1
|
Kamii M, Kamata R, Saito H, Yamamoto G, Mashima C, Yamauchi T, Nakao T, Sakae Y, Yamamori-Morita T, Nakai K, Hakozaki Y, Takenaka M, Okamoto A, Ohashi A. PARP inhibitors elicit a cellular senescence mediated inflammatory response in homologous recombination proficient cancer cells. Sci Rep 2025; 15:15458. [PMID: 40316566 PMCID: PMC12048520 DOI: 10.1038/s41598-025-00336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have improved the prognosis of homologous recombination deficient (HRD) ovarian cancer (OC), while effective therapeutic strategies for HR-proficient (HRP) OC still need to be established. This study investigates senescence-mediated inflammation as a novel mechanism of action for PARP inhibitors in HRP cancers. Transcriptome analyses were performed in olaparib-treated HeLa cells as a HRP model. Interferon regulatory factor-Lucia luciferase (IRF-Luc) reporter activity was assessed. The effects of PARP inhibitors on senescence-like phenotypes were assessed in seven HRP cancer cell lines, based on morphological changes, senescence-associated β-galactosidase (SA-β-GAL) activity, cellular granularity, and senescence-associated secretory phenotype (SASP)-related gene expression. Peripheral blood mononuclear cell (PBMC) migration assays were also performed with the conditioned medium in treatment with the PARP inhibitor. Transcriptome analyses revealed numbers of inflammatory cytokine- and chemokine-related pathways were significantly upregulated in olaparib-treated HeLa cells, which were confirmed by IRF-Luc reporter assays. The PARP inhibitors induced senescent phenotypes in HRP cancer cell lines: flattened and enlarged morphology, increased SA-β-GAL activity, elevated cellular granularity, and upregulated expressions of SASP-related genes (e.g., IL1B, IL6, and CXCL10). Furthermore, in vitro migration assays revealed that PARP inhibitor-treated HRP cancer cells attracted PBMCs more abundantly, suggesting the potential for recruiting immune cells to HRP cancer cells through senescence-mediated immunological activation. Our findings suggest that PARP inhibitors recruit immune cells to HRP cancer cells, potentially activating immune responses in the tumor microenvironment, providing new insights into the clinical benefits of PARP inhibitors in immunotherapy for patients with HRP OC.
Collapse
Affiliation(s)
- Misato Kamii
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Ryo Kamata
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Hitoshi Saito
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Gaku Yamamoto
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Chiaki Mashima
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toyohiro Yamauchi
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Takehiro Nakao
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yuta Sakae
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tomoko Yamamori-Morita
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kazuki Nakai
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yumi Hakozaki
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Masataka Takenaka
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Akihiro Ohashi
- Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.
| |
Collapse
|
2
|
Zhang T, Zhang Y, Wang X, Hu H, Lin CG, Xu Y, Zheng H. Genome-wide CRISPR activation screen identifies ARL11 as a sensitivity determinant of PARP inhibitor therapy. Cancer Gene Ther 2025; 32:521-537. [PMID: 40123001 DOI: 10.1038/s41417-025-00893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Resistance to poly-(ADP)-ribose polymerase inhibitors (PARPi) remains a significant challenge in clinical practice, leading to treatment failure in many patients. It is crucial to better understand the molecular mechanisms that underlie PARPi resistance. In this study, utilizing a genome-wide CRISPR activation screen with olaparib, we identified ARL11 as a potential modulator of PARPi treatment response in BRCA-wild-type MDA-MB-231 cells. Mechanistically, ARL11 interacts with STING to enhance innate immunity and forms positive feedback with type I interferon (IFN) induction, which induces ARL11 up-regulation and contributes to resistance to PARPi therapy. Additionally, we observed that ARL11 interacts with the RUVBL1 and RUVBL2 (RUVBL1/2) complex, the key DNA double-strand repair proteins, facilitating DNA homologous recombination (HR) repair and significantly reducing PARPi-induced DNA double-strand damages. Clinical sample analysis reveals that the expression levels of ARL11 and RUVBL1/2 are significantly elevated in breast cancer patients compared to healthy controls. Collectively, our findings suggested that ARL11 and RUVBL1/2 may be promising therapeutic targets to sensitize breast cancer cells to PARPi therapy.
Collapse
Affiliation(s)
- Tengjiang Zhang
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuxiang Wang
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Christopher G Lin
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yaru Xu
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. PARP1: A comprehensive review of its mechanisms, therapeutic implications and emerging cancer treatments. Biochim Biophys Acta Rev Cancer 2025; 1880:189282. [PMID: 39947443 DOI: 10.1016/j.bbcan.2025.189282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The Poly (ADP-ribose) polymerase-1 (PARP1) enzyme is involved in several signalling pathways related to homologous repair (HR), base excision repair (BER), and non-homologous end joining (NHEJ). Studies demonstrated that the deregulation of PARP1 function and control mechanisms can lead to cancer emergence. On the other side, PARP1 can be a therapeutic target to maximize cancer treatment. This is done by molecules that can modulate radiation effects, such as DNA repair inhibitors (PARPi). With this approach, tumour cell viability can be undermined by targeting DNA repair mechanisms. Thus, treatment using PARPi represents a new era for cancer therapy, and even new horizons can be attained by coupling these molecules with a nano-delivery system. For this, drug delivery systems such as liposomes encompass all the required features due to its excellent biocompatibility, biodegradability, and low toxicity. This review presents a comprehensive overview of PARP1 biological features and mechanisms, its role in cancer development, therapeutic implications, and emerging cancer treatments by PARPi-mediated therapies. Although there are a vast number of studies regarding PARP1 biological function, some PARP1 mechanisms are not clear yet, and full-length PARP1 structure is missing. Nevertheless, literature reports demonstrate already the high usefulness and vast possibilities offered by combined PARPi cancer therapy.
Collapse
Affiliation(s)
- Carlota J F Conceição
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Elin Moe
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
4
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Wang C, Han X, Kong S, Zhang S, Ning H, Wu F. Deciphering the mechanisms of PARP inhibitor resistance in prostate cancer: Implications for precision medicine. Biomed Pharmacother 2025; 185:117955. [PMID: 40086424 DOI: 10.1016/j.biopha.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Prostate cancer is a leading malignancy among men. While early-stage prostate cancer can be effectively managed, metastatic prostate cancer remains incurable, with a median survival of 3-5 years. The primary treatment for advanced prostate cancer is androgen deprivation therapy (ADT), but resistance to ADT often leads to castrationresistant prostate cancer (CRPC), presenting a significant therapeutic challenge. The advent of precision medicine has introduced promising new treatments, including PARP inhibitors (PARPi), which target defects in DNA repair mechanisms in cancer cells. PARPi have shown efficacy in treating advanced prostate cancer, especially in patients with metastatic CRPC (mCRPC) harboring homologous recombination (HR)-associated gene mutations. Despite these advancements, resistance to PARPi remains a critical issue. Here, we explored the primary mechanisms of PARPi resistance in prostate cancer. Key resistance mechanisms include homologous recombination recovery through reverse mutations in BRCA genes, BRCA promoter demethylation, and non-degradation of mutated BRCA proteins. The tumor microenvironment and overactivation of the base excision repair pathway also play significant roles in bypassing PARPi-induced synthetic lethality. In addition, we explored the clinical implications and therapeutic strategies to overcome resistance,emphasizing the need for precision medicine approaches. Our findings highlight the need for comprehensive strategies to improve PARPi sensitivity and effectiveness,ultimately aiming to extend patient survival and improve the quality of life for those with advanced prostate cancer. As our understanding of PARPi resistance evolves, more diverse and effective individualized treatment regimens will emerge.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China
| | - Xiaoran Han
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shaoqiu Kong
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shanhua Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
6
|
Matsumoto K, Matsumoto Y, Wada J. PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy. Front Immunol 2025; 16:1537615. [PMID: 40134437 PMCID: PMC11933034 DOI: 10.3389/fimmu.2025.1537615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
7
|
Doro Pereira L, Wielgos-Bonvallet M, Misirlioglu S, Khodadai-Jamayran A, Jelinic P, Levine DA. PARP Inhibitors Differentially Regulate Immune Responses in Distinct Genetic Backgrounds of High-Grade Serous Tubo-Ovarian Carcinoma. CANCER RESEARCH COMMUNICATIONS 2025; 5:339-348. [PMID: 39851178 PMCID: PMC11836641 DOI: 10.1158/2767-9764.crc-24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 01/26/2025]
Abstract
SIGNIFICANCE This work highlights how different PARPis, especially talazoparib, modulate immune-related gene expression in ovarian cancer cells, independent of the cGAS-STING pathway. These findings may improve our understanding of how different PARPis affect the immune system in various genetic backgrounds.
