated CAs in fishes and methodologies to determine their plasma-accessible orientation; and (vi) sketches a tentative time line for the evolutionary dynamics of branchial paCA distribution in the major groups of fishes. Finally, this review highlights current gaps in the knowledge on branchial paCA function and provides recommendations for future work.
Collapse
Affiliation(s)
- Till S Harter
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Angelina M Dichiera
- College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
6
|
Negrete B, Ackerly KL, Esbaugh AJ. Implications of chronic hypoxia during development in red drum. J Exp Biol 2024; 227:jeb247618. [PMID: 39092456 DOI: 10.1242/jeb.247618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
- Department of Zoology, The University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
7
|
Ramírez-Calero S, Paula JR, Otjacques E, Ravasi T, Rosa R, Schunter C. Neuromolecular responses in disrupted mutualistic cleaning interactions under future environmental conditions. BMC Biol 2023; 21:258. [PMID: 37957664 PMCID: PMC10644551 DOI: 10.1186/s12915-023-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mutualistic interactions, which constitute some of the most advantageous interactions among fish species, are highly vulnerable to environmental changes. A key mutualistic interaction is the cleaning service rendered by the cleaner wrasse, Labroides dimidiatus, which involves intricate processes of social behaviour to remove ectoparasites from client fish and can be altered in near-future environmental conditions. Here, we evaluated the neuromolecular mechanisms behind the behavioural disruption of cleaning interactions in response to future environments. We subjected cleaner wrasses and surgeonfish (Acanthurus leucosternon, serving as clients) to elevated temperature (warming, 32 °C), increased levels of CO2 (high CO2, 1000 ppm), and a combined condition of elevated CO2 and temperature (warming and high CO2, 32 °C, and 1000 ppm) for 28 days. RESULTS Each of these conditions resulted in behavioural disruptions concerning the motivation to interact and the quality of interaction (high CO2 - 80.7%, warming - 92.6%, warming and high CO2 - 79.5%, p < 0.001). Using transcriptomics of the fore-, mid-, and hindbrain, we discovered that most transcriptional reprogramming in both species under warming conditions occurred primarily in the hind- and forebrain. The associated functions under warming were linked to stress, heat shock proteins, hypoxia, and behaviour. In contrast, elevated CO2 exposure affected a range of functions associated with GABA, behaviour, visual perception, thyroid hormones and circadian rhythm. Interestingly, in the combined warming and high CO2 condition, we did not observe any expression changes of behaviour. However, we did find signs of endoplasmic reticulum stress and apoptosis, suggesting not only an additive effect of the environmental conditions but also a trade-off between physiological performance and behaviour in the cleaner wrasse. CONCLUSIONS We show that impending environmental shifts can affect the behaviour and molecular processes that sustain mutualistic interactions between L. dimidiatus and its clients, which could have a cascading effect on their adaptation potential and possibly cause large-scale impacts on coral reef ecosystems.
Collapse
Affiliation(s)
- S Ramírez-Calero
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Pg. Marítim de La Barceloneta 37-49, Barcelona, Spain
| | - J R Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - E Otjacques
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, University of Coimbra, 3000-456, Coimbra, Portugal
| | - T Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-Son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - R Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - C Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China.
| |
Collapse
|
8
|
Harter TS, Smith EA, Tresguerres M. A novel perspective on the evolutionary loss of plasma-accessible carbonic anhydrase at the teleost gill. J Exp Biol 2023; 226:jeb246016. [PMID: 37694374 PMCID: PMC10629482 DOI: 10.1242/jeb.246016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
The gills of most teleost fishes lack plasma-accessible carbonic anhydrase (paCA) that could participate in CO2 excretion. We tested the prevailing hypothesis that paCA would interfere with red blood cell (RBC) intracellular pH regulation by β-adrenergic sodium-proton exchangers (β-NHE) that protect pH-sensitive haemoglobin-oxygen (Hb-O2) binding during an acidosis. In an open system that mimics the gills, β-NHE activity increased Hb-O2 saturation during a respiratory acidosis in the presence or absence of paCA, whereas the effect was abolished by NHE inhibition. However, in a closed system that mimics the tissue capillaries, paCA disrupted the protective effects of β-NHE activity on Hb-O2 binding. The gills are an open system, where CO2 generated by paCA can diffuse out and is not available to acidifying the RBCs. Therefore, branchial paCA in teleosts may not interfere with RBC pH regulation by β-NHEs, and other explanations for the evolutionary loss of the enzyme must be considered.
