1
|
Aleogho BM, Mohri M, Jang MS, Tsukada S, Al-Hebri Y, Matsuyama HJ, Tsukada Y, Mori I, Noma K. Aberrant neuronal hyperactivation causes an age-dependent behavioral decline in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2412391122. [PMID: 39739791 PMCID: PMC11725918 DOI: 10.1073/pnas.2412391122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction. The roundworm Caenorhabditis elegans exhibits age-dependent declines in an associative learning behavior called thermotaxis, in which its temperature preference on a thermal gradient is contingent on food availability during its cultivation. Cell ablation and calcium imaging demonstrate that the major thermosensory circuit consisting of AFD thermosensory neuron and AIY interneuron is relatively intact in aged animals. On the other hand, ablation of either AWC sensory neurons or AIA interneurons ameliorates the age-dependent thermotaxis decline. Both neurons showed spontaneous and stochastic hyperactivity in aged animals, enhanced by reciprocal communication between AWC and AIA via neurotransmitters and neuropeptides. Our findings suggest that AWC and AIA hyperactivity mediates thermotaxis decline in aged animals. Furthermore, dietary modulation could ameliorate age-dependent thermotaxis decline by suppressing neuronal hyperactivity. We propose that aberrantly enhanced, not diminished, neuronal activities can impair the behavior of aged animals.
Collapse
Affiliation(s)
- Binta Maria Aleogho
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Mizuho Mohri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Moon Sun Jang
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Sachio Tsukada
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Milk Science Research Institute, MEGMILK SNOW BRAND Co. Ltd, Saitama350-1165, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Yuki Tsukada
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Kentaro Noma
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| |
Collapse
|
2
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Chu LA, Tai CY, Chiang AS. Thirst-driven hygrosensory suppression promotes water seeking in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2404454121. [PMID: 39145936 PMCID: PMC11348324 DOI: 10.1073/pnas.2404454121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Survival in animals relies on navigating environments aligned with physiological needs. In Drosophila melanogaster, antennal ionotropic receptors (IRs) sensing humidity changes govern hygrotaxis behavior. This study sheds light on the crucial role of IR8a neurons in the transition from high humidity avoidance to water-seeking behavior when the flies become thirsty. These neurons demonstrate a heightened calcium response toward high humidity stimuli in satiated flies and a reduced response in thirsty flies, modulated by fluctuating levels of the neuropeptide leucokinin, which monitors the internal water balance. Optogenetic activation of IR8a neurons in thirsty flies triggers an avoidance response similar to the moisture aversion in adequately hydrated flies. Furthermore, our study identifies IR40a neurons as associated with dry avoidance, while IR68a neurons are linked to moist attraction. The dynamic interplay among these neurons, each with opposing valences, establishes a preference for approximately 30% relative humidity in well-hydrated flies and facilitates water-seeking behavior in thirsty individuals. This research unveils the intricate interplay between sensory perception, neuronal plasticity, and internal states, providing valuable insights into the adaptive mechanisms governing hygrotaxis in Drosophila.
Collapse
Affiliation(s)
- Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinch30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Chu-Yi Tai
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu30013, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung40402, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung80780, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County35053, Taiwan
| |
Collapse
|
5
|
Hill TJ, Sengupta P. Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type. Proc Natl Acad Sci U S A 2024; 121:e2321430121. [PMID: 38530893 PMCID: PMC10998601 DOI: 10.1073/pnas.2321430121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds- to hours-long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in Caenorhabditis elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change and indicate that the deployment of both transcriptional and nontranscriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.
