1
|
Wang GY, Li YY, Shao KM, Li SL, Guan Y, Guo H, Chen L. Electrophysiological Responses and Field Attractants of Plutella xylostella Adults to Volatiles from Brassica oleracea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8925-8934. [PMID: 40195004 DOI: 10.1021/acs.jafc.5c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), is a major pest of crucifers. Many volatile compounds emitted by cruciferous vegetables are known to mediate the attraction of DBM adults to host plant and oviposition sites. However, development of highly effective attractants for DBM management is still needed. Here, we first analyzed the volatile compounds emitted by macerated broccoli leaves with gas chromatographic-electroantennographic detection and gas chromatography/mass spectrometry. Eight compounds, including benzaldehyde, limonene, phenylacetaldehyde, acetophenone, linalool, 2-phenylethyl alcohol, methyl salicylate, and methyl 2-methoxybenzoate, elicited robust responses from the antennae. Then, we conducted multiple field trapping experiments involving the "addition approach" (individually adding components to the most abundant component, D-limonene) and the "subtraction approach" to evaluate the attractiveness of different blends. We found that a 3-component blend of D-limonene, 2-phenylethyl alcohol, and methyl 2-methoxybenzoate (3:2:1) is the most effective attractant. This blend holds great potential for monitoring and management of P. xylostella populations.
Collapse
Affiliation(s)
- Guang-Yu Wang
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| | - Ya-Ya Li
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| | - Kai-Min Shao
- Department of Electronic Information and Electrical Engineering, Anyang Institute of Technology, Anyang 455099, China
| | - Shen-Lei Li
- Guangzhou Ruifeng Biotechnology Co. Ltd., Guangzhou 511370, China
| | - Yun Guan
- Guangzhou Ruifeng Biotechnology Co. Ltd., Guangzhou 511370, China
| | - Hao Guo
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| | - Li Chen
- College of Life Sciences/Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Zhou C. Population Dynamics of Galerucella birmanica and Its Aggregation Behavior in Brasenia schreberi Aquaculture System. INSECTS 2025; 16:371. [PMID: 40332862 PMCID: PMC12028085 DOI: 10.3390/insects16040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
The aquatic vegetable Brasenia schreberi Gmel. (Nymphaeales: Cabombaceae), widely cultivated in China, faces severe challenges from pest disturbances. With a field investigation, G. birmanica occurred for several generations in the Brasenia mono-cultivation system. The first visual peak on leaf surfaces appeared in July, with eggs, larvae, pupae and adults all being recorded. The highest number of flying adults were trapped in August in reverse to the absence of beetles on leaves, followed by an extraordinary high number of eggs in September. G. birmanica exhibited a conspicuous aggregation in distribution, with severely chewed areas having a G. birmanica abundance 21.6 times that of the non-chewed areas. Laboratory studies with GC-MS and two-choice tests revealed four volatiles significantly discrepant in contents released from chewed/intact leaves: cis-3-hexenyl acetate (917.33 ± 29.56 vs. 604.034 ± 23.24 ng, chewed vs. intact), 2-phenylethyl isothiocyanate (595.37 ± 28.42 vs. 356.00 ± 13.44 ng), undecane (771.44 ± 34.72 vs. 1003.28 ± 47.88 ng) and methyl salicylate (1079.84 ± 49.39 vs. 532.11 ± 18.23 ng); among them, 2-phenylethyl isothiocyanate could significantly attract G. birmanica adults. Our study suggests that G. birmanica can be a severe threat to mono-cultivated B. schreberi, whereas the damaged leaves may sacrifice themselves by attracting the beetles with an herbivore-induced volatile, thus protecting the whole plant population from pest disturbance.
Collapse
Affiliation(s)
| | | | - Changfang Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, China; (Y.W.); (Y.W.)
| |
Collapse
|
3
|
Yang J, Mo BT, Li GC, Huang LQ, Guo H, Wang CZ. Identification and functional characterization of chemosensory genes in olfactory and taste organs of Spodoptera litura (Lepidoptera: Noctuidae). INSECT SCIENCE 2024; 31:1721-1742. [PMID: 38485691 DOI: 10.1111/1744-7917.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 12/12/2024]
Abstract
The tobacco cutworm Spodoptera litura is one of the most destructive polyphagous crop pests. Olfaction and taste play a crucial role in its host plant selection and sexual communication, but the expression profile of chemosensory genes remains unclear. In this study, we identified 185 chemosensory genes from 7 organs in S. litura by transcriptome sequencing, of which 72 genes were published for the first time, including 27 odorant receptors (ORs), 26 gustatory receptors (GRs), 1 ionotropic receptor (IR), 16 odorant-binding proteins (OBPs), and 2 chemosensory proteins (CSPs). Phylogenetic analyses revealed that ORs, IRs, OBPs, and sensory neuron membrane proteins (SNMPs) were mainly expressed in antennae and sequence-conserved among Noctuidae species. The most differentially expressed genes (DEGs) between sexes were ORs and OBPs, and no DEGs were found in GRs. GR transcripts were enriched in proboscis, and the expression of sugar receptors was the highest. Carbon dioxide receptors, sugar receptor-SliuGR6, and bitter GRs-SlituGR43 and SlituGR66 had higher sequence identities between Noctuidae species. CSPs were broadly expressed in various organs, and SlituCSP13 was a DEG in adult antennae. The functional analysis in the Drosophila OR67d expression system found that SlituOR50, a receptor highly expressed in female antennae, is selectively tuned to farnesyl acetate. The results provide a solid foundation for understanding the molecular mechanisms by which chemosensory genes operate to elicit behavioral responses in polyphagous insects.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Pimkornburee S, Pombud S, Buensanteai K, Namanusart W, Aiamla-or S, Roddee J. Impact of Cassava Cultivars on Stylet Penetration Behavior and Settling of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). PLANTS (BASEL, SWITZERLAND) 2024; 13:3218. [PMID: 39599427 PMCID: PMC11598763 DOI: 10.3390/plants13223218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