Collapse
Affiliation(s)
- Luiza Doro Pereira
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Monica Wielgos-Bonvallet
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Selim Misirlioglu
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Alireza Khodadai-Jamayran
- Department of Pathology, Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Petar Jelinic
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Douglas A. Levine
- Division of Gynecologic Oncology, Department of OB/GYN, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
8
|
Liu S, Deng P, Yu Z, Hong JH, Gao J, Huang Y, Xiao R, Yin J, Zeng X, Sun Y, Wang P, Geng R, Chan JY, Guan P, Yu Q, Teh B, Jiang Q, Xia X, Xiong Y, Chen J, Huo Y, Tan J. CDC7 Inhibition Potentiates Antitumor Efficacy of PARP Inhibitor in Advanced Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403782. [PMID: 39412086 PMCID: PMC11615783 DOI: 10.1002/advs.202403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Indexed: 12/06/2024]
Abstract
Poly (ADP-ribose) Polymerase inhibitors (PARPi) have demonstrated remarkable clinical efficacy in treating ovarian cancer (OV) with BRCA1/2 mutations. However, drug resistance inevitably limits their clinical applications and there is an urgent need for improved therapeutic strategies to enhance the clinical utility of PARPi, such as Olaparib. Here, compelling evidence indicates that sensitivity of PARPi is associated with cell cycle dysfunction. Through high-throughput drug screening with a cell cycle kinase inhibitor library, XL413, a potent cell division cycle 7 (CDC7) inhibitor, is identified which can synergistically enhance the anti-tumor efficacy of Olaparib. Mechanistically, the combined administration of XL413 and Olaparib demonstrates considerable DNA damage and DNA replication stress, leading to increased sensitivity to Olaparib. Additionally, a robust type-I interferon response is triggered through the induction of the cGAS/STING signaling pathway. Using murine syngeneic tumor models, the combination treatment further demonstrates enhanced antitumor immunity, resulting in tumor regression. Collectively, this study presents an effective treatment strategy for patients with advanced OV by combining CDC7 inhibitors (CDC7i) and PARPi, offering a promising therapeutic approach for patients with limited response to PARPi.
Collapse
Affiliation(s)
- Shini Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouthern Medical UniversityGuangzhouGuangdong510080P. R. China
| | - Peng Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Biotherapy CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Jiuping Gao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yulin Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Rong Xiao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jiaxin Yin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Xian Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yichen Sun
- Department of Laboratory MedicineGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180P. R. China
| | - Peili Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ruizi Geng
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jason Yongsheng Chan
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
| | - Peiyong Guan
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Bin‐Tean Teh
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qingping Jiang
- Department of PatholgyGuangdong Provincial Key Laboratory of Major Obstetric DiseaseThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510150China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ying Xiong
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yongliang Huo
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jing Tan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Hainan Academy of Medical ScienceHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
9
|
Bi R, Chen L, Huang M, Qiao Z, Li Z, Fan G, Wang Y. Emerging strategies to overcome PARP inhibitors' resistance in ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189221. [PMID: 39571765 DOI: 10.1016/j.bbcan.2024.189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The utilization of PARP inhibitors (PARPis) has significantly improved the prognosis for ovarian cancer patients. However, as the use of PARPis increases, the issue of PARPi resistance has become more prominent. Prolonged usage of PARPis can lead to the development of resistance in ovarian cancer, often mediated by mechanisms such as homologous recombination (HR) recovery, ultimately resulting in cancer relapse. Overcoming PARPi resistance in ovarian cancer is a pressing concern, aiming to enhance the clinical benefits of PARPi treatment and delay disease recurrence. Here, we summarize the mechanisms underlying PARPi resistance, methods for analyzing resistance, and strategies for overcoming it. Our goal is to inspire the development of more cost-effective and convenient methods for analyzing resistance mechanisms, as well as safer and more effective strategies to overcome resistance. These advancements can contribute to developing personalized approaches for treating ovarian cancer.
Collapse
Affiliation(s)
- Ruomeng Bi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Qiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Li
- Clinical Research Unit, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
MacGilvary N, Cantor SB. Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer. DNA Repair (Amst) 2024; 144:103775. [PMID: 39461277 DOI: 10.1016/j.dnarep.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The mechanisms by which poly(ADP-ribose) polymerase 1 (PARP1) inhibitors (PARPi)s inflict replication stress and/or DNA damage are potentially numerous. PARPi toxicity could derive from loss of its catalytic activity and/or its physical trapping of PARP1 onto DNA that perturbs not only PARP1 function in DNA repair and DNA replication, but also obstructs compensating pathways. The combined disruption of PARP1 with either of the hereditary breast and ovarian cancer genes, BRCA1 or BRCA2 (BRCA), results in synthetic lethality. This has driven the development of PARP inhibitors as therapies for BRCA-mutant cancers. In this review, we focus on recent findings that highlight loss of PARP1 catalytic activity, rather than PARPi-induced allosteric trapping, as central to PARPi efficacy in BRCA deficient cells. However, we also review findings that PARP-trapping is an effective strategy in other genetic deficiencies. Together, we conclude that the mechanism-of-action of PARP inhibitors is not unilateral; with loss of activity or enhanced trapping differentially killing depending on the genetic context. Therefore, effectively targeting cancer cells requires an intricate understanding of their key underlying vulnerabilities.
Collapse
Affiliation(s)
- Nathan MacGilvary
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Lu X, Li X, Li L, Han C, Li S. Advances in the prerequisite and consequence of STING downstream signalosomes. MEDICAL REVIEW (2021) 2024; 4:435-451. [PMID: 39444795 PMCID: PMC11495525 DOI: 10.1515/mr-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 10/25/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an evolving DNA-sensing mechanism involved in innate immunity and pathogen defense that has been optimized while remaining conserved. Aside from recognizing pathogens through conserved motifs, these receptors also detect aberrant or misplaced self-molecules as possible signs of perturbed homeostasis. Upon binding external or self-derived DNA, a mobile secondary messenger 2'3'-cyclic GMP-AMP (cGAMP) is produced by cGAS and in turn activates its adapter STING in the endoplasmic reticulum (ER). Resting-state or activated STING protein is finely restricted by multiple degradation machineries. The post-translational changes of the STING protein, along with the regulatory machinery of the secret routes, limit the onset, strength and sustention of STING signal. STING experiences a conformational shift and relocates with TBK1 from the ER to perinuclear vesicles containing transcription factors, provoking the transcription activity of IRF3/IFN-I and NF-κB pathways, as well as to initiate a number of cellular processes that have been shown to alter the immune landscape in cancer, such as autophagy, NLRP3 inflammasome, ER stress, and cell death. STING signal thus serves as a potent activator for immune mobilization yet also triggers immune-mediated pathology in tissues. Recent advances have established the vital role of STING in immune surveillance as well as tumorigenic process. This review provides an overview of the disparate outcomes of cancer attributed to the actions of pleiotropic and coordinated STING downstream signalosomes, along with the underlying mechanisms of STING function in pathologies, providing therapeutic implications for new approaches in hunt for the next generation of cancer immunotherapy base on STING.
Collapse
Affiliation(s)
- Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Li
- InvivoGen Ltd., Hong Kong Science and Technology Parks, Hong Kong, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Petta TB, Carlson J. Exploring Molecular Drivers of PARPi Resistance in BRCA1-Deficient Ovarian Cancer: The Role of LY6E and Immunomodulation. Int J Mol Sci 2024; 25:10427. [PMID: 39408764 PMCID: PMC11477368 DOI: 10.3390/ijms251910427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Approximately 50% of patients diagnosed with ovarian cancer harbor tumors with mutations in BRCA1, BRCA2, or other genes involved in homologous recombination repair (HR). The presence of homologous recombination deficiency (HRD) is an approved biomarker for poly-ADP-ribose polymerase inhibitors (PARPis) as a maintenance treatment following a positive response to initial platinum-based chemotherapy. Despite this treatment option, the development of resistance to PARPis is common among recurrent disease patients, leading to a poor prognosis. In this study, we conducted a comprehensive analysis using publicly available datasets to elucidate the molecular mechanisms driving PARPi resistance in BRCA1-deficient ovarian cancer. Our findings reveal a central role for the interferon (IFN) pathway in mediating resistance in the context of BRCA1 deficiency. Through integrative bioinformatics approaches, we identified LY6E, an interferon-stimulated gene, as a key mediator of PARPi resistance, with its expression linked to an immunosuppressive tumor microenvironment (TME) encouraging tumor progression and invasion. LY6E amplification correlates with poor prognosis and increased expression of immune-related gene signatures, which is predictive of immunotherapy response. Interestingly, LY6E expression upon PARPi treatment resistance was found to be dependent on BRCA1 status. Gene expression analysis in the Orien/cBioPortal database revealed an association between LY6E and genes involved in DNA repair, such as Rad21 and PUF60, emphasizing the interplay between DNA repair pathways and immune modulation. Moreover, PUF60, Rad21, and LY6E are located on chromosome 8q24, a locus often amplified and associated with the progression of ovarian cancer. Overall, our study provides novel insights into the molecular determinants of PARPi resistance and highlights LY6E as a promising prognostic biomarker in the management of HRD ovarian cancer. Future studies are needed to fully elucidate the molecular mechanisms underlying the role of LY6E in PARPi resistance.