Collapse
Affiliation(s)
- Tyler J. Hill
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA02454
| |
Collapse
|
6
|
Suryawinata N, Yokosawa R, Tan KHC, Lai AL, Sone R, Mori I, Noma K. Dietary E. coli promotes age-dependent chemotaxis decline in C. elegans. Sci Rep 2024; 14:5529. [PMID: 38448519 PMCID: PMC10918063 DOI: 10.1038/s41598-024-52272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 03/08/2024] Open
Abstract
An animal's ability to sense odors declines during aging, and its olfactory drive is tuned by internal states such as satiety. However, whether internal states modulate an age-dependent decline in odor sensation is unknown. To address this issue, we utilized the nematode Caenorhabditis elegans and compared their chemotaxis abilities toward attractive odorants when aged under different dietary conditions. Feeding with the standard laboratory diet, Escherichia coli attenuated the chemotaxis ability toward diacetyl, isoamyl alcohol, and benzaldehyde when aged. On the other hand, feeding with either the lactic acid bacteria Lactobacillus reuteri or food deprivation selectively maintained the chemotaxis ability toward diacetyl. Our results suggest that ingestion of E. coli causes age-dependent chemotaxis decline. The changes in the chemotaxis behavior are attributed to the different expressions of diacetyl receptor odr-10, and the chemotaxis behavior of aged animals under food deprivation is shown to be dependent on daf-16. Our study demonstrates the molecular mechanism of how diet shapes the trajectory of age-dependent decline in chemosensory behaviors.
Collapse
Affiliation(s)
- Nadia Suryawinata
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Rikuou Yokosawa
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
- Group of Microbial Motility, Division of Natural Science, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Ke Hui Cassandra Tan
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
| | - Alison Lok Lai
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
| | - Ryusei Sone
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
- Group of Microbial Motility, Division of Natural Science, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan.
- Group of Microbial Motility, Division of Natural Science, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
7
|
Piette C, Gervasi N, Venance L. Synaptic plasticity through a naturalistic lens. Front Synaptic Neurosci 2023; 15:1250753. [PMID: 38145207 PMCID: PMC10744866 DOI: 10.3389/fnsyn.2023.1250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
From the myriad of studies on neuronal plasticity, investigating its underlying molecular mechanisms up to its behavioral relevance, a very complex landscape has emerged. Recent efforts have been achieved toward more naturalistic investigations as an attempt to better capture the synaptic plasticity underpinning of learning and memory, which has been fostered by the development of in vivo electrophysiological and imaging tools. In this review, we examine these naturalistic investigations, by devoting a first part to synaptic plasticity rules issued from naturalistic in vivo-like activity patterns. We next give an overview of the novel tools, which enable an increased spatio-temporal specificity for detecting and manipulating plasticity expressed at individual spines up to neuronal circuit level during behavior. Finally, we put particular emphasis on works considering brain-body communication loops and macroscale contributors to synaptic plasticity, such as body internal states and brain energy metabolism.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
8
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Hill TJ, Sengupta P. Feedforward and feedback mechanisms cooperatively regulate rapid experience-dependent response adaptation in a single thermosensory neuron type. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570166. [PMID: 38168209 PMCID: PMC10760192 DOI: 10.1101/2023.12.05.570166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sensory adaptation allows neurons to adjust their sensitivity and responses based on recent experience. The mechanisms that mediate continuous adaptation to stimulus history over seconds to hours long timescales, and whether these mechanisms can operate within a single sensory neuron type, are unclear. The single pair of AFD thermosensory neurons in C. elegans exhibits experience-dependent plasticity in their temperature response thresholds on both minutes- and hours-long timescales upon a temperature upshift. While long-term response adaptation requires changes in gene expression in AFD, the mechanisms driving rapid response plasticity are unknown. Here, we show that rapid thermosensory response adaptation in AFD is mediated via cGMP and calcium-dependent feedforward and feedback mechanisms operating at the level of primary thermotransduction. We find that either of two thermosensor receptor guanylyl cyclases (rGCs) alone is sufficient to drive rapid adaptation, but that each rGC drives adaptation at different rates. rGC-driven adaptation is mediated in part via phosphorylation of their intracellular domains, and calcium-dependent feedback regulation of basal cGMP levels via a neuronal calcium sensor protein. In turn, cGMP levels feedforward via cGMP-dependent protein kinases to phosphorylate a specific subunit of the cGMP-gated thermotransduction channel to further regulate rapid adaptation. Our results identify multiple molecular pathways that act in AFD to ensure rapid adaptation to a temperature change, and indicate that the deployment of both transcriptional and non-transcriptional mechanisms within a single sensory neuron type can contribute to continuous sensory adaptation.