This study investigates the settling preferences and feeding behavior of the Bemisia tabaci whitefly on six cassava cultivars using electrical penetration graph techniques. Six distinct electrical penetration graph waveforms-non-probing, stylet pathway, phloem salivation, phloem ingestion, intracellular puncture, and xylem feeding-were identified and analyzed. Significant differences in the frequency and duration of these waveforms were observed among the cassava cultivars. The whiteflies spent the majority of their time in the non-probing phase, particularly on the Huaybong 80, Kasetsart 50, Rayong 9, and Rayong 72 cultivars. CMR-89 cultivar exhibited higher total probe durations in the phloem salivation and ingestion waveforms, suggesting a greater potential for transmission of the Sri Lankan cassava mosaic virus. The study also examined trichome density and size across the cassava cultivars, revealing that CMR-89 had the highest density and small trichomes, while Huaybong 80 had the lowest density. Trichome characteristics significantly impacted whitefly behavior: larger trichomes were negatively correlated with whitefly settling, whereas higher trichome density was positively correlated with longer settling durations. These findings indicate that trichome-based resistance mechanisms are crucial in whitefly deterrence. Overall, the results suggest that cultivars with lower trichome density and larger trichomes are more resistant to whitefly infestation and subsequent Sri Lankan cassava mosaic virus transmission. These insights are valuable for cassava breeding programs focused on enhancing pest resistance, highlighting the importance of trichome characteristics in developing more resilient cassava varieties.
Collapse
Affiliation(s)
- Sudarat Pimkornburee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (S.P.); (K.B.); (S.A.-o.)
| | - Supawadee Pombud
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (S.P.); (K.B.); (S.A.-o.)
| | - Kumri Buensanteai
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (S.P.); (K.B.); (S.A.-o.)
| | - Weravart Namanusart
- Department of Plant Science, Faculty of Agricultural Innovation and Technology, Raja Mangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand;
| | - Sukanya Aiamla-or
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (S.P.); (K.B.); (S.A.-o.)
| | - Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (S.P.); (K.B.); (S.A.-o.)
| |
Collapse
|
5
|
Liu Z, Xia Y, Tan J, Wei M. Construction of a beneficial microbes-enriched rhizosphere system assists plants in phytophagous insect defense: current status, challenges and opportunities. PEST MANAGEMENT SCIENCE 2024; 80:5608-5618. [PMID: 38984867 DOI: 10.1002/ps.8305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The construction of a plant rhizosphere system enriched with beneficial microbes (BMs) can efficiently help plants defend against phytophagous insects. However, our comprehensive understanding of this approach is still incomplete. In this review, we methodically analyzed the progress made over the last decade, identifying both challenges and opportunities. The main methods for developing a BMs-enriched rhizosphere system include inoculating exogenous BMs into plants, amending the existing soil microbiomes with amendments, and utilizing plants to shape the soil microbiomes. BMs can assist plants in suppressing phytophagous insects across many orders, including 13 Lepidoptera, seven Homoptera, five Hemiptera, five Coleoptera, four Diptera, and one Thysanoptera species by inducing plant systemic resistance, enhancing plant tolerance, augmenting plant secondary metabolite production, and directly suppressing herbivores. Context-dependent factors such as abiotic and biotic conditions, as well as the response of insect herbivores, can affect the outcomes of BM-assisted plant defense. Several challenges and opportunities have emerged, including the development of synthetic microbial communities for herbivore control, the integration of biosensors for effectiveness assessment, the confirmation of BM targets for phytophagous insect defense, and the regulation of outcomes via smart farming with artificial intelligence. This study offers valuable insights for developing a BM-enriched rhizosphere system within an integrated pest management approach. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongwang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yihan Xia
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mi Wei
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Gu D, Wu S, Wang Y, Yang Y, Chen J, Mao K, Liao Y, Li J, Zeng L, Yang Z. Tea green leafhopper infestations affect tea plant growth by altering the synthesis of brassinolide. PLANT, CELL & ENVIRONMENT 2024; 47:3780-3796. [PMID: 38780064 DOI: 10.1111/pce.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Tea green leafhoppers are insects widely distributed in major tea-growing areas. At present, less attention has been paid to the study on effect of tea green leafhopper infestation on tea growth phenotype. In this study, tea green leafhoppers were used to treat tea branches in laboratory and co-treated with brassinolide (BL), the highest bioactivity of brassinosteroids (BRs), in tea garden. The results showed that the expression of genes related to BRs synthesis was inhibited and BL content was reduced in tea shoots after infestation by tea green leafhoppers. In addition, area of each leaf position, length and diameter of internodes, and the biomass of the tender shoots of tea plant were decreased after infestation by tea green leafhoppers. The number of trichomes, leaf thickness, palisade tissue thickness and cuticle thickness of tea shoots were increased after tea green leafhoppers infestation. BL spraying could partially recover the phenotypic changes of tea branches caused by tea green leafhoppers infestation. Further studies showed that tea green leafhoppers infestation may regulate the expression of CsDWF4 (a key gene for BL synthesis) through transcription factors CsFP1 and CsTCP1a, which finally affect the BL content. Moreover, BL was applied to inhibit the tea green leafhoppers infestation on tea shoots. In conclusion, our study revealed the effect of plant hormone BL-mediated tea green leafhoppers infestation on the growth phenotype of tea plants.