Collapse
Affiliation(s)
- Tirzah Braz Petta
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Centro de Biociencias, Departmento de Biologia Celular e Genetica, Universidade Federal do Rio Grande do Norte, Natal CEP 59078-970, Brazil
| | - Joseph Carlson
- Department of Pathology, City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
13
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Froney MM, Cook CR, Cadiz AM, Flinter KA, Ledeboer ST, Chan B, Burris LE, Hardy BP, Pearce KH, Wardell AC, Golitz BT, Jarstfer MB, Pattenden SG. A First-in-Class High-Throughput Screen to Discover Modulators of the Alternative Lengthening of Telomeres (ALT) Pathway. ACS Pharmacol Transl Sci 2024; 7:2799-2819. [PMID: 39296266 PMCID: PMC11406699 DOI: 10.1021/acsptsci.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.
Collapse
Affiliation(s)
- Merrill M Froney
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian R Cook
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alyssa M Cadiz
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katherine A Flinter
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sara T Ledeboer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bianca Chan
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E Burris
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian P Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexis C Wardell
- UNC Lineberger Comprehensive Cancer Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian T Golitz
- UNC Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael B Jarstfer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G Pattenden
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Mansilla FC, Miraglia MC, Maidana SS, Cecilia R, Capozzo AV. Chronic NOD2 stimulation by MDP confers protection against parthanatos through M2b macrophage polarization in RAW264.7 cells. Immunobiology 2024; 229:152833. [PMID: 38963996 DOI: 10.1016/j.imbio.2024.152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Innate immune cells show enhanced responsiveness to secondary challenges after an initial non-related stimulation (Trained Innate Immunity, TII). Acute NOD2 activation by Muramyl-Dipeptide (MDP) promotes TII inducing the secretion of pro-inflammatory mediators, while a sustained MDP-stimulation down-regulates the inflammatory response, restoring tolerance. Here we characterized in-vitro the response of murine macrophages to lipopolysaccharide (LPS) challenge under NOD2-chronic stimulation. RAW264.7 cells were trained with MDP (1 μg/ml, 48 h) and challenged with LPS (5 μg/ml, 24 h). Trained cells formed multinucleated giant cells with increased phagocytosis rates compared to untrained/challenged cells. They showed a reduced mitochondrial activity and a switch to aerobic glycolysis. TNF-α, ROS and NO were upregulated in both trained and untrained cultures (MDP+, MDP- cells, p > 0.05); while IL-10, IL-6 IL-12 and MHCII were upregulated only in trained cells after LPS challenge (MDP + LPS+, p < 0.05). A slight upregulation in the expression of B7.2 was also observed in this group, although differences were not statistically significant. MDP-training induced resistance to LPS challenge (p < 0.01). The relative expression of PARP-1 was downregulated after the LPS challenge, which may contribute to the regulatory milieu and to the innate memory mechanisms exhibited by MDP-trained cells. Our results demonstrate that a sustained MDP-training polarizes murine macrophages towards a M2b profile, inhibiting parthanatos. These results may impact on the development of strategies to immunomodulate processes in which inflammation should be controlled.
Collapse
Affiliation(s)
- Florencia C Mansilla
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina.
| | - María C Miraglia
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET)
| | - Silvina S Maidana
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET)
| | - Randazzo Cecilia
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina
| | - Alejandra V Capozzo
- National Council for Scientific and Technical Research (CONICET); Center for Advanced Studies in Human Sciences and Health (CAECIHS), Interamerican Open University (UAI), Buenos Aires, Argentina
| |
Collapse
|
16
|
Zhang X, Zhu T, Li X, Zhao H, Lin S, Huang J, Yang B, Guo X. DNA damage-induced proteasome phosphorylation controls substrate recognition and facilitates DNA repair. Proc Natl Acad Sci U S A 2024; 121:e2321204121. [PMID: 39172782 PMCID: PMC11363268 DOI: 10.1073/pnas.2321204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Upon DNA damage, numerous proteins are targeted for ubiquitin-dependent proteasomal degradation, which is an integral part of the DNA repair program. Although details of the ubiquitination processes have been intensively studied, little is known about whether and how the 26S proteasome is regulated in the DNA damage response (DDR). Here, we show that human Rpn10/PSMD4, one of the three ubiquitin receptors of the 26S proteasome, is rapidly phosphorylated in response to different types of DNA damage. The phosphorylation occurs at Rpn10-Ser266 within a conserved SQ motif recognized by ATM/ATR/DNA-PK. Blockade of S266 phosphorylation attenuates homologous recombination-mediated DNA repair and sensitizes cells to genotoxic insults. In vitro and in cellulo experiments indicate that phosphorylation of S266, located in the flexible linker between the two ubiquitin-interacting motifs (UIMs) of Rpn10, alters the configuration of UIMs, and actually reduces ubiquitin chain (substrate) binding. As a result, essential DDR proteins such as BRCA1 are spared from premature degradation and allowed sufficient time to engage in DNA repair, a scenario supported by proximity labeling and quantitative proteomic studies. These findings reveal an inherent self-limiting mechanism of the proteasome that, by controlling substrate recognition through Rpn10 phosphorylation, fine-tunes protein degradation for optimal responses under stress.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Tianyi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
17
|
Bian X, Liu W, Yang K, Sun C. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Front Pharmacol 2024; 15:1421816. [PMID: 39175540 PMCID: PMC11338796 DOI: 10.3389/fphar.2024.1421816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Targeting the poly (ADP-ribose) polymerase (PARP) protein has shown therapeutic efficacy in cancers with homologous recombination (HR) deficiency due to BRCA mutations. Only small fraction of acute myeloid leukemia (AML) cells carry BRCA mutations, hence the antitumor efficacy of PARP inhibitors (PARPi) against this malignancy is predicted to be limited; however, recent preclinical studies have demonstrated that PARPi monotherapy has modest efficacy in AML, while in combination with cytotoxic chemotherapy it has remarkable synergistic antitumor effects. Immunotherapy has revolutionized therapeutics in cancer treatment, and PARPi creates an ideal microenvironment for combination therapy with immunomodulatory agents by promoting tumor mutation burden. In this review, we summarize the role of PARP proteins in DNA damage response (DDR) pathways, and discuss recent preclinical studies using synthetic lethal modalities to treat AML. We also review the immunomodulatory effects of PARPi in AML preclinical models and propose future directions for therapy in AML, including combined targeting of the DDR and tumor immune microenvironment; such combination regimens will likely benefit patients with AML undergoing PARPi-mediated cancer therapy.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenli Liu
- Food and Drug Inspection Center, Lu’an, China
| | - Kaijin Yang
- Food and Drug Inspection Center, Huai’nan, China
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
18
|
Rahman R, Shi DD, Reitman ZJ, Hamerlik P, de Groot JF, Haas-Kogan DA, D’Andrea AD, Sulman EP, Tanner K, Agar NYR, Sarkaria JN, Tinkle CL, Bindra RS, Mehta MP, Wen PY. DNA damage response in brain tumors: A Society for Neuro-Oncology consensus review on mechanisms and translational efforts in neuro-oncology. Neuro Oncol 2024; 26:1367-1387. [PMID: 38770568 PMCID: PMC11300028 DOI: 10.1093/neuonc/noae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
Collapse
Affiliation(s)
- Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana D Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - John F de Groot
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, California, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D D’Andrea
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University, New York, New York, USA
| | - Kirk Tanner
- National Brain Tumor Society, Newton, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Minesh P Mehta
- Miami Cancer Institute, Baptist Hospital, Miami, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Huang S, Girdner J, Nguyen LP, Sandoval C, Fregoso OI, Enard D, Li MMH. Positive selection analyses identify a single WWE domain residue that shapes ZAP into a more potent restriction factor against alphaviruses. PLoS Pathog 2024; 20:e1011836. [PMID: 39207950 PMCID: PMC11361444 DOI: 10.1371/journal.ppat.1011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The host interferon pathway upregulates intrinsic restriction factors in response to viral infection. Many of them block a diverse range of viruses, suggesting that their antiviral functions might have been shaped by multiple viral families during evolution. Host-virus conflicts have led to the rapid adaptation of host and viral proteins at their interaction hotspots. Hence, we can use evolutionary genetic analyses to elucidate antiviral mechanisms and domain functions of restriction factors. Zinc finger antiviral protein (ZAP) is a restriction factor against RNA viruses such as alphaviruses, in addition to other RNA, retro-, and DNA viruses, yet its precise antiviral mechanism is not fully characterized. Previously, an analysis of 13 primate ZAP orthologs identified three positively selected residues in the poly(ADP-ribose) polymerase-like domain. However, selective pressure from ancient alphaviruses and others likely drove ZAP adaptation in a wider representation of mammals. We performed positive selection analyses in 261 mammalian ZAP using more robust methods with complementary strengths and identified seven positively selected sites in all domains of the protein. We generated ZAP inducible cell lines in which the positively selected residues of ZAP are mutated and tested their effects on alphavirus replication and known ZAP activities. Interestingly, the mutant in the second WWE domain of ZAP (N658A) is dramatically better than wild-type ZAP at blocking replication of Sindbis virus and other ZAP-sensitive alphaviruses due to enhanced viral translation inhibition. The N658A mutant is adjacent to the previously reported poly(ADP-ribose) (PAR) binding pocket, but surprisingly has reduced binding to PAR. In summary, the second WWE domain is critical for engineering a more potent ZAP and fluctuations in PAR binding modulate ZAP antiviral activity. Our study has the potential to unravel the role of ADP-ribosylation in the host innate immune defense and viral evolutionary strategies that antagonize this post-translational modification.