Collapse
Affiliation(s)
- Till S. Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma A. Smith
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Ricci V, Ronco F, Boileau N, Salzburger W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. SCIENCE ADVANCES 2023; 9:eadg6568. [PMID: 37672578 PMCID: PMC10482347 DOI: 10.1126/sciadv.adg6568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Tuning the visual sensory system to the ambient light is essential for survival in many animal species. This is often achieved through duplication, functional diversification, and/or differential expression of visual opsin genes. Here, we examined 753 new retinal transcriptomes from 112 species of cichlid fishes from Lake Tanganyika to unravel adaptive changes in gene expression at the macro-evolutionary and ecosystem level of one of the largest vertebrate adaptive radiations. We found that, across the radiation, all seven cone opsins-but not the rhodopsin-rank among the most differentially expressed genes in the retina, together with other vision-, circadian rhythm-, and hemoglobin-related genes. We propose two visual palettes characteristic of very shallow- and deep-water living species, respectively, and show that visual system adaptations along two major ecological axes, macro-habitat and diet, occur primarily via gene expression variation in a subset of cone opsin genes.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Xie J, Sun X, Li P, Zhou T, Jiang R, Wang X. The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis). MARINE POLLUTION BULLETIN 2023; 190:114831. [PMID: 36944286 DOI: 10.1016/j.marpolbul.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.
Collapse
Affiliation(s)
- Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohan Sun
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Pengfei Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Rijin Jiang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Nelson C, Dichiera AM, Jung EH, Brauner CJ. An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout. J Comp Physiol B 2023; 193:293-305. [PMID: 37029801 DOI: 10.1007/s00360-023-01484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
The unique teleost oxygenation system that permits enhanced oxygen unloading during stress comprises three main characteristics: pH-sensitive haemoglobin, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma-accessible carbonic anhydrase (paCA). A heterogeneous distribution of paCA is essential; its presence permits enhanced oxygen unloading during stress, while its absence at the gills maintains conditions for oxygen uptake by pH-sensitive haemoglobins. We hypothesised that paCA would be absent in all four gill arches, as has been previously indicated for arch two, and that paCA would be present in all other tissues. Through a suite of biochemical and molecular methods, we confirmed the absence of paCA from all four arches. We also found evidence for paCA in nine other tissues and a lack of paCA availability in the stomach. Expression was highly variable between tissues and suggests these differences may be associated with their respective metabolic activities. Additionally, we analysed the specific CA-IV isoform expressed within each tissue and showed almost complete separation of expression between tissues; CA-IVa was detected in the heart, brain, anterior intestine, and liver, whereas CA-IVb was detected in all intestine sections, pyloric caeca, kidney, and white muscle. This adds to a growing collection of work suggesting CA-IVa and b play divergent roles in gas exchange and ion/acid-base balance, respectively. The current study represents the first comprehensive atlas of paCA availability within the circulatory system of the model teleost, rainbow trout, and fills important gaps in our knowledge of this unique oxygenation system.
Collapse
Affiliation(s)
| | | | - Ellen H Jung
- University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Colin J Brauner
- University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
12
|
Tigert LR, Porteus CS. Invited review - the effects of anthropogenic abiotic stressors on the sensory systems of fishes. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111366. [PMID: 36586568 DOI: 10.1016/j.cbpa.2022.111366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Climate change is a growing global issue with many countries and institutions declaring a climate state of emergency. Excess CO2 from anthropogenic sources and changes in land use practices are contributing to many detrimental changes, including increased global temperatures, ocean acidification and hypoxic zones along coastal habitats. All senses are important for aquatic animals, as it is how they can perceive and respond to their environment. Some of these environmental challenges have been shown to impair their sensory systems, including the olfactory, visual, and auditory systems. While most of the research is focused on how ocean acidification affects olfaction, there is also evidence that it negatively affects vision and hearing. The effects that temperature and hypoxia have on the senses have also been investigated, but to a much lesser extent in comparison to ocean acidification. This review assembles the known information on how these anthropogenic challenges affect the sensory systems of fishes, but also highlights what gaps in knowledge remain with suggestions for immediate action. Olfaction, vision, otolith, pH, freshwater, seawater, marine, central nervous system, electrophysiology, mechanism.