Collapse
Affiliation(s)
- Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuhua Wu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Yuxin Wang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiaming Chen
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiquan Mao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Ravikanthachari N, Steward RA, Boggs CL. Patterns of genetic variation and local adaptation of a native herbivore to a lethal invasive plant. Mol Ecol 2024; 33:e17326. [PMID: 38515231 DOI: 10.1111/mec.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.
Collapse
Affiliation(s)
- Nitin Ravikanthachari
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Rachel A Steward
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Carol L Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
8
|
Sato R. Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori. Int J Mol Sci 2024; 25:10157. [PMID: 39337641 PMCID: PMC11432556 DOI: 10.3390/ijms251810157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
9
|
Marcellin-Gros R, Hévin S, Chevalley C, Boccard J, Hofstetter V, Gindro K, Wolfender JL, Kehrli P. An advanced metabolomic approach on grape skins untangles cultivar preferences by Drosophila suzukii for oviposition. FRONTIERS IN PLANT SCIENCE 2024; 15:1435943. [PMID: 39233914 PMCID: PMC11371706 DOI: 10.3389/fpls.2024.1435943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Insects' host preferences are regulated by multiple factors whose interactions are only partly understood. Here we make use of an in-depth, untargeted metabolomic approach combining molecular networking (MN) and supervised Analysis of variance Multiblock Orthogonal Partial Least Squares (AMOPLS) to untangle egg-laying preferences of Drosophila suzukii, an invasive, highly polyphagous and destructive fruit pest originating from Southeast Asia. Based on behavioural experiments in the laboratory as well as field observation, we selected eight genetically related Vitis vinifera cultivars (e.g., Ancellotta, Galotta, Gamaret, Gamay, Gamay précoce, Garanoir, Mara and Reichensteiner) exhibiting significant differences in their susceptibility toward D. suzukii. The two most and the two least attractive red cultivars were chosen for further metabolomic analyses of their grape skins. The combination of MN and statistical AMOPLS findings with semi-quantitative detection information enabled us to identify flavonoids as interesting markers for differences in the attractiveness of the four studied grape cultivars towards D. suzukii. Overall, dihydroflavonols were accumulated in unattractive grape cultivars, while attractive grape cultivars were richer in flavonols. Crucially, both dihydroflavonols and flavonols were abundant metabolites in the semi-quantitative analysis of the extracted molecules from the grape skin. We discuss how these two flavonoid classes might influence the egg-laying behaviour of D. suzukii females and how they could serve as potential markers for D. suzukii infestations in grapes that can be potentially extended to other fruits. We believe that our novel, integrated analytical approach could also be applied to the study of other biological relationships characterised by multiple evolving parameters.
Collapse
Affiliation(s)
- Rémy Marcellin-Gros
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Sébastien Hévin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Research Division of Plant Protection, Agroscope, Nyon, Switzerland
| | - Clara Chevalley
- Research Division of Plant Protection, Agroscope, Nyon, Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | | | - Katia Gindro
- Research Division of Plant Protection, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Patrik Kehrli
- Research Division of Plant Protection, Agroscope, Nyon, Switzerland
| |
Collapse
|
10
|
Wang Z, Liu D, Ma L, Cheng H, Lin C, Fu L, Chen Y, Dong X, Liu C. Genome-wide analysis of gustatory receptor genes and identification of the fructose gustatory receptor in Arma chinensis. Heliyon 2024; 10:e30795. [PMID: 38765039 PMCID: PMC11096949 DOI: 10.1016/j.heliyon.2024.e30795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Gustatory receptors (GRs) allow insects to sense tastes in their external environment. Gustatory perception is crucial for distinguishing between beneficial and harmful or toxic compounds, affecting survival. This study is the first to identify and classify the GR genes and investigate their expression in the predatory Arma chinensis. Thirteen GR genes (ArmaGr1-ArmaGr13) were identified and classified into four families via phylogenetic analysis. In the predacious developmental stages, ArmaGr7 expression gradually increased from the 2nd to 5th instar stages and then to adults. However, ArmaGr7 was also highly expressed in the non-predation 1st instar nymph and egg stages. ArmaGr7 expression was localized in the antennae, scalpella, forelegs, wings, head, and midgut of male and female adults, with wings displaying the highest expression. Furthermore, ArmaGr7 expression was positively correlated with fructose solution intake; molecular docking results showed that fructose could effectively dock withArmaGr7. A protein structure comparison revealed that the ArmaGr7 structure was different from that of other GR43a-like proteins, which may be related to the gene splicing of the A. chinensis GR gene. These results elucidate the crucial role of ArmaGr7 in fructose recognition by A. chinensis and provide a foundation for further studies on gustatory perception.