Collapse
Affiliation(s)
- Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Juliana Girdner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - LeAnn P. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Carina Sandoval
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Melody M. H. Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
20
|
França GS, Baron M, King BR, Bossowski JP, Bjornberg A, Pour M, Rao A, Patel AS, Misirlioglu S, Barkley D, Tang KH, Dolgalev I, Liberman DA, Avital G, Kuperwaser F, Chiodin M, Levine DA, Papagiannakopoulos T, Marusyk A, Lionnet T, Yanai I. Cellular adaptation to cancer therapy along a resistance continuum. Nature 2024; 631:876-883. [PMID: 38987605 PMCID: PMC11925205 DOI: 10.1038/s41586-024-07690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.
Collapse
Affiliation(s)
- Gustavo S França
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Benjamin R King
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
- Bristol-Myers Squibb Company, Lawrenceville, NJ, USA
| | - Jozef P Bossowski
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alicia Bjornberg
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Maayan Pour
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Anjali Rao
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ayushi S Patel
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Selim Misirlioglu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Dalia Barkley
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Kwan Ho Tang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Deborah A Liberman
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Gal Avital
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Felicia Kuperwaser
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Marta Chiodin
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Merck & Co., Rahway, NJ, USA
| | - Thales Papagiannakopoulos
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Bristol-Myers Squibb Company, Lawrenceville, NJ, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA.
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Li L, Zhou X, Liu W, Chen Z, Xiao X, Deng G. Supplementation with NAD+ and its precursors: A rescue of female reproductive diseases. Biochem Biophys Rep 2024; 38:101715. [PMID: 38698835 PMCID: PMC11063225 DOI: 10.1016/j.bbrep.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme involved in many pathophysiological processes. Supplementation with NAD+ and its precursors has been demonstrated as an emerging therapeutic strategy for the diseases. NAD+ also plays an important role in the reproductive system. Here, we summarize the function of NAD+ in various reproductive diseases and review the application of NAD+ and its precursors in the preservation of reproductive capacity and the prevention of embryonic malformations. It is shown that NAD+ shows good promise as a therapeutic approach for saving reproductive capacity.
Collapse
Affiliation(s)
- Lan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wene Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoqin Xiao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Chang J, Quan S, Tian S, Wang S, Li S, Guo Y, Yang T, Yang X. Niraparib enhances antitumor immunity and contributes to the efficacy of PD-L1 blockade in cervical cancer. J Cancer Res Clin Oncol 2024; 150:304. [PMID: 38869633 PMCID: PMC11176249 DOI: 10.1007/s00432-024-05819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE With the development of immunotherapy research, the role of immune checkpoint blockade (ICB) in the treatment of cervical cancer has been emphasized, but many patients still can't receive long-term benefits from ICB. Poly ADP ribose polymerase inhibitor (PARPi) has been proved to exert significant antitumor effects in multiple solid tumors. Whether cervical cancer patients obtain better benefits from the treatment regimen of PARPi combined with ICB remains unclear. METHODS The alteration of PD-L1 expression induced by niraparib in cervical cancer cells and its underlying mechanism were assessed by western blot and immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR).The regulation of PTEN by KDM5A was confirmed using Chromatin immunoprecipitation (ChIP) assay and RNA interference. Analyzing the relationship between PD-L1 and immune effector molecules through searching online databases. Therapeutic efficacy of niraparib, PD-L1 blockade or combination was assessed in syngeneic tumor model. The changes of immune cells and cytokines in vivo was detected by immunohistochemistry (IHC) and qRT-PCR. RESULTS We found that niraparib upregulated PD-L1 expression and potentiated the antitumor effects of PD-L1 blockade in a murine cervical cancer model. Niraparib inhibited the Pten expression by increasing the abundance of KDM5A, which expanded PD-L1 abundance through activating the PI3K-AKT-S6K1 pathway. PD-L1 was positively correlated with immune effector molecules including TNF-α, IFN-γ, granzyme A and granzyme B based on biological information analysis. Niraparib increased the infiltration of CD8+ T cells and the level of IFN-γ, granzyme B in vivo. CONCLUSION Our findings demonstrates the regulation of niraparib on local immune microenvironment of cervical cancer, and provides theoretical basis for supporting the combination of PARPi and PD-L1 blockade as a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Jie Chang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shirui Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Simin Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanping Guo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
23
|
Bakr A, Corte GD, Veselinov O, Kelekçi S, Chen MJM, Lin YY, Sigismondo G, Iacovone M, Cross A, Syed R, Jeong Y, Sollier E, Liu CS, Lutsik P, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response. Nucleic Acids Res 2024; 52:5698-5719. [PMID: 38587186 PMCID: PMC11162808 DOI: 10.1093/nar/gkae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Giuditta Della Corte
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Mei-Ju May Chen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Marika Iacovone
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Rabail Syed
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yunhee Jeong
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Chun- Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
25
|
Jin Y, Wang L, Jin C, Zhang N, Shimizu S, Xiao W, Guo C, Liu X, Si H. A Novel Inhibitor of Poly( ADP- Ribose) Polymerase-1 Inhibits Proliferation of a BRCA-Deficient Breast Cancer Cell Line via the DNA Damage- Activated cGAS-STING Pathway. Chem Res Toxicol 2024; 37:561-570. [PMID: 38534178 DOI: 10.1021/acs.chemrestox.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lijie Wang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Na Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shosei Shimizu
- Department of Radiotherapy, Yizhou Tumor Hospital, Zhuozhou 072750, China
- Department of Radiotherapy, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266041, China
| | - Xiguang Liu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongzong Si
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Petropoulos M, Karamichali A, Rossetti GG, Freudenmann A, Iacovino LG, Dionellis VS, Sotiriou SK, Halazonetis TD. Transcription-replication conflicts underlie sensitivity to PARP inhibitors. Nature 2024; 628:433-441. [PMID: 38509368 PMCID: PMC11006605 DOI: 10.1038/s41586-024-07217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
An important advance in cancer therapy has been the development of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of homologous recombination (HR)-deficient cancers1-6. PARP inhibitors trap PARPs on DNA. The trapped PARPs are thought to block replisome progression, leading to formation of DNA double-strand breaks that require HR for repair7. Here we show that PARP1 functions together with TIMELESS and TIPIN to protect the replisome in early S phase from transcription-replication conflicts. Furthermore, the synthetic lethality of PARP inhibitors with HR deficiency is due to an inability to repair DNA damage caused by transcription-replication conflicts, rather than by trapped PARPs. Along these lines, inhibiting transcription elongation in early S phase rendered HR-deficient cells resistant to PARP inhibitors and depleting PARP1 by small-interfering RNA was synthetic lethal with HR deficiency. Thus, inhibiting PARP1 enzymatic activity may suffice for treatment efficacy in HR-deficient settings.