Collapse
Affiliation(s)
- Tyler J. Hill
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
10
|
Bastien BL, Cowen MH, Hart MP. Distinct neurexin isoforms cooperate to initiate and maintain foraging activity. Transl Psychiatry 2023; 13:367. [PMID: 38036526 PMCID: PMC10689797 DOI: 10.1038/s41398-023-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and β isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mara H Cowen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Yeon J, Porwal C, McGrath PT, Sengupta P. Identification of a spontaneously arising variant affecting thermotaxis behavior in a recombinant inbred Caenorhabditis elegans line. G3 (BETHESDA, MD.) 2023; 13:jkad186. [PMID: 37572357 PMCID: PMC10542565 DOI: 10.1093/g3journal/jkad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Analyses of the contributions of genetic variants in wild strains to phenotypic differences have led to a more complete description of the pathways underlying cellular functions. Causal loci are typically identified via interbreeding of strains with distinct phenotypes in order to establish recombinant inbred lines (RILs). Since the generation of RILs requires growth for multiple generations, their genomes may contain not only different combinations of parental alleles but also genetic changes that arose de novo during the establishment of these lines. Here, we report that in the course of generating RILs between Caenorhabditis elegans strains that exhibit distinct thermotaxis behavioral phenotypes, we identified spontaneously arising variants in the ttx-1 locus. ttx-1 encodes the terminal selector factor for the AFD thermosensory neurons, and loss-of-function mutations in ttx-1 abolish thermotaxis behaviors. The identified genetic changes in ttx-1 in the RIL are predicted to decrease ttx-1 function in part via specifically affecting a subset of AFD-expressed ttx-1 isoforms. Introduction of the relevant missense mutation in the laboratory C. elegans strain via gene editing recapitulates the thermotaxis behavioral defects of the RIL. Our results suggest that spontaneously occurring genomic changes in RILs may complicate identification of loci contributing to phenotypic variation, but that these mutations may nevertheless lead to the identification of important causal molecules and mechanisms.
Collapse
Affiliation(s)
- Jihye Yeon
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Charmi Porwal
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
12
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Anatomical restructuring of a lateralized neural circuit during associative learning by asymmetric insulin signaling. Curr Biol 2023; 33:3835-3850.e6. [PMID: 37591249 PMCID: PMC10639090 DOI: 10.1016/j.cub.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Studies of neuronal connectivity in model organisms, i.e., of their connectomes, have been instrumental in dissecting the structure-function relationship of nervous systems. However, the limited sample size of these studies has impeded analyses into how variation of connectivity across populations may influence circuit architecture and behavior. Moreover, little is known about how experiences induce changes in circuit architecture. Here, we show that an asymmetric salt-sensing circuit in the nematode Caenorhabditis elegans exhibits variation that predicts the animals' salt preferences and undergoes restructuring during salt associative learning. Naive worms memorize and prefer the salt concentration they experience in the presence of food through a left-biased neural network architecture. However, animals conditioned at elevated salt concentrations change this left-biased network to a right-biased network. This change in circuit architecture occurs through the addition of new synapses in response to asymmetric, paracrine insulin signaling. Therefore, experience-dependent changes in an animal's neural connectome are induced by insulin signaling and are fundamental to learning and behavior.