Collapse
Affiliation(s)
- Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dianyu Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Le Ma
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yu Chen
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Xiaolin Dong
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
11
|
Li JQ, Chen YW, Wang Q, Yin MZ, Ma S, Liu Q, Sun XY, Zhang WJ, Yang YY, Mang DZ, Zhu XY, Sun L, Zhang YN. Gustatory Receptor 206 Participates in the Foraging Behavior of Larvae of Polyphagous Pest Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12003-12013. [PMID: 38748811 DOI: 10.1021/acs.jafc.4c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Insect gustatory receptors (GRs) aid in the precise identification of deterrent or stimulant compounds associated with food, mating, and egg-laying. Thus, they are promising targets for developing efficient insecticides. Here, 61 GRs in the chemosensory organs of Spodoptera litura larvae and adults were identified. Among them, SlitGR206 exhibited larval labium (LL)-specific expression characteristics. To explore the role of SlitGR206, a bacterial expression system was established to produce high-quality double-stranded RNA (dsRNA) and suppress SlitGR206 expression in LL. Subsequent behavioral assessments revealed that SlitGR206 silencing influenced larval feeding preferences and absorption. Moreover, it was found to reduce the ability of larvae to forage the five crucial host odorants. These findings demonstrate that SlitGR206 likely plays an indirect regulatory role in host recognition, consequently affecting foraging behavior. This provides a crucial foundation for the analysis of functional diversity among insect GRs and the precise development of nucleic acid pesticides in the future.
Collapse
Affiliation(s)
- Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qian Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou311300,China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yao Sun
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Jing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yan-Yan Yang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Ding-Ze Mang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Liang Sun
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
12
|
Endo H, Tsuneto K, Mang D, Zhang W, Yamagishi T, Ito K, Nagata S, Sato R. Molecular basis of host plant recognition by silkworm larvae. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104628. [PMID: 38387524 DOI: 10.1016/j.jinsphys.2024.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Herbivorous insects can identify their host plants by sensing plant secondary metabolites as chemical cues. We previously reported the two-factor host acceptance system of the silkworm Bombyx mori larvae. The chemosensory neurons in the maxillary palp (MP) of the larvae detect mulberry secondary metabolites, chlorogenic acid (CGA), and isoquercetin (ISQ), with ultrahigh sensitivity, for host plant recognition and feeding initiation. Nevertheless, the molecular basis for the ultrasensitive sensing of these compounds remains unknown. In this study, we demonstrated that two gustatory receptors (Grs), BmGr6 and BmGr9, are responsible for sensing the mulberry compounds with attomolar sensitivity for host plant recognition by silkworm larvae. Calcium imaging assay using cultured cells expressing the silkworm putative sugar receptors (BmGr4-10) revealed that BmGr6 and BmGr9 serve as receptors for CGA and ISQ with attomolar sensitivity in human embryonic kidney 293T cells. CRISPR/Cas9-mediated knockout (KO) of BmGr6 and BmGr9 resulted in a low probability of making a test bite of the mulberry leaves, suggesting that they lost the ability to recognize host leaves. Electrophysiological recordings showed that the loss of host recognition ability in the Gr-KO strains was due to a drastic decrease in MP sensitivity toward ISQ in BmGr6-KO larvae and toward CGA and ISQ in BmGr9-KO larvae. Our findings have revealed that the two Grs, previously considered to be sugar receptors, are molecules responsible for detecting plant phenolics in host plant recognition.
Collapse
Affiliation(s)
- Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Kana Tsuneto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjing Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Takayuki Yamagishi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Katsuhiko Ito
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu,Tokyo 183-8509, Japan
| | - Shinji Nagata
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
13
|
Wang B, Zhang Y, Wei Y, Liao M, Cao H, Gao Q. Functional analysis of three odorant receptors in Plutella xylostella response to repellent activity of 2,3-dimethyl-6-(1-hydroxy)-pyrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105856. [PMID: 38685238 DOI: 10.1016/j.pestbp.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
Plutella xylostella is an important pest showing resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Previous study showed that 2,3-dimethyl-6-(1-hydroxy)-pyrazine has significant repellent activity to P. xylostella adult which mainly effect to the olfactory system, however the molecular targets and mechanism are still unclear. Based on the RNA-Seq and RT-qPCR data, eight ORs (Odorant receptor) in P. xylostella were selected as candidate targets response to repellent activity of 2,3-dimethyl-6-(1-hydroxy)-pyrazine. Here, most of the ORs in P. xylostella were clustered into three branches, which showed similar functions such as recognition, feeding, and oviposition. PxylOR29, PxylOR31, and PxylOR46 were identified as the potential molecular targets based on the results of repellent activity and EAG response tests to the adults which have been injected with dsRNA, respectively. Additionally, the three ORs were higher expressed in antenna of P. xylostella, followed by those in the head segment. Furthermore, it was found that the bindings between these three ORs and 2,3-dimethyl-6-(1-hydroxy)-pyrazine mainly depend on the hydrophobic effect of active cavities, and the binding to PxylOR31 was more stabler and easier with an energy of -16.34 kcal/mol, together with the π-π T-shaped interaction at PHE195 site. These findings pave the way for the complete understanding of pyrazine repellent mechanisms.