Collapse
Affiliation(s)
- Michalis Petropoulos
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | | | - Alena Freudenmann
- FoRx Therapeutics AG, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sotirios K Sotiriou
- FoRx Therapeutics AG, Basel, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
27
|
Deng H, Deng H, Kim C, Li P, Wang X, Yu Y, Qin T. Synthesis of nimbolide and its analogues and their application as poly(ADP-ribose) polymerase-1 trapping inducers. NATURE SYNTHESIS 2024; 3:378-385. [PMID: 39119242 PMCID: PMC11309514 DOI: 10.1038/s44160-023-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 10/11/2023] [Indexed: 08/10/2024]
Abstract
Nimbolide, a ring seco-C limonoid natural product, was recently found to inhibit the poly(ADP)-ribosylation (PARylation)-dependent ubiquitin E3 ligase RNF114. In doing so, it induces the 'supertrapping' of both PARylated PARP1 and PAR-dependent DNA-repair factors. PARP1 inhibitors have reshaped the treatment of cancer patients with germline BRCA1/2 mutations partly through the PARP1 trapping mechanism. To this end, modular access to nimbolide analogues represents an opportunity to develop cancer therapeutics with enhanced PARP1 trapping capability. Here we report a convergent synthesis of nimbolide through a late-stage coupling strategy. Through a sulfonyl hydrazone-mediated etherification and a radical cyclization, this strategy uses a pharmacophore-containing building block and diversifiable hydrazone units to enable the modular synthesis of nimbolide and its analogues. The broad generality of our synthetic strategy allowed access to a variety of analogues with their preliminary cellular cytotoxicity and PARP1 trapping activity reported.
Collapse
Affiliation(s)
- Heping Deng
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Heping Deng, Hejun Deng
| | - Hejun Deng
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Heping Deng, Hejun Deng
| | - Chiho Kim
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present address: Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Peng Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xudong Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present address: Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yonghao Yu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present address: Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
29
|
Mittra A, Coyne GHOS, Zlott J, Kummar S, Meehan R, Rubinstein L, Juwara L, Wilsker D, Ji J, Miller B, Navas T, Ferry-Galow KV, Voth AR, Chang TC, Jiwani S, Parchment RE, Doroshow JH, Chen AP. Pharmacodynamic effects of the PARP inhibitor talazoparib (MDV3800, BMN 673) in patients with BRCA-mutated advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:177-189. [PMID: 38010394 PMCID: PMC10902014 DOI: 10.1007/s00280-023-04600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2‑negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546). METHODS We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations. The primary objective was to examine the PD effects of talazoparib; the secondary objective was to determine overall response rate (ORR). Tumor biopsies were mandatory at baseline and post-treatment on day 8 (optional at disease progression). Biopsies were analyzed for PARylation, DNA damage response (γH2AX), and epithelial‒mesenchymal transition. RESULTS Nine patients enrolled in this trial. Four of six patients (67%) evaluable for the primary PD endpoint exhibited a nuclear γH2AX response on day 8 of treatment, and five of six (83%) also exhibited strong suppression of PARylation. A transition towards a more mesenchymal phenotype was seen in 4 of 6 carcinoma patients, but this biological change did not affect γH2AX or PAR responses. The ORR was 55% with the five partial responses lasting a median of six cycles. CONCLUSION Intra-tumoral DNA damage response and inhibition of PARP enzymatic activity were confirmed in patients with advanced solid tumors harboring BRCA1/2 mutations after 8 days of talazoparib treatment.
Collapse
Affiliation(s)
- Arjun Mittra
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
- Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA
| | - Geraldine H O' Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Jennifer Zlott
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Robert Meehan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Lawrence Rubinstein
- Biometric Research Program, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lamin Juwara
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jiuping Ji
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon Miller
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tony Navas
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Katherine V Ferry-Galow
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shahanawaz Jiwani
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Khodyreva SN, Ilina ES, Dyrkheeva NS, Kochetkova AS, Yamskikh AA, Maltseva EA, Malakhova AA, Medvedev SP, Zakian SM, Lavrik OI. A Knockout of Poly(ADP-Ribose) Polymerase 1 in a Human Cell Line: An Influence on Base Excision Repair Reactions in Cellular Extracts. Cells 2024; 13:302. [PMID: 38391916 PMCID: PMC10886765 DOI: 10.3390/cells13040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Base excision repair (BER) is the predominant pathway for the removal of most forms of hydrolytic, oxidative, and alkylative DNA lesions. The precise functioning of BER is achieved via the regulation of each step by regulatory/accessory proteins, with the most important of them being poly(ADP-ribose) polymerase 1 (PARP1). PARP1's regulatory functions extend to many cellular processes including the regulation of mRNA stability and decay. PARP1 can therefore affect BER both at the level of BER proteins and at the level of their mRNAs. Systematic data on how the PARP1 content affects the activities of key BER proteins and the levels of their mRNAs in human cells are extremely limited. In this study, a CRISPR/Cas9-based technique was used to knock out the PARP1 gene in the human HEK 293FT line. The obtained cell clones with the putative PARP1 deletion were characterized by several approaches including PCR analysis of deletions in genomic DNA, Sanger sequencing of genomic DNA, quantitative PCR analysis of PARP1 mRNA, Western blot analysis of whole-cell-extract (WCE) proteins with anti-PARP1 antibodies, and PAR synthesis in WCEs. A quantitative PCR analysis of mRNAs coding for BER-related proteins-PARP2, uracil DNA glycosylase 2, apurinic/apyrimidinic endonuclease 1, DNA polymerase β, DNA ligase III, and XRCC1-did not reveal a notable influence of the PARP1 knockout. The corresponding WCE catalytic activities evaluated in parallel did not differ significantly between the mutant and parental cell lines. No noticeable effect of poly(ADP-ribose) synthesis on the activity of the above WCE enzymes was revealed either.
Collapse
Affiliation(s)
- Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Ekaterina S. Ilina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Alina S. Kochetkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Alexandra A. Yamskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Ekaterina A. Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Anastasia A. Malakhova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia
| | - Sergey P. Medvedev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia
| | - Suren M. Zakian
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; (E.S.I.); (N.S.D.); (A.S.K.); (A.A.Y.); (E.A.M.); (A.A.M.); (S.P.M.); (S.M.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Chen G, Zheng D, Zhou Y, Du S, Zeng Z. Olaparib enhances radiation-induced systemic anti-tumor effects via activating STING-chemokine signaling in hepatocellular carcinoma. Cancer Lett 2024; 582:216507. [PMID: 38048841 DOI: 10.1016/j.canlet.2023.216507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors have been clinically approved for cancers with BRCA mutations and are known to augment radiotherapy responses, their roles in promoting the abscopal effect and mediating immunotherapy in BRCA-proficient hepatocellular carcinoma (HCC) remain underexplored. Our study elucidates that olaparib enhances the radio-sensitivity of HCC cells. Coadministration of olaparib and irradiation induces significant DNA damage by generating double-strand breaks (DSBs), as revealed both in vitro and in immune-deficient mice. These DSBs activate the cGAS-STING pathway, initiating immunogenic cell death in abscopal tumors. STING activation reprograms the immune microenvironment in the abscopal tumors, triggering the release of type I interferon and chemokines, including CXCL9, CXCL10, CXCL11, and CCL5. This in turn amplifies T cell priming against tumor neoantigens, leading to an influx of activated, neoantigen-specific CD8+ T-cells within the abscopal tumors. Furthermore, olaparib attenuated the immune exhaustion induced by radiation and enhances the responsiveness of HCC to immune checkpoint inhibitors. Collectively, our data advocate that a synergistic regimen of PARP inhibitors and radiotherapy can strategically reinforce both local (primary) and systemic (abscopal) tumor control, bolstering HCC susceptibility to immunotherapy.