Collapse
Affiliation(s)
- Liam R Tigert
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada. https://twitter.com/cosimaporteus
| |
Collapse
|
13
|
Dichiera AM, De Anda V, Gilmour KM, Baker BJ, Esbaugh AJ. Functional divergence of teleost carbonic anhydrase 4. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111368. [PMID: 36642322 DOI: 10.1016/j.cbpa.2023.111368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The functional role of membrane-bound carbonic anhydrases (CAs) has been of keen interest in the past decade, and in particular, studies have linked CA in red muscle, heart, and eye to enhanced tissue oxygen extraction in bony fishes (teleosts). However, the number of purported membrane-bound CA isoforms in teleosts, combined with the imperfect system of CA isoform nomenclature, present roadblocks for ascribing physiological functions to particular CA isoforms across different teleost lineages. Here we developed an organizational framework for membrane-bound CAs in teleosts, providing the latest phylogenetic analysis of extant CA4 and CA4-like isoforms. Our data confirm that there are three distinct isoforms of CA4 (a, b, and c) that are conserved across major teleost lineages, with the exception of CA4c gene being lost in salmonids. Tissue distribution analyses suggest CA4a functions in oxygen delivery across teleost lineages, while CA4b may be specialized for renal acid-base balance and ion regulation. This work provides an important foundation for researchers to elucidate the functional significance of CA4 isoforms in fishes.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Valerie De Anda
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/val_deanda
| | | | - Brett J Baker
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA. https://twitter.com/archaeal
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
14
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
15
|
Negrete B, Ackerly KL, Dichiera AM, Esbaugh AJ. Respiratory plasticity improves aerobic performance in hypoxia in a marine teleost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157880. [PMID: 35944637 DOI: 10.1016/j.scitotenv.2022.157880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Ocean deoxygenation is a pressing concern in the face of climate change. In response to prolonged hypoxia, fishes have demonstrated the ability to dynamically regulate hemoglobin (Hb) expression to enhance oxygen (O2) uptake. Here, we examined hypoxia-inducible Hb expression in red drum (Sciaenops ocellatus) and the subsequent implications on Hb-O2 binding affinity and aerobic scope. Fish were acclimated to 30 % air saturation for 1 d, 4 d, 8 d, 2 w, or 6 w, and red blood cells were collected for gene expression and biochemical profiling. Hypoxia acclimation induced significant up-regulation of one Hb subunit isoform (hbα 2) relative to control by 4 d with consistent upregulation thereafter. Hematocrit increased in hypoxia, with no changes in the allosteric modulator [NTP] at any time point. Changes in Hb expression co-occurred with a reduced Root effect (~26 % in normoxia, ~14 % in hypoxia) at a physiologically relevant pH while increasing O2 binding affinity (i.e., lower P50). These changes correlated with increased maximum metabolic rate and aerobic scope relative to controls when fish were tested in hypoxia. These results demonstrate an important role for Hb multiplicity in improving O2 affinity and maximizing respiratory performance in hypoxia.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Angelina M Dichiera
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
16
|
Dichiera AM, Negrete, Jr B, Ackerly KL, Esbaugh AJ. The role of carbonic anhydrase-mediated tissue oxygen extraction in a marine teleost acclimated to hypoxia. J Exp Biol 2022; 225:281316. [DOI: 10.1242/jeb.244474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT
With the growing prevalence of hypoxia (O2 levels ≤2 mg l−1) in aquatic and marine ecosystems, there is increasing interest in the adaptive mechanisms fish may employ to better their performance in stressful environments. Here, we investigated the contribution of a proposed strategy for enhancing tissue O2 extraction – plasma-accessible carbonic anhydrase (CA-IV) – under hypoxia in a species of estuarine fish (red drum, Sciaenops ocellatus) that thrives in fluctuating habitats. We predicted that hypoxia-acclimated fish would increase the prevalence of CA-IV in aerobically demanding tissues to confer more efficient tissue O2 extraction. Furthermore, we predicted the phenotypic changes to tissue O2 extraction that occur with hypoxia acclimation may improve respiratory and swim performance under 100% O2 conditions (i.e. normoxia) when compared with performance in fish that have not been acclimated to hypoxia. Interestingly, there were no significant differences in relative CA-IV mRNA expression, protein abundance or enzyme activity between the two treatments, suggesting CA-IV function is maintained under hypoxia. Likewise, respiratory performance of hypoxia-acclimated fish was similar to that of control fish when tested in normoxia. Critical swim speed (Ucrit) was significantly higher in hypoxia-acclimated fish but translated to marginal ecological benefits with an increase of ∼0.3 body lengths per second. Instead, hypoxia-acclimated fish may have relied more heavily on anaerobic metabolism during their swim trials, utilizing burst swimming 1.5 times longer than control fish. While the maintenance of CA-IV may still be an important contributor for hypoxia tolerance, our evidence suggests hypoxia-acclimated red drum are using other mechanisms to cope in an O2-depleted environment.