Collapse
Affiliation(s)
- Buguo Wang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongjie Zhang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ya Wei
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Liao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Waris MI, Lei Y, Qi G, Guan Z, Rashied A, Chen J, Lyu L. The temporal-spatial expression and functional analysis of three gustatory receptor genes in Solenopsis invicta using sweet and bitter compounds. INSECT SCIENCE 2024; 31:448-468. [PMID: 38010036 DOI: 10.1111/1744-7917.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The insect gustatory system participates in identifying potential food sources and avoiding toxic compounds. During this process, gustatory receptors (GRs) recognize feeding stimulant and deterrent compounds. However, the GRs involved in recognizing stimulant and deterrent compounds in the red imported fire ant, Solenopsis invicta, remain unknown. Therefore, we conducted a study on the genes SinvGR1, SinvGR32b, and SinvGR28a to investigate the roles of GRs in detecting feeding stimulant and deterrent compounds. In this current study, we found that sucrose and fructose are feeding stimulants and the bitter compound quinine is a feeding deterrent. The fire ant workers showed significant behavior changes to avoid the bitter taste in feeding stimulant compounds. Reverse transcription quantitative real-time polymerase chain reaction results from developmental stages showed that the SinvGR1, SinvGR32b, and SinvGR28a genes were highly expressed in fire ant workers. Tissue-specific expression profiles indicated that SinvGR1, SinvGR32b, and SinvGR28a were specifically expressed in the antennae and foreleg tarsi of workers, whereas SinvGR32b gene transcripts were also highly accumulated in the male antennae. Furthermore, the silencing of SinvGR1 or SinvGR32b alone and the co-silencing of both genes disrupted worker stimulation and feeding on sucrose and fructose. The results also showed that SinvGR28a is required for avoiding quinine, as workers with knockdown of the SinvGR28a gene failed to avoid and fed on quinine. This study first identified stimulant and deterrent compounds of fire ant workers and then the GRs involved in the taste recognition of these compounds. This study could provide potential target gustatory genes for the control of the fire ant.
Collapse
Affiliation(s)
- Muhammad Irfan Waris
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yanyuan Lei
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ziying Guan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Abdul Rashied
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lyu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
15
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Zhang G, Cao S, Wang H, Cao Z, Wei B, Niu C. Identification of a new gustatory receptor BminGR59b tuned to host wax in a specialist, Bactrocera minax (Diptera: Tephritidae). Int J Biol Macromol 2023; 253:127180. [PMID: 37838119 DOI: 10.1016/j.ijbiomac.2023.127180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Host location plays a pivotal role in the coevolution between insects and plants, particularly for specialist insect herbivores with a limited host range. However, how specialists precisely select the appropriate site for oviposition through gustatory system remains elusive. In this study, we investigated the effects of the gustatory system on the host plant selection of a devastating pest in Citrus spp., Bactrocera minax, by conducting behavioral assays. Through genomic and transcriptomic data analysis as well as RNAi technology, we identified a novel gustatory receptor, BminGR59b, highly expressed in the forelegs of female B. minax, which played a critical role in host plant selection before oviposition decision. Additionally, our results encompassing heterologous expression in Sf9 cells and oviposition behavior assay revealed that n-eicosane is the ligand for BminGR59b. Finally, employing the dual luciferase reporter system alongside yeast one-hybrid techniques and RNAi, we verified that the transcription factor BminCEBP regulated the up-regulation of BminGR59b in sexually matured adults. These findings offer new insights into the close-range host fruit recognition and selection for oviposition in a specialist tephritid fruit fly B. minax, which also sheds light on the transcriptional regulation mechanisms underlying the gustatory-mediated oviposition in specialist herbivores for the first time.
Collapse
Affiliation(s)
- Guijian Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuai Cao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoran Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Cao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bingbing Wei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changying Niu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Mu N, Tang JC, Zhao J, Fu QC, Ma YF, Tang R, Dong WX. Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights. Life (Basel) 2023; 13:2174. [PMID: 38004314 PMCID: PMC10672149 DOI: 10.3390/life13112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
This research investigates how fourth-instar larvae of the potato tuber moth, Phthorimaea operculella, respond to plant secondary metabolites (sucrose, glucose, nicotine, and tannic acid) both in terms of gustatory electrophysiology and feeding behavior. The objective is to establish a theoretical foundation for employing plant-derived compounds in potato tuber moth control. We employed single-sensillum recording techniques and dual-choice leaf disk assays to assess the gustatory electrophysiological responses and feeding preferences of these larvae towards the mentioned compounds. Sensory neurons responsive to sucrose, glucose, nicotine, and tannic acid were identified in the larvae's medial and lateral sensilla styloconica. Neuronal activity was influenced by stimulus type and concentration. Notably, the two types of sensilla styloconica displayed distinct response patterns for sucrose and glucose while they had similar firing patterns towards nicotine and tannic acid. Sucrose and glucose significantly promoted larval feeding, while nicotine and tannic acid had significant inhibitory effects. These findings demonstrate that the medial and lateral sensilla styloconica house sensory neurons sensitive to both feeding stimulants and inhibitors, albeit with differing response profiles and sensitivities. This study suggests that sucrose and glucose are promising candidates for feeding stimulants, while nicotine and tannic acid show potential as effective feeding inhibitors of P. operculella larvae.
Collapse
Affiliation(s)
- Ni Mu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| | - Jia-Cai Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| | - Qi-Chun Fu
- Plant Protection and Quarantine Station of Daguan County in Yunnan Province, Daguan 657400, China;
| | - Yan-Fen Ma
- Department of Agronomy and Biological Science, Dehong Teacher’s College, Mangshi 678400, China;
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization—Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Wen-Xia Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (N.M.); (J.-C.T.); (J.Z.)