Collapse
Affiliation(s)
- Leo T H Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Garrett A Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacquelin Ho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cassandra C Potter
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
13
|
Tomioka M, Umemura Y, Ueoka Y, Chin R, Katae K, Uchiyama C, Ike Y, Iino Y. Antagonistic regulation of salt and sugar chemotaxis plasticity by a single chemosensory neuron in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010637. [PMID: 37669262 PMCID: PMC10503759 DOI: 10.1371/journal.pgen.1010637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/15/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
The nematode Caenorhabditis elegans memorizes various external chemicals, such as ions and odorants, during feeding. Here we find that C. elegans is attracted to the monosaccharides glucose and fructose after exposure to these monosaccharides in the presence of food; however, it avoids them without conditioning. The attraction to glucose requires a gustatory neuron called ASEL. ASEL activity increases when glucose concentration decreases. Optogenetic ASEL stimulation promotes forward movements; however, after glucose conditioning, it promotes turning, suggesting that after glucose conditioning, the behavioral output of ASEL activation switches toward glucose. We previously reported that chemotaxis toward sodium ion (Na+), which is sensed by ASEL, increases after Na+ conditioning in the presence of food. Interestingly, glucose conditioning decreases Na+ chemotaxis, and conversely, Na+ conditioning decreases glucose chemotaxis, suggesting the reciprocal inhibition of learned chemotaxis to distinct chemicals. The activation of PKC-1, an nPKC ε/η ortholog, in ASEL promotes glucose chemotaxis and decreases Na+ chemotaxis after glucose conditioning. Furthermore, genetic screening identified ENSA-1, an ortholog of the protein phosphatase inhibitor ARPP-16/19, which functions in parallel with PKC-1 in glucose-induced chemotactic learning toward distinct chemicals. These findings suggest that kinase-phosphatase signaling regulates the balance between learned behaviors based on glucose conditioning in ASEL, which might contribute to migration toward chemical compositions where the animals were previously fed.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Umemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yutaro Ueoka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Risshun Chin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keita Katae
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chihiro Uchiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuaki Ike
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Thapliyal S, Beets I, Glauser DA. Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans. Nat Commun 2023; 14:3052. [PMID: 37236963 DOI: 10.1038/s41467-023-38685-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.
Collapse
Affiliation(s)
- Saurabh Thapliyal
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
15
|
Harris N, Bates SG, Zhuang Z, Bernstein M, Stonemetz JM, Hill TJ, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. Curr Biol 2023; 33:1487-1501.e7. [PMID: 36977417 PMCID: PMC10133190 DOI: 10.1016/j.cub.2023.02.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Neurons modify their transcriptomes in response to an animal's experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus, including its duration, magnitude of change, and absolute value, are encoded in the gene expression program in this single neuron type, and we identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis-regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Samuel G Bates
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Zihao Zhuang
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Matthew Bernstein
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jamie M Stonemetz
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Tyler J Hill
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei Province, China
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada
| | - Piali Sengupta
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
16
|
Powell DJ, Owens E, Bergsund MM, Cooper M, Newstein P, Berner E, Janmohamed R, Dickinson PS. The role of feedback and modulation in determining temperature resiliency in the lobster cardiac nervous system. Front Neurosci 2023; 17:1113843. [PMID: 36968508 PMCID: PMC10034192 DOI: 10.3389/fnins.2023.1113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Changes in ambient temperature affect all biological processes. However, these effects are process specific and often vary non-linearly. It is thus a non-trivial problem for neuronal circuits to maintain coordinated, functional output across a range of temperatures. The cardiac nervous systems in two species of decapod crustaceans, Homarus americanus and Cancer borealis, can maintain function across a wide but physiologically relevant temperature range. However, the processes that underlie temperature resilience in neuronal circuits and muscle systems are not fully understood. Here, we demonstrate that the non-isolated cardiac nervous system (i.e., the whole heart: neurons, effector organs, intrinsic feedback systems) in the American lobster, H. americanus, is more sensitive to warm temperatures than the isolated cardiac ganglion (CG) that controls the heartbeat. This was surprising as modulatory processes known to stabilize the output from the CG are absent when the ganglion is isolated. One source of inhibitory feedback in the intact cardiac neuromuscular system is nitric oxide (NO), which is released in response to heart contractions. We hypothesized that the greater temperature tolerance observed in the isolated CG is due to the absence of NO feedback. Here, we demonstrate that applying an NO donor to the isolated CG reduces its temperature tolerance. Similarly, we show that the NO synthase inhibitor L-nitroarginine (LNA) increases the temperature tolerance of the non-isolated nervous system. This is sufficient to explain differences in temperature tolerance between the isolated CG and the whole heart. However, in an intact lobster, the heart and CG are modulated by an array of endogenous peptides and hormones, many of which are positive regulators of the heartbeat. Many studies have demonstrated that excitatory modulators increase temperature resilience. However, this neuromuscular system is regulated by both excitatory and inhibitory peptide modulators. Perfusing SGRNFLRFamide, a FLRFamide-like peptide, through the heart increases the non-isolated nervous system’s tolerance to high temperatures. In contrast, perfusing myosuppressin, a peptide that negatively regulates the heartbeat frequency, decreases the temperature tolerance. Our data suggest that, in this nervous system, positive regulators of neural output increase temperature tolerance of the neuromuscular system, while modulators that decrease neural output decrease temperature tolerance.