Collapse
Affiliation(s)
- Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Danxue Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
33
|
Kim C, Wang XD, Liu Z, Hao J, Wang S, Li P, Zi Z, Ding Q, Jang S, Kim J, Luo Y, Huffman KE, Pal Choudhuri S, del Rio S, Cai L, Liang H, Drapkin BJ, Minna JD, Yu Y. Induced degradation of lineage-specific oncoproteins drives the therapeutic vulnerability of small cell lung cancer to PARP inhibitors. SCIENCE ADVANCES 2024; 10:eadh2579. [PMID: 38241363 PMCID: PMC10798557 DOI: 10.1126/sciadv.adh2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Although BRCA1/2 mutations are not commonly found in small cell lung cancer (SCLC), a substantial fraction of SCLC shows clinically relevant response to PARP inhibitors (PARPis). However, the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in SCLC cells. We found that the vulnerability of SCLC to PARPi could be explained by the degradation of lineage-specific oncoproteins (e.g., ASCL1). PARPi-induced activation of the E3 ligase HUWE1 mediated the ubiquitin-proteasome system (UPS)-dependent ASCL1 degradation. Although PARPi induced a general DNA damage response in SCLC cells, this signal generated a cell-specific response in ASCL1 degradation, leading to the identification of HUWE1 expression as a predictive biomarker for PARPi. Combining PARPi with agents targeting these pathways markedly improved therapeutic response in SCLC. The degradation of lineage-specific oncoproteins therefore represents a previously unidentified mechanism for PARPi efficacy in SCLC.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Xu-Dong Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhengshuai Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jianwei Hao
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shuai Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenzhen Zi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Ding
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth E. Huffman
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sofia del Rio
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ling Cai
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin J. Drapkin
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
34
|
Drew Y, Kim JW, Penson RT, O'Malley DM, Parkinson C, Roxburgh P, Plummer R, Im SA, Imbimbo M, Ferguson M, Rosengarten O, Steeghs N, Kim MH, Gal-Yam E, Tsoref D, Kim JH, You B, De Jonge M, Lalisang R, Gort E, Bastian S, Meyer K, Feeney L, Baker N, Ah-See ML, Domchek SM, Banerjee S, for the MEDIOLA Investigators. Olaparib plus Durvalumab, with or without Bevacizumab, as Treatment in PARP Inhibitor-Naïve Platinum-Sensitive Relapsed Ovarian Cancer: A Phase II Multi-Cohort Study. Clin Cancer Res 2024; 30:50-62. [PMID: 37939124 PMCID: PMC10767301 DOI: 10.1158/1078-0432.ccr-23-2249] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Early results from the phase II MEDIOLA study (NCT02734004) in germline BRCA1- and/or BRCA2-mutated (gBRCAm) platinum-sensitive relapsed ovarian cancer (PSROC) showed promising efficacy and safety with olaparib plus durvalumab. We report efficacy and safety of olaparib plus durvalumab in an expansion cohort of women with gBRCAm PSROC (gBRCAm expansion doublet cohort) and two cohorts with non-gBRCAm PSROC, one of which also received bevacizumab (non-gBRCAm doublet and triplet cohorts). PATIENTS AND METHODS In this open-label, multicenter study, PARP inhibitor-naïve patients received olaparib plus durvalumab treatment until disease progression; the non-gBRCAm triplet cohort also received bevacizumab. Primary endpoints were objective response rate (ORR; gBRCAm expansion doublet cohort), disease control rate (DCR) at 24 weeks (non-gBRCAm cohorts), and safety (all cohorts). RESULTS The full analysis and safety analysis sets comprised 51, 32, and 31 patients in the gBRCAm expansion doublet, non-gBRCAm doublet, and non-gBRCAm triplet cohorts, respectively. ORR was 92.2% [95% confidence interval (CI), 81.1-97.8] in the gBRCAm expansion doublet cohort (primary endpoint); DCR at 24 weeks was 28.1% (90% CI, 15.5-43.9) in the non-gBRCAm doublet cohort (primary endpoint) and 74.2% (90% CI, 58.2-86.5) in the non-gBRCAm triplet cohort (primary endpoint). Grade ≥ 3 adverse events were reported in 47.1%, 65.6%, and 61.3% of patients in the gBRCAm expansion doublet, non-gBRCAm doublet, and non-gBRCAm triplet cohorts, respectively, most commonly anemia. CONCLUSIONS Olaparib plus durvalumab continued to show notable clinical activity in women with gBRCAm PSROC. Olaparib plus durvalumab with bevacizumab demonstrated encouraging clinical activity in women with non-gBRCAm PSROC. No new safety signals were identified.
Collapse
Affiliation(s)
- Yvette Drew
- Department of Medical Oncology, BC Cancer – Vancouver and University of British Columbia, Vancouver, British Columbia, Canada
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Richard T. Penson
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - David M. O'Malley
- Division of Gynecology Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christine Parkinson
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Patricia Roxburgh
- Medical Oncology, Beatson West of Scotland Cancer Centre, and School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ruth Plummer
- Translational and Clinical Research Institute, Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Martina Imbimbo
- Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michelle Ferguson
- Department of Oncology, NHS Tayside, Ninewells Hospital, Dundee, United Kingdom
| | - Ora Rosengarten
- Oncology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Neeltje Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Daliah Tsoref
- Rabin Medical Center-Beilinson Campus, Petach Tikva and Tel-Aviv University, Tel-Aviv, Israel
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Benoit You
- Service d'Oncologie Médicale, CITOHL, EPSLYON, Institut de Cancérologie des Hospices Civils de Lyon, IC-HCL, Université Claude Bernard Lyon 1, Lyon, France
| | - Maja De Jonge
- Department of Medical Oncology, Erasmus Medisch Centrum, Rotterdam, the Netherlands
| | - Roy Lalisang
- Division of Medical Oncology, Department of Internal Medicine, GROW – School of Oncology and Reproduction, Maastricht UMC+ Comprehensive Cancer Center, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Eelke Gort
- Department of Medical Oncology, UMC Utrecht, Utrecht, the Netherlands
| | - Sara Bastian
- Medical Oncology and Haematology, Kantonsspital Graubuenden, Chur, Switzerland
| | - Kassondra Meyer
- Late Development Oncology, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Laura Feeney
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nigel Baker
- Oncology Biometrics, AstraZeneca, Cambridge, United Kingdom
| | - Mei-Lin Ah-See
- Late-stage Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Susan M. Domchek
- Basser Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
35
|
Zhang J, Yu S, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0440. [PMID: 38172538 PMCID: PMC10875285 DOI: 10.20892/j.issn.2095-3941.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/β), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Peng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
36
|
Brooks DM, Anand S, Cohen MS. Immunomodulatory roles of PARPs: Shaping the tumor microenvironment, one ADP-ribose at a time. Curr Opin Chem Biol 2023; 77:102402. [PMID: 37801755 PMCID: PMC11975434 DOI: 10.1016/j.cbpa.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
PARPs encompass a small yet pervasive group of 17 enzymes that catalyze a post-translational modification known as ADP-ribosylation. PARP1, the founding member, has received considerable focus; however, in recent years, the spotlight has shifted to other members within the PARP family. In this opinion piece, we first discuss surprising findings that some FDA-approved PARP1 inhibitors activate innate immune signaling in cancer cells that harbor mutations in the DNA repair pathway. We then discuss hot-off-the-press genetic and pharmacological studies that reveal roles for PARP7, PARP11, and PARP14 in immune signaling in both tumor cells and tumor-associated immune cells. We conclude with thoughts on tuning PARP1-inhibitor-mediated innate immune activation and explore the unrealized potential for small molecule modulators of other PARP family members as next-generation immuno-oncology drugs.
Collapse
Affiliation(s)
- Deja M Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Program in Molecular and Cellular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sudarshan Anand
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cellular and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
37
|
Tian A, Wu T, Zhang Y, Chen J, Sha J, Xia W. Triggering pyroptosis enhances the antitumor efficacy of PARP inhibitors in prostate cancer. Cell Oncol (Dordr) 2023; 46:1855-1870. [PMID: 37610690 DOI: 10.1007/s13402-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE PARP inhibitors have revolutionized the treatment landscape for advanced prostate cancer (PCa) patients who harboring mutations in homologous recombination repair (HRR) genes. However, the molecular mechanisms underlying PARP inhibitors function beyond DNA damage repair pathways remain elusive, and identifying novel predictive targets that favorably respond to PARP inhibitors in PCa is an active area of research. METHODS The expression of GSDME in PCa cell lines and human PCa samples was determined by western blotting. Targeted bisulfite sequencing, gene enrichment analysis (GSEA), clone formation, construction of the stably transfected cell lines, lactate dehydrogenase (LDH) assay, western blotting as well as a mouse model of subcutaneous xenografts were used to investigate the role of GSDME in PCa. The combinational therapeutic effect of olaparib and decitabine was determined using both in vitro and in vivo experiments. RESULTS We have found low expression of GSDME in PCa. Interestingly, we demonstrated that GSDME activity is robustly induced in olaparib-treated cells undergoing pyroptosis, and that high methylation of the GSDME promoter dampens its activity in PCa cells. Intriguingly, genetically overexpressing GSDME does not inhibit tumor cell proliferation but instead confers sensitivity to olaparib. Furthermore, pharmacological treatment with the combination of olaparib and decitabine synergistically induces GSDME expression and cleavage through caspase-3 activation, thus promoting pyroptosis and enhancing anti-tumor response, ultimately resulting in tumor remission. CONCLUSION Our findings highlight a novel therapeutic strategy for enhancing the long-term response to olaparib beyond HRR-deficient tumors in PCa, underscoring the critical role of GSDME in regulating tumorigenesis.