| |
Collapse
|
18
|
Zheng R, Zhao J, Ma L, Qie X, Yan X, Hao C. Behavioral, Electrophysiological, and Toxicological Responses of Plutella xylostella to Extracts from Angelica pubescens. INSECTS 2023; 14:613. [PMID: 37504619 PMCID: PMC10380822 DOI: 10.3390/insects14070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Plutella xylostella L. is a destructive pest affecting cruciferous vegetables, causing massive economic losses worldwide. Plant-based insecticides are considered promising insect control agents. The Angelica pubescens extract inhibited female oviposition, with an oviposition deterrence index (ODI) of 61.65% at 12.5 mg/mL. We aimed to identify the bioactive compounds in A. pubescens extract. The compounds from A. pubescens extract were analyzed using LC-MS techniques. The toxicity and behavioral responses of larvae and adults of P. xylostella to ten compounds were investigated. We found that the caryophyllene oxide and 3,4-dimethoxycinnamic acid inhibited female oviposition; the ODIs were 98.31% and 97.59% at 1.25 mg/mL, respectively. The A. pubescens extract, caryophyllene oxide, and 3,4-dimethoxycinnamic acid caused larval mortality, with LC50 values of 21.31, 4.56, and 5.52 mg/mL, respectively. The EAG response of females was higher than that of males under A. pubescens extract conditions, while the EAG response of males was higher than that of females in caryophyllene oxide and 3,4-dimethoxycinnamic acid conditions. The A. pubescens extract and caryophyllene oxide showed repellent activity against both female and male adults, while the 3,4-dimethoxycinnamic acid did not elicit any notable behavioral responses from P. xylostella adults. A. pubescens extract and caryophyllene oxide are potential insecticides, oviposition deterrents, and behavioral regulators against P. xylostella, and they could be potential candidates for the development of biological insecticides to control P. xylostella.
Collapse
Affiliation(s)
- Ruirui Zheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jinyu Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China
| |
Collapse
|
19
|
Chen Q, Li S, Wang Y, Jia D, Wang Y, Ma R. Morphological Characterstics of the Sensilla in a Monophagous Insect: Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae, Halticinae). INSECTS 2023; 14:501. [PMID: 37367317 DOI: 10.3390/insects14060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae) is the key natural enemy of Alternanthera philoxeroides (Mart.) Griseb, an invasive weed worldwide. To understand the morphology of A. hygrophila and further explore the specific host localization mechanism, scanning electron microscopy was used to observe and study the morphological characteristics of sensilla on the head appendages, tarsi, and external genital segments of A. hygrophila. Twelve types and forty-six subtypes of sensilla were observed. These contain various types of head appendices, including sensilla chaetica, sensilla trichodea, sensilla basiconca, sensilla coeloconica, sensilla styloconica, Böhm bristles, sensilla campaniform, sensilla terminal, sensilla dome, sensilla digit-like, sensilla aperture, and many subtypes. A new type of sensor was reported for the first time, which may be related to host plant recognition. This sensor was located on the distal segment of the maxillary palps of A. hygrophila and was named as sensilla petal-shaped based on its morphological characteristics. Sensilla chaetica, sensilla trichodea, and sensilla basiconca are also found on the tarsi and external genital segments. In addition, sensilla basiconica 4, sensilla coeloconica 1 and 2, sensilla styloconica 2, Böhm bristles 2, and sensilla campaniform 1 were only found in females. On the contrary, sensilla styloconica 3, sensilla coeloconica 3, and sensilla dome were only found in males. Numbers and sizes of the sensilla were also different between males and females. The potential functions related to structure were discussed in comparison with previous investigations on beetles and other monophagous insects. Our results provide a microscopic morphological basis for further research on the localization and recognition mechanism of A. hygrophila and its obligate host.
Collapse
Affiliation(s)
- Qianhui Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shuang Li
- Chongqing Academy of Agricultural Science, Jiulongpo District, Chongqing 401329, China
| | - Yingying Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Dong Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yuanxin Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
20
|
Wang Q, Dicke M, Haverkamp A. Sympatric Pieris butterfly species exhibit a high conservation of chemoreceptors. Front Cell Neurosci 2023; 17:1155405. [PMID: 37252192 PMCID: PMC10210156 DOI: 10.3389/fncel.2023.1155405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sensory processes have often been argued to play a central role in the selection of ecological niches and in the formation of new species. Butterflies are among the best studied animal groups with regards to their evolutionary and behavioral ecology and thereby offer an attractive system to investigate the role of chemosensory genes in sympatric speciation. We focus on two Pieris butterflies with overlapping host-plant ranges: P. brassicae and P. rapae. Host-plant choice in lepidopterans is largely based on their olfactory and gustatory senses. Although the chemosensory responses of the two species have been well characterized at the behavioral and physiological levels, little is known about their chemoreceptor genes. Here, we compared the chemosensory genes of P. brassicae and P. rapae to investigate whether differences in these genes might have contributed to their evolutionary separation. We identified a total of 130 and 122 chemoreceptor genes in the P. brassicae genome and antennal transcriptome, respectively. Similarly, 133 and 124 chemoreceptors were identified in the P. rapae genome and antennal transcriptome. We found some chemoreceptors being differentially expressed in the antennal transcriptomes of the two species. The motifs and gene structures of chemoreceptors were compared between the two species. We show that paralogs share conserved motifs and orthologs have similar gene structures. Our study therefore found surprisingly few differences in the numbers, sequence identities and gene structures between the two species, indicating that the ecological differences between these two butterflies might be more related to a quantitative shift in the expression of orthologous genes than to the evolution of novel receptors as has been found in other insects. Our molecular data supplement the wealth of behavioral and ecological studies on these two species and will thereby help to better understand the role of chemoreceptor genes in the evolution of lepidopterans.