Collapse
Affiliation(s)
- Angelina M. Dichiera
- The University of British Columbia 1 Department of Zoology , , Vancouver, BC , Canada V6T 1Z4
| | - Benjamin Negrete, Jr
- Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
| | - Andrew J. Esbaugh
- Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
| |
Collapse
|
17
|
McCormick LR, Levin LA, Oesch NW. Reduced Oxygen Impairs Photobehavior in Marine Invertebrate Larvae. THE BIOLOGICAL BULLETIN 2022; 243:255-271. [PMID: 36548968 DOI: 10.1086/717565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOrganisms in coastal waters experience naturally high oxygen variability and steep oxygen gradients with depth, in addition to ocean deoxygenation. They often undergo diel vertical migration involving a change in irradiance that initiates a visual behavior. Retinal function has been shown to be highly sensitive to oxygen loss; here we assess whether visual behavior (photobehavior) in paralarvae of the squid Doryteuthis opalescens and the octopus Octopus bimaculatus is affected by low oxygen conditions, using a novel behavioral paradigm. Larvae showed an irradiance-dependent, descending photobehavior after extinction of the light stimulus, measured through the change in vertical position of larvae in the chamber. The magnitude of photobehavior was decreased as oxygen was reduced, and the response was entirely gone at <6.4 kPa partial pressure of oxygen (<74.7 μmol kg-1 at 15.3 °C) in D. opalescens paralarvae. Oxygen also affected photobehavior in O. bimaculatus paralarvae. The mean vertical velocity of paralarvae was unaffected by exposure to reduced oxygen, indicating that oxygen deficits selectively affect vision prior to locomotion. These findings suggest that variable and declining oxygen conditions in coastal upwelling areas and elsewhere will impair photobehavior and likely affect the distribution, migration behavior, and survival of highly visual marine species.
Collapse
|
18
|
Kwan GT, Frable BW, Thompson AR, Tresguerres M. Optimizing immunostaining of archival fish samples to enhance museum collection potential. Acta Histochem 2022; 124:151952. [PMID: 36099745 DOI: 10.1016/j.acthis.2022.151952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Immunohistochemistry (IHC) is a powerful biochemical technique that uses antibodies to specifically label and visualize proteins of interests within biological samples. However, fluid-preserved specimens within natural history collection often use fixatives and protocols that induce high background signal (autofluorescence), which hampers IHC as it produces low signal-to-noise ratio. Here, we explored techniques to reduce autofluorescence using sodium borohydride (SBH), citrate buffer, and their combination on fish tissue preserved with paraformaldehyde, formaldehyde, ethanol, and glutaraldehyde. We found SBH was the most effective quenching technique, and applied this pretreatment to the gill or skin of 10 different archival fishes - including specimens that had been preserved in formaldehyde or ethanol for up to 65 and 37 years, respectively. The enzyme Na+/K+-ATPase (NKA) was successfully immunostained and imaged using confocal fluorescence microscopy, allowing for the identification and characterization of NKA-rich ionocytes essential for fish ionic and acid-base homeostasis. Altogether, our SBH-based method facilitates the use of IHC on archival samples, and unlocks the historical record on fish biological responses to environmental factors (such as climate change) using specimens from natural history collections that were preserved decades to centuries ago.
Collapse
Affiliation(s)
- Garfield T Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA; NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA.