Collapse
Affiliation(s)
- Ao Tian
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Tingyu Wu
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jianjun Sha
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle road, Shanghai, 200001, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
38
|
Classen S, Petersen C, Borgmann K. Crosstalk between immune checkpoint and DNA damage response inhibitors for radiosensitization of tumors. Strahlenther Onkol 2023; 199:1152-1163. [PMID: 37420037 PMCID: PMC10674014 DOI: 10.1007/s00066-023-02103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE This review article is intended to provide a perspective overview of potential strategies to overcome radiation resistance of tumors through the combined use of immune checkpoint and DNA repair inhibitors. METHODS A literature search was conducted in PubMed using the terms ("DNA repair* and DNA damage response* and intracellular immune response* and immune checkpoint inhibition* and radio*") until January 31, 2023. Articles were manually selected based on their relevance to the topics analyzed. RESULTS Modern radiotherapy offers a wide range of options for tumor treatment. Radiation-resistant subpopulations of the tumor pose a particular challenge for complete cure. This is due to the enhanced activation of molecular defense mechanisms that prevent cell death because of DNA damage. Novel approaches to enhance tumor cure are provided by immune checkpoint inhibitors, but their effectiveness, especially in tumors without increased mutational burden, also remains limited. Combining inhibitors of both immune checkpoints and DNA damage response with radiation may be an attractive option to augment existing therapies and is the subject of the data summarized here. CONCLUSION The combination of tested inhibitors of DNA damage and immune responses in preclinical models opens additional attractive options for the radiosensitization of tumors and represents a promising application for future therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
39
|
Deeksha W, Abhishek S, Rajakumara E. PAR recognition by PARP1 regulates DNA-dependent activities and independently stimulates catalytic activity of PARP1. FEBS J 2023; 290:5098-5113. [PMID: 37462479 DOI: 10.1111/febs.16907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Poly(ADP-ribosyl)ation is predominantly catalyzed by Poly(ADP-ribose) polymerase 1 (PARP1) in response to DNA damage, mediating the DNA repair process to maintain genomic integrity. Single-strand (SSB) and double-strand (DSB) DNA breaks are bona fide stimulators of PARP1 activity. However, PAR-mediated PARP1 regulation remains unexplored. Here, we report ZnF3, BRCT, and WGR, hitherto uncharacterized, as PAR reader domains of PARP1. Surprisingly, these domains recognize PARylated protein with a higher affinity compared with PAR but bind with weak or no affinity to DNA breaks as standalone domains. Conversely, ZnF1 and ZnF2 of PARP1 recognize DNA breaks but bind weakly to PAR. In addition, PAR reader domains, together, exhibit a synergy to recognize PAR or PARylated protein. Further competition-binding studies suggest that PAR binding releases DNA from PARP1, and the WGR domain facilitates DNA release. Unexpectedly, PAR showed catalytic stimulation of PARP1 but hampered the DNA-dependent stimulation. Altogether, our work discovers dedicated high-affinity PAR reader domains of PARP1 and uncovers a novel mechanism of allosteric regulation of DNA-dependent and DNA-independent activities of PARP1 by its catalytic product PAR.
Collapse
Affiliation(s)
- Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
40
|
Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, Lin WC. A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A 2023; 120:e2307793120. [PMID: 37878724 PMCID: PMC10622895 DOI: 10.1073/pnas.2307793120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
We have previously identified TopBP1 (topoisomerase IIβ-binding protein 1) as a promising target for cancer therapy, given its role in the convergence of Rb, PI(3)K/Akt, and p53 pathways. Based on this, we conducted a large-scale molecular docking screening to identify a small-molecule inhibitor that specifically targets the BRCT7/8 domains of TopBP1, which we have named 5D4. Our studies show that 5D4 inhibits TopBP1 interactions with E2F1, mutant p53, and Cancerous Inhibitor of Protein Phosphatase 2A. This leads to the activation of E2F1-mediated apoptosis and the inhibition of mutant p53 gain of function. In addition, 5D4 disrupts the interaction of TopBP1 with MIZ1, which in turn allows MIZ1 to bind to its target gene promoters and repress MYC activity. Moreover, 5D4 inhibits the association of the TopBP1-PLK1 complex and prevents the formation of Rad51 foci. When combined with inhibitors of PARP1/2 or PARP14, 5D4 synergizes to effectively block cancer cell proliferation. Our animal studies have demonstrated the antitumor activity of 5D4 in breast and ovarian cancer xenograft models. Moreover, the effectiveness of 5D4 is further enhanced when combined with a PARP1/2 inhibitor talazoparib. Taken together, our findings strongly support the potential use of TopBP1-BRCT7/8 inhibitors as a targeted cancer therapy.
Collapse
Affiliation(s)
- Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Kang Liu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Lidija A. Wilhelms Garan
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX77030
| | - Helena Folly-Kossi
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Shwu-Jiuan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Taipei Medical University, Taipei11031, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
41
|
Li P, Zhen Y, Kim C, Liu Z, Hao J, Deng H, Deng H, Zhou M, Wang XD, Qin T, Yu Y. Nimbolide targets RNF114 to induce the trapping of PARP1 and synthetic lethality in BRCA-mutated cancer. SCIENCE ADVANCES 2023; 9:eadg7752. [PMID: 37878693 PMCID: PMC10599614 DOI: 10.1126/sciadv.adg7752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Recent studies have pointed to PARP1 trapping as a key determinant of the anticancer effects of PARP1 inhibitors (PARPi). We identified RNF114, as a PARylation-dependent, E3 ubiquitin ligase involved in DNA damage response. Upon sensing genotoxicity, RNF114 was recruited, in a PAR-dependent manner, to DNA lesions, where it targeted PARP1 for degradation. The blockade of this pathway interfered with the removal of PARP1 from DNA lesions, leading to profound PARP1 trapping. We showed that a natural product, nimbolide, inhibited the E3 ligase activity of RNF114 and thus caused PARP1 trapping. However, unlike conventional PARPi, nimbolide treatment induced the trapping of both PARP1 and PARylation-dependent DNA repair factors. Nimbolide showed synthetic lethality with BRCA mutations, and it overcame intrinsic and acquired resistance to PARPi, both in vitro and in vivo. These results point to the exciting possibility of targeting the RNF114-PARP1 pathway for the treatment of homologous recombination-deficient cancers.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chiho Kim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhengshuai Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jianwei Hao
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Heping Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hejun Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xu-Dong Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
42
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
43
|
Johnson RL, Ganesan S, Thangavelu A, Theophilou G, de Jong D, Hutson R, Nugent D, Broadhead T, Laios A, Cummings M, Orsi NM. Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis. Cancers (Basel) 2023; 15:4632. [PMID: 37760602 PMCID: PMC10527181 DOI: 10.3390/cancers15184632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Results of recent clinical trials using the immune check point inhibitors (ICI) pembrolizumab or dostarlimab with/without lenvatinib has led to their approval for specific molecular subgroups of advanced recurrent endometrial cancer (EC). Herein, we summarise the clinical data leading to this first tissue-agnostic approval. As this novel therapy is not yet available in the United Kingdom standard care setting, we explore the strengths, weaknesses, opportunities, and threats (SWOT) of ICI treatment in EC. Major databases were searched focusing on clinical trials using programmed cell death protein 1 (PD-1) and its ligand (PD-L1) ICI which ultimately contributed to anti-PD-1 approval in EC. We performed a data quality assessment, reviewing survival and safety analysis. We included 15 studies involving 1609 EC patients: 458 with mismatch repair deficiency (MMRd)/microsatellite instability-high (MSI-H) status and 1084 with mismatch repair proficiency/microsatellite stable (MMRp/MSS) status. Pembrolizumab/dostarlimab have been approved for MMRd ECs, with the addition of lenvatinib for MMRp cases in the recurrent setting. Future efforts will focus on the pathological assessment of biomarkers to determine molecular phenotypes that correlate with response or resistance to ICI in order to identify patients most likely to benefit from this treatment.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Subhasheenee Ganesan
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Amudha Thangavelu
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Georgios Theophilou
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Diederick de Jong
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Richard Hutson
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - David Nugent
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Timothy Broadhead
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Alexandros Laios
- Department of Gynaecological Oncology, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Michele Cummings
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
44
|
Zhao L, Chen X, Wu H, He Q, Ding L, Yang B. Strategies to synergize PD-1/PD-L1 targeted cancer immunotherapies to enhance antitumor responses in ovarian cancer. Biochem Pharmacol 2023; 215:115724. [PMID: 37524205 DOI: 10.1016/j.bcp.2023.115724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) antibodies have developed rapidly but exhibited modest activity in ovarian cancer (OC), achieving a clinical response rate ranging from 5.9% to 19%. Current evidence indicate that the establishment of an integrated cancer-immunity cycle is a prerequisite for anti-PD-1/PD-L1 antibodies. Any impairment in this cycle, including lack of cancer antigens release, impaired antigen-presenting, decreased T cell priming and activation, less T cells that are trafficked or infiltrated in tumor microenvironment (TME), and low tumor recognition and killings, will lead to decreased infiltrated cytotoxic T cells to tumor bed and treatment failure. Therefore, combinatorial strategies aiming to modify cancer-immunity cycle and reprogram tumor immune microenvironment are of great interest. By far, various strategies have been studied to enhance responsiveness to PD-1/PD-L1 inhibitors in OC. Platinum-based chemotherapy increases neoantigens release; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) improve the function of antigen-presenting cells and promote the trafficking of T cells into tumors; epigenetic drugs help to complete the immune cycle by affecting multiple steps; immunotherapies like anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies reactivate T cells, and other treatment strategies like radiotherapy helps to increase the expression of tumor antigens. In this review, we will summarize the preclinical studies by analyzing their contribution in modifying the cancer immunity cycle and remodeling tumor environment, and we will also summarize recent progress in clinical trials and discuss some perspectives to improve these treatment strategies.