Collapse
|
21
|
Shang J, Tang G, Yang J, Lu M, Wang CZ, Wang C. Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections. Curr Biol 2023; 33:276-286.e5. [PMID: 36423638 DOI: 10.1016/j.cub.2022.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
In addition to innate immunity in a physiological context, insects have evolved behavioral defenses against parasite attacks. Here, we report that Drosophila can sense the CFEM (common in fungal extracellular membrane) protein Mcdc9, which acts as a negative virulence factor of the entomopathogenic fungus Metarhizium robertsii. The individual deletions of 18 CFEM genes in Metarhizium followed by fly infection identified three null mutants that could kill the flies more quickly than the wild-type strain, among which Mcdc9 can coat fungal spores and interact with the fly chemosensory protein CheA75a. The deletion of Mcdc9 in the fungus or the knockdown of CheA75a in flies had a similar effect, in which a greater number of fungal spores were left on flies than on the respective controls after topical infection. Thus, similar to the accelerated death of the wild-type flies treated with ΔMcdc9, the CheA75aRNAi flies succumbed more quickly than the control insects topically challenged with the wild-type strain. The CheA75a gene is highly transcribed in fly legs and wings, and positive electrophysiological responses were evidenced in tarsal sensilla after stimulation with the Mcdc9 protein. The results imply that this CFEM protein could be sensed as a contact elicitor inducing the hygienic behavior of flies against fungal parasitic infection, which reveals a previously unsuspected mechanism of fungus-insect interactions.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Zhu Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
22
|
Zhang S, Tang J, Li Y, Li D, Chen G, Chen L, Yang Z, He N. The silkworm gustatory receptor BmGr63 is dedicated to the detection of isoquercetin in mulberry. Proc Biol Sci 2022; 289:20221427. [DOI: 10.1098/rspb.2022.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gustatory systems in phytophagous insects are used to perceive feeding stimulants and deterrents, and are involved in insect decisions to feed on particular plants. During the process, gustatory receptors (Grs) can recognize diverse phytochemicals and provide a molecular basis for taste perception. The silkworm, as a representative Lepidoptera species, has developed a strong feeding preference for mulberry leaves. The mulberry-derived flavonoid glycoside, isoquercetin, is required to induce feeding behaviours. However, the corresponding Grs for isoquercetin and underlying molecular mechanisms remain unclear. In this study, we used molecular methods, voltage clamp recordings and feeding assays to identify silkworm BmGr63, which was tuned to isoquercetin. The use of qRT-PCR confirmed that
BmGr63
was highly expressed in the mouthpart of fourth and fifth instar larvae. Functional analysis showed that oocytes expressing
BmGr63
from the ‘bitter’ clade responded to mulberry extracts. Among 20 test chemicals, BmGr63 specifically recognized isoquercetin. The preference for isoquercetin was not observed in
BmGr63
knock-down groups. The tuning between BmGr63 and isoquercetin has been demonstrated, which is meaningful to explain the silkworm-mulberry feeding mechanism from molecular levels and thus provides evidence for further feeding relationship studies between phytophagous insects and host plants.
Collapse
Affiliation(s)
- Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Jiaqi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Yunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Lin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
23
|
Functional analysis of a bitter gustatory receptor highly expressed in the larval maxillary galea of Helicoverpa armigera. PLoS Genet 2022; 18:e1010455. [PMID: 36206313 PMCID: PMC9581421 DOI: 10.1371/journal.pgen.1010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.
Collapse
|
24
|
Zhang G, Cao S, Guo T, Wang H, Qi X, Ren X, Niu C. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): Role of BminGR59f in larval growth. INSECT SCIENCE 2022; 29:1240-1250. [PMID: 35146929 DOI: 10.1111/1744-7917.13014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Insects employ various types of gustatory receptors (GRs) to identify nutrient-rich food and avoid toxic substances. The larval gustatory system is the critical checkpoint for food acceptance or rejection. As a specialist herbivore, the larvae of Bactrocera minax feed only on unripe citrus fruits. However, how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown. In this study, we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae. Furthermore, we found that silencing BminGR59f by RNA interference (RNAi) affected the growth of 2nd instar B. minax larvae. Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging, and the combination of these two flavones increased the body weight of larvae. In summary, we identified a novel gustatory perception pattern in B. minax for detecting hesperidin and naringin, which boosted the growth of B. minax larvae. These results shed light on how specialist herbivores detect and adapt to host metabolites in adverse environments depending on larval GRs.
Collapse
Affiliation(s)
- Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Guo
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Yin N, Xiao H, Yang A, Wu C, Liu N. Genome-Wide Analysis of Odorant and Gustatory Receptors in Six Papilio Butterflies (Lepidoptera: Papilionidae). INSECTS 2022; 13:779. [PMID: 36135480 PMCID: PMC9500883 DOI: 10.3390/insects13090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The chemical interactions of insects and host plants are shaping the evolution of chemosensory receptor gene families. However, the correlation between host range and chemoreceptor gene repertoire sizes is still elusive in Papilionidae. Here, we addressed the issue of whether host plant diversities are correlated with the expansions of odorant (ORs) or gustatory (GRs) receptors in six Papilio butterflies. By combining genomics, transcriptomics and bioinformatics approaches, 381 ORs and 328 GRs were annotated in the genomes of a generalist P. glaucus and five specialists, P. xuthus, P. polytes, P. memnon, P. machaon and P. dardanus. Orthologous ORs or GRs in Papilio had highly conserved gene structure. Five Papilio specialists exhibited a similar frequency of intron lengths for ORs or GRs, but which was different from those in the generalist. Phylogenetic analysis revealed 60 orthologous OR groups, 45 of which shared one-to-one relationships. Such a single gene in each butterfly also occurred in 26 GR groups. Intriguingly, bitter GRs had fewer introns than other GRs and clustered into a large clade. Focusing on the two chemoreceptor gene families in P. xuthus, most PxutORs (52/58) were expressed in antennae and 31 genes in reproductive tissues. Eleven out of 28 foretarsus-expressed PxutGRs were female-biased genes, as strong candidates for sensing oviposition stimulants. These results indicate that the host range may not shape the large-scale expansions of ORs and GRs in Papilio butterflies and identify important molecular targets involved in olfaction, oviposition or reproduction in P. xuthus.