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Andrew R Thompson
- NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA
| |
Collapse
|
19
|
Meleppat RK, Fortenbach CR, Jian Y, Martinez ES, Wagner K, Modjtahedi BS, Motta MJ, Ramamurthy DL, Schwab IR, Zawadzki RJ. In Vivo Imaging of Retinal and Choroidal Morphology and Vascular Plexuses of Vertebrates Using Swept-Source Optical Coherence Tomography. Transl Vis Sci Technol 2022; 11:11. [PMID: 35972433 PMCID: PMC9396679 DOI: 10.1167/tvst.11.8.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To perform in vivo evaluation of the structural morphology and vascular plexuses of the neurosensory retina and choroid across vertebrate species using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography (SS-OCTA) imaging. Methods A custom-built SS-OCT system with an incorporated flexible imaging arm was used to acquire the three-dimensional (3D) retinal OCT and vascular OCTA data of five different vertebrates: a mouse (C57BL/6J), a rat (Long Evans), a gray short-tailed opossum (Monodelphis domestica), a white sturgeon (Acipenser transmontanus), and a great horned owl (Bubo virginianus). Results In vivo structural morphology of the retina and choroid, as well as en face OCTA images of retinal and choroidal vasculature of all species were generated. The retinal morphology and vascular plexuses were similar between rat and mouse, whereas distinct choroidal and paired superficial vessels were observed in the opossum retina. The retinal and vascular structure of the sturgeon, as well as the pecten oculi and overlying the avascular and choroidal vasculature in the owl retina are reported in vivo. Conclusions A high-quality two-dimensional and 3D in vivo visualization of the retinal structures and en face visualization of the retina and choroidal vascular plexus of vertebrates was possible. Our studies affirm that SS-OCT and SS-OCTA are viable methods for evaluating the in vivo retinal and choroidal structure across terrestrial, aquatic, and aerial vertebrates. Translational Relevance In vivo characterization of retinal morphology and vasculature plexus of multiple species using SS-OCT and SS-OCTA imaging can increase the pool of species available as models of human retinal diseases.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, USA.,Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| | - Christopher R Fortenbach
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Esteban Soto Martinez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Karen Wagner
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Bobeck S Modjtahedi
- Department of Research and Evaluation, Southern California Permanente Medical Group, Pasadena, CA, USA.,Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Monica J Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Deepa L Ramamurthy
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Ivan R Schwab
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, USA.,Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
20
|
Damsgaard C, Country MW. The Opto-Respiratory Compromise: Balancing Oxygen Supply and Light Transmittance in the Retina. Physiology (Bethesda) 2022; 37:101-113. [PMID: 34843655 PMCID: PMC9159541 DOI: 10.1152/physiol.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The light-absorbing retina has an exceptionally high oxygen demand, which imposes two conflicting needs: high rates of blood perfusion and an unobstructed light path devoid of blood vessels. This review discusses mechanisms and physiological trade-offs underlying retinal oxygen supply in vertebrates and examines how these physiological systems supported the evolution of vision.
Collapse
Affiliation(s)
- Christian Damsgaard
- 1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,2Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Michael W. Country
- 3Retinal Neurophysiology Section, National Eye Institute,
National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
McKenzie EKG, Kwan GT, Tresguerres M, Matthews PGD. A pH-powered mechanochemical engine regulates the buoyancy of Chaoborus midge larvae. Curr Biol 2022; 32:927-933.e5. [PMID: 35081331 DOI: 10.1016/j.cub.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
The freshwater aquatic larvae of the Chaoborus midge are the world's only truly planktonic insects, regulating their buoyancy using two pairs of internal air-filled sacs, one in the thorax and the other in the seventh abdominal segment. In 1911, August Krogh demonstrated the larvae's ability to control their buoyancy by exposing them to an increase in hydrostatic pressure.1 However, how these insects control the volume of their air-sacs has remained a mystery. Gas is not secreted into the air-sacs, as the luminal gas composition is always the same as that dissolved in the surrounding water.1,2 Instead, the air-sac wall was thought to play some role.3-6 Here we reveal that bands of resilin in the air-sac's wall are responsible for the changes in volume. These bands expand and contract in response to changes in pH generated by an endothelium that envelops the air-sac. Vacuolar type H+ V-ATPase (VHA) in the endothelium acidifies and shrinks the air-sac, while alkalinization and expansion are regulated by the cyclic adenosine monophosphate signal transduction pathway. Thus, Chaoborus air-sacs function as mechanochemical engines, transforming pH changes into mechanical work against hydrostatic pressure. As the resilin bands interlaminate with bands of cuticle, changes in resilin volume are constrained to a single direction along the air-sac's longitudinal axis. This makes the air-sac functionally equivalent to a cross-striated pH muscle and demonstrates a unique biological role for resilin as an active structural element.
Collapse
Affiliation(s)
- Evan K G McKenzie
- Department of Zoology, The University of British Columbia, Vancouver, Canada.