Collapse
Affiliation(s)
- Lin Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Rose AM, Goncalves T, Cunniffe S, Geiller HEB, Kent T, Shepherd S, Ratnaweera M, O’Sullivan R, Gibbons R, Clynes D. Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA. Nucleic Acids Res 2023; 51:6509-6527. [PMID: 36940725 PMCID: PMC10359465 DOI: 10.1093/nar/gkad150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.
Collapse
Affiliation(s)
- Anna M Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Siobhan Cunniffe
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Thomas Kent
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sam Shepherd
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Roderick J O’Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - David Clynes
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
46
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
47
|
Planas‐Paz L, Pliego‐Mendieta A, Hagedorn C, Aguilera‐Garcia D, Haberecker M, Arnold F, Herzog M, Bankel L, Guggenberger R, Steiner S, Chen Y, Kahraman A, Zoche M, Rubin MA, Moch H, Britschgi C, Pauli C. Unravelling homologous recombination repair deficiency and therapeutic opportunities in soft tissue and bone sarcoma. EMBO Mol Med 2023; 15:e16863. [PMID: 36779660 PMCID: PMC10086583 DOI: 10.15252/emmm.202216863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability. Furthermore, sarcomas carrying HRDness traits exhibit a distinct SARC-HRD transcriptional signature that predicts PARP inhibitor sensitivity in patient-derived sarcoma cells. Concomitantly, HRDhigh sarcoma cells lack RAD51 nuclear foci formation upon DNA damage, further evidencing defects in HRR. We further identify the WEE1 kinase as a therapeutic vulnerability for sarcomas with HRDness and demonstrate the clinical benefit of combining DNA damaging agents and inhibitors of DNA repair pathways ex vivo and in the clinic. In summary, we provide a personalized oncological approach to treat sarcoma patients successfully.
Collapse
Affiliation(s)
- Lara Planas‐Paz
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Alicia Pliego‐Mendieta
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Catherine Hagedorn
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Domingo Aguilera‐Garcia
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Martina Haberecker
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Fabian Arnold
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Marius Herzog
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Lorenz Bankel
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Roman Guggenberger
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
| | - Sabrina Steiner
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Yanjiang Chen
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Martin Zoche
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Mark A Rubin
- Precision Oncology Laboratory, Department for Biomedical ResearchBern Center for Precision MedicineBernSwitzerland
| | - Holger Moch
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Chantal Pauli
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Medical FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
48
|
Jahun AS, Sorgeloos F, Chaudhry Y, Arthur SE, Hosmillo M, Georgana I, Izuagbe R, Goodfellow IG. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner. Cell Rep 2023; 42:112179. [PMID: 36943868 DOI: 10.1016/j.celrep.2023.112179] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/11/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
The cGAS-STING pathway is central to the interferon response against DNA viruses. However, recent studies are increasingly demonstrating its role in the restriction of some RNA viruses. Here, we show that the cGAS-STING pathway also contributes to the interferon response against noroviruses, currently the commonest causes of infectious gastroenteritis worldwide. We show a significant reduction in interferon-β induction and a corresponding increase in viral replication in norovirus-infected cells after deletion of STING, cGAS, or IFI16. Further, we find that immunostimulatory host genome-derived DNA and mitochondrial DNA accumulate in the cytosol of norovirus-infected cells. Lastly, overexpression of the viral NS4 protein is sufficient to drive the accumulation of cytosolic DNA. Together, our data find a role for cGAS, IFI16, and STING in the restriction of noroviruses and show the utility of host genomic DNA as a damage-associated molecular pattern in cells infected with an RNA virus.
Collapse
Affiliation(s)
- Aminu S Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK; Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Sabastine E Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Rhys Izuagbe
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
49
|
Wang L, Wang P, Chen X, Yang H, Song S, Song Z, Jia L, Chen H, Bao X, Guo N, Huan X, Xi Y, Shen Y, Yang X, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Lang J, Miao Z, Zhang A, He J. Thioparib inhibits homologous recombination repair, activates the type I IFN response, and overcomes olaparib resistance. EMBO Mol Med 2023; 15:e16235. [PMID: 36652375 PMCID: PMC9994488 DOI: 10.15252/emmm.202216235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown great promise for treating BRCA-deficient tumors. However, over 40% of BRCA-deficient patients fail to respond to PARPi. Here, we report that thioparib, a next-generation PARPi with high affinity against multiple PARPs, including PARP1, PARP2, and PARP7, displays high antitumor activities against PARPi-sensitive and -resistant cells with homologous recombination (HR) deficiency both in vitro and in vivo. Thioparib treatment elicited PARP1-dependent DNA damage and replication stress, causing S-phase arrest and apoptosis. Conversely, thioparib strongly inhibited HR-mediated DNA repair while increasing RAD51 foci formation. Notably, the on-target inhibition of PARP7 by thioparib-activated STING/TBK1-dependent phosphorylation of STAT1, triggered a strong induction of type I interferons (IFNs), and resulted in tumor growth retardation in an immunocompetent mouse model. However, the inhibitory effect of thioparib on tumor growth was more pronounced in PARP1 knockout mice, suggesting that a specific PARP7 inhibitor, rather than a pan inhibitor such as thioparib, would be more relevant for clinical applications. Finally, genome-scale CRISPR screening identified PARP1 and MCRS1 as genes capable of modulating thioparib sensitivity. Taken together, thioparib, a next-generation PARPi acting on both DNA damage response and antitumor immunity, serves as a therapeutic potential for treating hyperactive HR tumors, including those resistant to earlier-generation PARPi.
Collapse
Affiliation(s)
- Li‐Min Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingyuan Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Xiao‐Min Chen
- University of Chinese Academy of SciencesBeijingChina
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Hui Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shan‐Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zilan Song
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Jia
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hua‐Dong Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xu‐Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ne Guo
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia‐Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Xi
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan‐Yan Shen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin‐Ying Yang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Su
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi‐Ming Sun
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying‐Lei Gao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Chen
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Ding
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing‐Yu Lang
- University of Chinese Academy of SciencesBeijingChina
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Ze‐Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ao Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Pharm‐X Center, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Jin‐Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
50
|
Kim C, Wang XD, Jang S, Yu Y. PARP1 inhibitors induce pyroptosis via caspase 3-mediated gasdermin E cleavage. Biochem Biophys Res Commun 2023; 646:78-85. [PMID: 36706709 PMCID: PMC9933147 DOI: 10.1016/j.bbrc.2023.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
The identification of PARP1 as a therapeutic target for BRCA1/2-deficient cells has led to a paradigm shift for the treatment of human malignancies with BRCA1/2 mutations. However, our understanding of the mechanism of action of PARP1 inhibitors (PARPi) is still evolving. It is being increasingly appreciated that the immunomodulatory function of PARPi is a critical contributor of the anti-tumor effects of these compounds. Here, we identify a novel cell death effector pathway for PARPi where PARPi induces inflammatory pyroptosis that is mediated by caspase 3-dependent cleavage of GSDME. Caspase 3 is activated upon PARPi treatment which directly cleaves GSDME and, subsequently induces pyroptosis. Genetic and pharmacological experiments show that the presence of the PARP1 protein with uncompromised DNA binding capability is required for PARPi-induced pyroptosis, suggesting that PARP1 trapping is a key driver of this phenomenon. Importantly, we show that PARPi-induced GSDME cleavage and pyroptosis occurred only in the BRCA1-deficient cells, but not in those reconstituted with BRCA1 wild-type (WT). These findings suggest that pyroptosis could be a novel aspect of the immunomodulatory function of PARPi. Our studies could also offer new insights to the potential biomarkers and therapeutic strategies to achieve better anti-tumor effects of PARPi for BRCA-deficient tumors with low GSDME expression.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Xu-Dong Wang
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yonghao Yu
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|