Collapse
Affiliation(s)
- Daniel J. Powell
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Elizabeth Owens
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Marie M. Bergsund
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Maren Cooper
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Peter Newstein
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Emily Berner
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Rania Janmohamed
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
- *Correspondence: Patsy S. Dickinson,
| |
Collapse
|
17
|
Kano A, Matsuyama HJ, Nakano S, Mori I. AWC thermosensory neuron interferes with information processing in a compact circuit regulating temperature-evoked posture dynamics in the nematode Caenorhabditis elegans. Neurosci Res 2023; 188:10-27. [PMID: 36336147 DOI: 10.1016/j.neures.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Elucidating how individual neurons encode and integrate sensory information to generate a behavior is crucial for understanding neural logic underlying sensory-dependent behavior. In the nematode Caenorhabditis elegans, information flow from sensory input to behavioral output is traceable at single-cell level due to its entirely solved neural connectivity. C. elegans processes the temperature information for regulating behavior consisting of undulatory posture dynamics in a circuit including two thermosensory neurons AFD and AWC, and their postsynaptic interneuron AIY. However, how the information processing in AFD-AWC-AIY circuit generates the posture dynamics remains elusive. To quantitatively evaluate the posture dynamics, we introduce locomotion entropy, which measures bandwidth of the frequency spectrum of the undulatory posture dynamics, and assess how the motor pattern fluctuates. We here found that AWC disorders the information processing in AFD-AWC-AIY circuit for regulating temperature-evoked posture dynamics. Under slow temperature ramp-up, AWC adjusts AFD response, whereby broadening the temperature range in which animals exhibit fluctuating posture undulation. Under rapid temperature ramp-up, AWC increases inter-individual variability in AIY activity and the fluctuating posture undulation. We propose that a compact nervous system recruits a sensory neuron as a fluctuation inducer for regulating sensory-dependent behavior.
Collapse
Affiliation(s)
- Amane Kano
- Group of Molecular Neurobiology, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hironori J Matsuyama
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shunji Nakano
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
18
|
Harris N, Bates S, Zhuang Z, Bernstein M, Stonemetz J, Hill T, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525070. [PMID: 36711719 PMCID: PMC9882311 DOI: 10.1101/2023.01.22.525070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neurons modify their transcriptomes in response to an animal’s experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus including its duration, magnitude of change, and absolute value are encoded in the gene expression program in this single neuron, and identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis -regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Samuel Bates
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Zihao Zhuang
- Department of Biology, Brandeis University, Waltham, MA, USA
- Current address: Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | | | - Jamie Stonemetz
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
19
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Restructuring of an asymmetric neural circuit during associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523604. [PMID: 36711870 PMCID: PMC9882173 DOI: 10.1101/2023.01.12.523604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Asymmetric brain function is common across the animal kingdom and involved in language processing, and likely in learning and memory. What regulates asymmetric brain function remains elusive. Here, we show that the nematode Caenorhabditis elegans restructures an asymmetric salt sensing neural circuit during associative learning. Worms memorize and prefer the salt concentration at which they were raised in the presence of food through a left-biased network architecture. When conditioned at elevated salt concentrations, animals change the left-biased to a right-biased network, which explains the changed salt-seeking behavior. The changes in circuit architecture require new synapse formation induced through asymmetric, paracrine insulin-signaling. Therefore, experience-dependent changes in asymmetric network architecture rely on paracrine insulin signaling and are fundamental to learning and behavior.