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Philip G D Matthews
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Barott KL, Thies AB, Tresguerres M. V-type H +-ATPase in the symbiosome membrane is a conserved mechanism for host control of photosynthesis in anthozoan photosymbioses. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211449. [PMID: 35116156 PMCID: PMC8790332 DOI: 10.1098/rsos.211449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
In reef-building corals (order Scleractinia) and giant clams (phylum Molluca), V-type H+-ATPase (VHA) in host cells is part of a carbon concentrating mechanism (CCM) that regulates photosynthetic rates of their symbiotic algae. Here, we show that VHA plays a similar role in the sea anemone Anemonia majano, a member of the order Actinaria and sister group to the Scleractinia, which in contrast to their colonial calcifying coral relatives is a solitary, soft-bodied taxa. Western blotting and immunofluorescence revealed that VHA was abundantly present in the host-derived symbiosome membrane surrounding the photosymbionts. Pharmacological inhibition of VHA activity in individual anemones resulted in an approximately 80% decrease of photosynthetic O2 production. These results extend the presence of a host-controlled VHA-dependent CCM to non-calcifying cnidarians of the order Actiniaria, suggesting it is widespread among photosymbiosis between aquatic invertebrates and Symbiodiniaceae algae.
Collapse
Affiliation(s)
- Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angus B. Thies
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Harter TS, Clifford AM, Tresguerres M. Adrenergically induced translocation of red blood cell β-adrenergic sodium-proton exchangers has ecological relevance for hypoxic and hypercapnic white seabass. Am J Physiol Regul Integr Comp Physiol 2021; 321:R655-R671. [PMID: 34494485 DOI: 10.1152/ajpregu.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
White seabass (Atractoscion nobilis) increasingly experience periods of low oxygen (O2; hypoxia) and high carbon dioxide (CO2, hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O2 carrier in the blood and in many teleost fishes Hb-O2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O2-carrying capacity during hypoxia and hypercapnia. We determined the O2-binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O2 affinity (Po2 at half-saturation; P50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient -0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHE activity. The activation of RBC β-NHEs increased Hb-O2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.
Collapse
Affiliation(s)
- Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
24
|
Oteiza P, Baldwin MW. Evolution of sensory systems. Curr Opin Neurobiol 2021; 71:52-59. [PMID: 34600187 DOI: 10.1016/j.conb.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023]
Abstract
Sensory systems evolve and enable organisms to perceive their sensory Umwelt, the unique set of cues relevant for their survival. The multiple components that comprise sensory systems - the receptors, cells, organs, and dedicated high-order circuits - can vary greatly across species. Sensory receptor gene families can expand and contract across lineages, resulting in enormous sensory diversity. Comparative studies of sensory receptor function have uncovered the molecular basis of receptor properties and identified novel sensory receptor classes and noncanonical sensory strategies. Phylogenetically informed comparisons of sensory systems across multiple species can pinpoint when sensory changes evolve and highlight the role of contingency in sensory system evolution.
Collapse
Affiliation(s)
- Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| |
Collapse
|
25
|
Ciaccio C, Coletta A, Coletta M. Role of hemoglobin structural-functional relationships in oxygen transport. Mol Aspects Med 2021; 84:101022. [PMID: 34509280 DOI: 10.1016/j.mam.2021.101022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The molecular mechanism of O2 binding to hemoglobin (Hb) has been critically reviewed on the basis of the information built up in the last decades. It allows to describe in detail from the kinetic and thermodynamic viewpoint the process of O2 uptake in the lungs and release to the tissues, casting some light on the physiological and pathological aspects of this process. The relevance of structural-functional relationships for O2 binding is particularly outlined in the case of poorly vascularized tissues, such as retina, briefly discussing of strategies employed for optimization of oxygen supply to this type of tissues.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy
| | | | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy; IRCCS Fondazione Bietti, Rome, Italy.