Collapse
Affiliation(s)
| | | | | | | | - Naiyong Liu
- Correspondence: ; Tel./Fax: +86-871-63862665
| |
Collapse
|
26
|
Ai D, Dong C, Yang B, Yu C, Wang G. A fructose receptor gene influences development and feed intake in Helicoverpa armigera. INSECT SCIENCE 2022; 29:993-1005. [PMID: 34780113 DOI: 10.1111/1744-7917.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Gustatory receptors (GRs) are critical for multiple life activities of insects. Owing to the rapid development of genome and transcriptome sequencing, numerous insect GRs have been identified. However, the expression patterns and functions of these receptors are poorly understood. In this study, we analyzed the expression pattern of GRs in Helicoverpa armigera and found that the fructose receptor HarmGR9 was highly expressed in the foregut and abdomen. The function of HarmGR9 was identified using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Knockout of the HarmGR9 gene shortened the developmental period of the larval stages and increased food consumption in both larvae and adults. This study revealed the tissue distribution of sugar-sense-related receptors in H. armigera and thereby expanded the understanding of insect feeding regulation.
Collapse
Affiliation(s)
- Dong Ai
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
27
|
Gao YQ, Chen ZZ, Liu MY, Song CY, Jia ZF, Liu FH, Qu C, Dewer Y, Zhao HP, Xu YY, Kang ZW. Characterization of Antennal Chemosensilla and Associated Chemosensory Genes in the Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintanca). Front Physiol 2022; 13:847895. [PMID: 35295577 PMCID: PMC8920487 DOI: 10.3389/fphys.2022.847895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The insect chemosensory system plays an important role in many aspects of insects' behaviors necessary for their survival. Despite the complexity of this system, an increasing number of studies have begun to understand its structure and function in different insect species. Nonetheless, the chemosensory system in the orange spiny whitefly Aleurocanthus spiniferus, as one of the most destructive insect pests of citrus in tropical Asia, has not been investigated yet. In this study, the sensillum types, morphologies and distributions of the male and female antennae of A. spiniferus were characterized using scanning electron microscopy. In both sexes, six different sensilla types were observed: trichodea sensilla, chaetica sensilla, microtrichia sensilla, coeloconic sensilla, basiconic sensilla, and finger-like sensilla. Moreover, we identified a total of 48 chemosensory genes, including 5 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 6 odorant receptors (ORs), 8 gustatory receptors (GRs), and 14 ionotropic receptors (IRs) using transcriptome data analysis. Tissue-specific transcriptome analysis of these genes showed predominantly expression in the head (including antennae), whereas CSPs were broadly expressed in both head (including the antennae) and body tissue of adult A. spiniferus. In addition, the expression profiling of selected chemosensory genes at different developmental stages was examined by quantitative real time-PCR which was mapped to the transcriptome. We found that the majority of these genes were highly expressed in adults, while AspiORco, AspiGR1, AspiGR2, and AspiIR4 genes were only detected in the pupal stage. Together, this study provides a basis for future chemosensory and genomic studies in A. spiniferus and closely related species. Furthermore, this study not only provides insights for further research on the molecular mechanisms of A. spiniferus-plant interactions but also provides extensive potential targets for pest control.
Collapse
Affiliation(s)
- Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Meng-Yuan Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chang-Yuan Song
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Fei Jia
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hai-Peng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
28
|
Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. Genomics 2022; 114:110310. [DOI: 10.1016/j.ygeno.2022.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
29
|
Genome-Wide Identification of the Gustatory Receptor Gene Family of the Invasive Pest, Red Palm Weevil, Rhynchophorus ferrugineus (Olivier, 1790). INSECTS 2021; 12:insects12070611. [PMID: 34357271 PMCID: PMC8308034 DOI: 10.3390/insects12070611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
The red palm weevil (Rhynchophorus ferrugineus) is a highly destructive pest of oil palm, date, and coconut in many parts of Asia, Europe, and Africa. The Food and Agriculture Organization of the United Nations has called for international collaboration to develop a multidisciplinary strategy to control this invasive pest. Previous research focused on the molecular basis of chemoreception in this species, particularly olfaction, to develop biosensors for early detection and more effective bait traps for mass trapping. However, the molecular basis of gustation, which plays an essential role in discriminating food and egg-laying sites and chemical communication in this species, is limited because its complete gustatory receptor gene family still has not been characterized. We manually annotated the gene family from the recently available genome and transcriptome data and reported 50 gustatory receptor genes encoding 65 gustatory receptors, including 7 carbon dioxide, 9 sugar, and 49 bitter receptors. This study provides a platform for future functional analysis and comparative chemosensory study. A better understanding of gustation will improve our understanding of this species' complex chemoreception, which is an important step toward developing more effective control methods.
Collapse
|
30
|
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Julianne N. Peláez
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|