Collapse
|
20
|
Cheng D, Lee JS, Brown M, Ebert MS, McGrath PT, Tomioka M, Iino Y, Bargmann CI. Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning. Cell Rep 2022; 41:111685. [DOI: 10.1016/j.celrep.2022.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
21
|
McLachlan IG, Kramer TS, Dua M, DiLoreto EM, Gomes MA, Dag U, Srinivasan J, Flavell SW. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior. eLife 2022; 11:e79557. [PMID: 36044259 PMCID: PMC9433090 DOI: 10.7554/elife.79557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Animals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown. Here, we show that a wide range of states and stimuli converge upon a single Caenorhabditis elegans olfactory neuron to modulate food-seeking behavior. Using an unbiased ribotagging approach, we find that the expression of olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and stimuli, including feeding state, physiological stress, and recent sensory cues. We identify odorants that activate these state-dependent olfactory receptors and show that altered expression of these receptors influences food-seeking and foraging. Further, we dissect the molecular and neural circuit pathways through which external sensory information and internal nutritional state are integrated by AWA. This reveals a modular organization in which sensory and state-related signals arising from different cell types in the body converge on AWA and independently control chemoreceptor expression. The synthesis of these signals by AWA allows animals to generate sensorimotor responses that reflect the animal's overall state. Our findings suggest a general model in which sensory- and state-dependent transcriptional changes at the sensory periphery modulate animals' sensorimotor responses to meet their ongoing needs and states.
Collapse
Affiliation(s)
- Ian G McLachlan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Talya S Kramer
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Biology Graduate Program, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malvika Dua
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Elizabeth M DiLoreto
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Matthew A Gomes
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ugur Dag
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
22
|
Aoki I, Jurado P, Nawa K, Kondo R, Yamashiro R, Matsuyama HJ, Ferrer I, Nakano S, Mori I. OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans. PLoS Genet 2022; 18:e1010219. [PMID: 35675262 PMCID: PMC9176836 DOI: 10.1371/journal.pgen.1010219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Animals detect changes in both their environment and their internal state and modify their behavior accordingly. Yet, it remains largely to be clarified how information of environment and internal state is integrated and how such integrated information modifies behavior. Well-fed C. elegans migrates to past cultivation temperature on a thermal gradient, which is disrupted when animals are starved. We recently reported that the neuronal activities synchronize between a thermosensory neuron AFD and an interneuron AIY, which is directly downstream of AFD, in well-fed animals, while this synchrony is disrupted in starved animals. However, it remained to be determined whether the disruption of the synchrony is derived from modulation of the transmitter release from AFD or from the modification of reception or signal transduction in AIY. By performing forward genetics on a transition of thermotaxis behavior along starvation, we revealed that OLA-1, an Obg-like ATPase, functions in AFD to promote disruption of AFD-AIY synchrony and behavioral transition. Our results suggest that the information of hunger is delivered to the AFD thermosensory neuron and gates transmitter release from AFD to disrupt thermotaxis, thereby shedding light onto a mechanism for the integration of environmental and internal state to modulate behavior.
Collapse
Affiliation(s)
- Ichiro Aoki
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Paola Jurado
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Cancer Area, Institut d’Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Kanji Nawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Rumi Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Riku Yamashiro
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Isidre Ferrer
- Neuroscience Area, Institut d’Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
23
|
Takeishi A. Environmental-temperature and internal-state dependent thermotaxis plasticity of nematodes. Curr Opin Neurobiol 2022; 74:102541. [PMID: 35447377 DOI: 10.1016/j.conb.2022.102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Thermotaxis behavior of Caenorhabditis elegans is robust and highly plastic. A pair of sensory neurons, AFD, memorize environmental/cultivation temperature and communicate with a downstream neural circuit to adjust the temperature preference of the animal. This results in a behavioral bias where worms will move toward their cultivation temperature on a thermal gradient. Thermotaxis of C. elegans is also affected by the internal state and is temporarily abolished when worms are starved. Here I will discuss how C. elegans is able to modulate its behavior based on temperature by integrating environmental and internal information. Recent studies show that some parasitic nematodes have a similar thermosensory mechanism to C. elegans and exhibit cultivation-temperature-dependent thermotaxis. I will also discuss the common neural mechanisms that regulate thermosensation and thermotaxis in C. elegans and Strongyloides stercoralis.