| |
Collapse
|
26
|
Dichiera AM, Khursigara AJ, Esbaugh AJ. The effects of warming on red blood cell carbonic anhydrase activity and respiratory performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111033. [PMID: 34252533 DOI: 10.1016/j.cbpa.2021.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Measures of fitness are valuable tools to predict species' responses to environmental changes, like increased water temperature. Aerobic scope (AS) is a measure of an individual's capacity for aerobic processes, and frequently used as a proxy for fitness. However, AS is complicated by individual variation found not only within a species, but within similar body sizes as well. Maximum metabolic rate (MMR), one of the factors determining AS, is constrained by an individual's ability to deliver and extract oxygen (O2) at the tissues. Recently, data has shown that red blood cell carbonic anhydrase (RBC CA) is rate-limiting for O2 delivery in red drum (Sciaenops ocellatus). We hypothesized increased temperature impacts MMR and RBC CA activity in a similar manner, and that an individual's RBC CA activity drives individual variation in AS. Red drum were acutely exposed to increased temperature (+6 °C; 22 °C to 28 °C) for 24 h prior to exhaustive exercise and intermittent-flow respirometry at 28 °C. RBC CA activity was measured before temperature exposure and after aerobic performance. Due to enzymatic thermal sensitivity, acute warming increased individual RBC CA activity by 36%, while there was no significant change in the control (22 °C) treatment. Interestingly, average MMR of the acute warming treatment was 36% greater than that of control drum. However, we found no relationships between individual RBC CA activity and their respective MMR and AS at either temperature. While warming similarly affects RBC CA activity and MMR, RBC CA activity is not a predictor of individual MMR.
Collapse
Affiliation(s)
- Angelina M Dichiera
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Alexis J Khursigara
- The University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
27
|
Esbaugh AJ, Ackerly KL, Dichiera AM, Negrete B. Is hypoxia vulnerability in fishes a by-product of maximum metabolic rate? J Exp Biol 2021; 224:269306. [PMID: 34184035 DOI: 10.1242/jeb.232520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metabolic index concept combines metabolic data and known thermal sensitivities to estimate the factorial aerobic scope of animals in different habitats, which is valuable for understanding the metabolic demands that constrain species' geographical distributions. An important assumption of this concept is that the O2 supply capacity (which is equivalent to the rate of oxygen consumption divided by the environmental partial pressure of oxygen: ) is constant at O2 tensions above the critical O2 threshold (i.e. the where O2 uptake can no longer meet metabolic demand). This has led to the notion that hypoxia vulnerability is not a selected trait, but a by-product of selection on maximum metabolic rate. In this Commentary, we explore whether this fundamental assumption is supported among fishes. We provide evidence that O2 supply capacity is not constant in all fishes, with some species exhibiting an elevated O2 supply capacity in hypoxic environments. We further discuss the divergent selective pressures on hypoxia- and exercise-based cardiorespiratory adaptations in fishes, while also considering the implications of a hypoxia-optimized O2 supply capacity for the metabolic index concept.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Kerri L Ackerly
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Angelina M Dichiera
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Benjamin Negrete
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| |
Collapse
|
28
|
Harter TS, Brauner CJ. Teleost red blood cells actively enhance the passive diffusion of oxygen that was discovered by August Krogh. Comp Biochem Physiol A Mol Integr Physiol 2021; 253:110855. [DOI: 10.1016/j.cbpa.2020.110855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
|
29
|
Dichiera AM, Esbaugh AJ. Red blood cell carbonic anhydrase mediates oxygen delivery via the Root effect in red drum. ACTA ACUST UNITED AC 2020; 223:223/22/jeb232991. [PMID: 33243926 DOI: 10.1242/jeb.232991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Oxygen (O2) and carbon dioxide (CO2) transport are tightly coupled in many fishes as a result of the presence of Root effect hemoglobins (Hb), whereby reduced pH reduces O2 binding even at high O2 tensions. Red blood cell carbonic anhydrase (RBC CA) activity limits the rate of intracellular acidification, yet its role in O2 delivery has been downplayed. We developed an in vitro assay to manipulate RBC CA activity while measuring Hb-O2 offloading following a physiologically relevant CO2-induced acidification. RBC CA activity in red drum (Sciaenops ocellatus) was inhibited with ethoxzolamide by 53.7±0.5%, which prompted a significant reduction in O2 offloading rate by 54.3±5.4% (P=0.0206, two-tailed paired t-test; n=7). Conversely, a 2.03-fold increase in RBC CA activity prompted a 2.14-fold increase in O2 offloading rate (P<0.001, two-tailed paired t-test; n=8). This approximately 1:1 relationship between RBC CA activity and Hb-O2 offloading rate coincided with a similar allometric scaling exponent for RBC CA activity and maximum metabolic rate. Together, our data suggest that RBC CA is rate limiting for O2 delivery in red drum.
Collapse
Affiliation(s)
- Angelina M Dichiera
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|