Collapse
Affiliation(s)
- Asuka Takeishi
- RIKEN Center for Brain Science, RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Japan.
| |
Collapse
|
24
|
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol 2022; 73:102515. [PMID: 35183877 PMCID: PMC9621599 DOI: 10.1016/j.conb.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrew Gordus
- Department of Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Glauser DA. Temperature sensing and context-dependent thermal behavior in nematodes. Curr Opin Neurobiol 2022; 73:102525. [DOI: 10.1016/j.conb.2022.102525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
26
|
Tomioka M, Jang MS, Iino Y. DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes. Commun Biol 2022; 5:30. [PMID: 35017611 PMCID: PMC8752840 DOI: 10.1038/s42003-021-02956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c-Akt signaling promotes high-salt avoidance via a decrease in PLCβ activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Moon Sun Jang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
27
|
Cook AP, Nusbaum MP. Feeding state-dependent modulation of feeding-related motor patterns. J Neurophysiol 2021; 126:1903-1924. [PMID: 34669505 PMCID: PMC8715047 DOI: 10.1152/jn.00387.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ("unfed" hemolymph) or fed 15 min to 2 h before hemolymph removal ("fed" hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing) and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1 h, or 2 h after feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1-h time-point (i.e., reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested that the fed hemolymph also enhanced the influence of a projection neuron that innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.NEW & NOTEWORTHY Little is known about behavior-linked modulation of microcircuit activity. We show that the VCN-triggered gastric mill (chewing) and pyloric (food filtering) rhythms in the isolated crab Cancer borealis stomatogastric nervous system were changed by applying hemolymph from recently fed but not unfed crabs. This included some distinct parameter changes during each examined post-fed hemolymph time-point. These results suggest the presence of feeding-related changes in circulating hormones that regulate consummatory microcircuit activity.
Collapse
Affiliation(s)
- Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Kanwal JK, Coddington E, Frazer R, Limbania D, Turner G, Davila KJ, Givens MA, Williams V, Datta SR, Wasserman S. Internal State: Dynamic, Interconnected Communication Loops Distributed Across Body, Brain, and Time. Integr Comp Biol 2021; 61:867-886. [PMID: 34115114 PMCID: PMC8623242 DOI: 10.1093/icb/icab101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Internal state profoundly alters perception and behavior. For example, a starved fly may approach and consume foods that it would otherwise find undesirable. A socially engaged newt may remain engaged in the presence of a predator, whereas a solitary newt would otherwise attempt to escape. Yet, the definition of internal state is fluid and ill-defined. As an interdisciplinary group of scholars spanning five career stages (from undergraduate to full professor) and six academic institutions, we came together in an attempt to provide an operational definition of internal state that could be useful in understanding the behavior and the function of nervous systems, at timescales relevant to the individual. In this perspective, we propose to define internal state through an integrative framework centered on dynamic and interconnected communication loops within and between the body and the brain. This framework is informed by a synthesis of historical and contemporary paradigms used by neurobiologists, ethologists, physiologists, and endocrinologists. We view internal state as composed of both spatially distributed networks (body-brain communication loops), and temporally distributed mechanisms that weave together neural circuits, physiology, and behavior. Given the wide spatial and temporal scales at which internal state operates-and therefore the broad range of scales at which it could be defined-we choose to anchor our definition in the body. Here we focus on studies that highlight body-to-brain signaling; body represented in endocrine signaling, and brain represented in sensory signaling. This integrative framework of internal state potentially unites the disparate paradigms often used by scientists grappling with body-brain interactions. We invite others to join us as we examine approaches and question assumptions to study the underlying mechanisms and temporal dynamics of internal state.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of
Technology, Pasadena, CA 91125, USA
| | - Emma Coddington
- Department of Biology, Willamette University, Salem, OR
97301, USA
| | - Rachel Frazer
- Division of Neurobiology and Behavior, Columbia Universitye,
New York, NY 10027, USA
| | - Daniela Limbania
- Department of Neuroscience, Wellesley College, Wellesley, MA
02481, USA
| | - Grace Turner
- Department of Neuroscience, Wellesley College, Wellesley, MA
02481, USA
| | - Karla J Davila
- Department of Biology, Willamette University, Salem, OR
97301, USA
| | - Michael A Givens
- Department of Biology, Willamette University, Salem, OR
97301, USA
| | - Valarie Williams
- Department of Dance, The Ohio State University, Columbus, OH
43210, USA
| | | | - Sara Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA
02481, USA
| |
Collapse
|
29
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Makino M, Ulzii E, Shirasaki R, Kim J, You YJ. Regulation of Satiety Quiescence by Neuropeptide Signaling in Caenorhabditis elegans. Front Neurosci 2021; 15:678590. [PMID: 34335159 PMCID: PMC8319666 DOI: 10.3389/fnins.2021.678590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep and metabolism are interconnected homeostatic states; the sleep cycle can be entrained by the feeding cycle, and perturbation of the sleep often results in dysregulation in metabolism. However, the neuro-molecular mechanism by which metabolism regulates sleep is not fully understood. We investigated how metabolism and feeding regulate sleep using satiety quiescence behavior as a readout in Caenorhabditis elegans, which shares certain key aspects of postprandial sleep in mammals. From an RNA interference-based screen of two neuropeptide families, RFamide-related peptides (FLPs) and insulin-like peptides (INSs), we identified flp-11, known to regulate other types of sleep-like behaviors in C. elegans, as a gene that plays the most significant role in satiety quiescence. A mutation in flp-11 significantly reduces quiescence, whereas over-expression of the gene enhances it. A genetic analysis shows that FLP-11 acts upstream of the cGMP signaling but downstream of the TGFβ pathway, suggesting that TGFβ released from a pair of head sensory neurons (ASI) activates FLP-11 in an interneuron (RIS). Then, cGMP signaling acting in downstream of RIS neurons induces satiety quiescence. Among the 28 INSs genes screened, ins-1, known to play a significant role in starvation-associated behavior working in AIA is inhibitory to satiety quiescence. Our study suggests that specific combinations of neuropeptides are released, and their signals are integrated in order for an animal to gauge its metabolic state and to control satiety quiescence, a feeding-induced sleep-like state in C. elegans.
Collapse
Affiliation(s)
- Mei Makino
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan
| | - Enkhjin Ulzii
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan
| | - Riku Shirasaki
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan
| | - Jeongho Kim
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Young-Jai You
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan.,Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
31
|
Yeon J, Takeishi A, Sengupta P. Chronic vs acute manipulations reveal degeneracy in a thermosensory neuron network. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000355. [PMID: 33474527 PMCID: PMC7812381 DOI: 10.17912/micropub.biology.000355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/04/2022]
Abstract
Degenerate networks can drive similar circuit outputs. Via acute manipulation of individual neurons, we previously identified circuit components that are necessary and sufficient to drive starvation-dependent plasticity in C. elegans thermotaxis behavior. Here we find that when these components are instead silenced chronically, degenerate mechanisms compensate to drive this behavior. Our results indicate that degeneracy in neuronal network function can be revealed under specific experimental conditions.
Collapse
Affiliation(s)
- Jihye Yeon
- Department of Biology, Brandeis University, Waltham, MA
| | - Asuka Takeishi
- Department of Biology, Brandeis University, Waltham, MA
- RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, RIKEN Center for Brain Science, Wako, Japan
| | | |
Collapse
|