1
|
Collins KH, Lenz KL, Welhaven HD, Ely E, Springer LE, Paradi S, Tang R, Braxton L, Akk A, Yan H, Zhang B, Wu X, Atkinson JP, Oestreich AK, June RK, Pham CTN, Guilak F. Adipose-derived leptin and complement factor D mediate osteoarthritis severity and pain. SCIENCE ADVANCES 2025; 11:eadt5915. [PMID: 40279436 PMCID: PMC12024688 DOI: 10.1126/sciadv.adt5915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Obesity is a risk factor for osteoarthritis (OA), and leptin is among the adipokines implicated in obesity-induced OA. However, the specific role of leptin in OA severity and pain is not known. Using lipodystrophic (LD) mice, we show that fat-secreted factors are required for knee OA development, implicating a fat-cartilage cross-talk. Fat pad implantation or systemic leptin restoration in LD mice reintroduced structural OA and pain, whereas implantation of leptin-deficient fat pad did not change OA susceptibility. Isochronic parabiosis and spatial transcriptomics confirmed that a fat-joint cross-talk likely occurred via soluble mediators. Global unsupervised multiomics of conditioned media from fat implants revealed that leptin exerts a regulatory effect on adipsin (or complement factor D), the activity of which modulates the contrastive OA structural and pain phenotype. These findings suggest that adipokines influence OA pathogenesis, providing conclusive evidence of a fat-joint cross-talk and implicating OA as a systemic disease of adipose tissue.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kristin L. Lenz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hope D. Welhaven
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Chemistry & Biochemistry and Molecular Biosciences Program, Montana State University, Bozeman, MT 59717, USA
| | - Erica Ely
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| | - Luke E. Springer
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sophie Paradi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lauryn Braxton
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| | - Antonina Akk
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Huimin Yan
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaobo Wu
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John P. Atkinson
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Arin K. Oestreich
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ron K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63105 USA
| |
Collapse
|
2
|
Trivanović D, Vujačić M, Arsić A, Kukolj T, Rajković M, Bogosavljević N, Baščarević Z, Maljković Ružičić M, Kovačević J, Jauković A. Skeletal Site-Specific Lipid Profile and Hematopoietic Progenitors of Bone Marrow Adipose Tissue in Patients Undergoing Primary Hip Arthroplasty. Metabolites 2025; 15:16. [PMID: 39852359 PMCID: PMC11767117 DOI: 10.3390/metabo15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bone marrow adipose tissue (BMAT) has been described as an important biomechanic and lipotoxic factor with negative impacts on skeletal and hematopoietic system regeneration. BMAT undergoes metabolic and cellular adaptations with age and disease, being a source of potential biomarkers. However, there is no evidence on the lipid profile and cellularity at different skeletal locations in osteoarthritis patients undergoing primary hip arthroplasty. METHODS Acetabular and femoral bone marrow (BM) and gluteofemoral subcutaneous adipose tissue (gfSAT) were obtained from matched patients undergoing hip replacement surgery. BM, BMAT, and gfSAT were explored at the levels of total lipids, fatty acids, and cells by using thin-layerand gas chromatography, ex vivo cellular assays, and flow cytometry. RESULTS BMAT content was significantly higher in femoral than in acetabular BM. Total lipid analyses revealed significantly lower triglyceride content in femoral than in acetabular BMAT and gfSAT. Frequencies of saturated palmitic, myristic, and stearic acids were higher in femoral than in acetabular BMAT and gfSAT. The content of CD45+CD34+ cells within femoral BMAT was higher than in acetabular BMAT or gfSAT. This was associated with a higher incidence of total clonogenic hematopoietic progenitors and late erythroid colonies CFU-E in femoral BMAT when compared to acetabular BMAT, similar to their BM counterparts. CONCLUSIONS Collectively, our results indicate that the lipid profiles of hip bone and femoral BMAT impose significantly different microenvironments and distributions of cells with hematopoietic potential. These findings might bring forth new inputs for defining BMAT biology and setting novel directions in OA disease investigations.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000 Belgrade, Serbia; (M.V.); (N.B.); (Z.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Arsić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| | - Milica Rajković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| | - Nikola Bogosavljević
- Institute for Orthopedy Banjica, 11000 Belgrade, Serbia; (M.V.); (N.B.); (Z.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Baščarević
- Institute for Orthopedy Banjica, 11000 Belgrade, Serbia; (M.V.); (N.B.); (Z.B.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Jovana Kovačević
- Faculty of Mathematics, University of Belgrade, 11000 Belgrade, Serbia; (M.M.R.); (J.K.)
- Institute for Artificial Intelligence Research and Development of Serbia, 21000 Novi Sad, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.K.); (M.R.); (A.J.)
| |
Collapse
|
3
|
Hosain O, Clinkenbeard EL. Adiposity and Mineral Balance in Chronic Kidney Disease. Curr Osteoporos Rep 2024; 22:561-575. [PMID: 39394545 DOI: 10.1007/s11914-024-00884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE OF REVIEW Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.
Collapse
Affiliation(s)
- Ozair Hosain
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN, 46022, USA
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Carey AE, Weeraratna AT. Entering the TiME machine: How age-related changes in the tumor immune microenvironment impact melanoma progression and therapy response. Pharmacol Ther 2024; 262:108698. [PMID: 39098769 DOI: 10.1016/j.pharmthera.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.
Collapse
Affiliation(s)
- Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Li D, Cao C, Li Z, Chang Z, Cai P, Zhou C, Liu J, Li K, Du B. Icariside II protects from marrow adipose tissue (MAT) expansion in estrogen-deficient mice by targeting S100A16. J Mol Endocrinol 2024; 73:e240020. [PMID: 39101576 PMCID: PMC11466200 DOI: 10.1530/jme-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Icariside II, a flavonoid glycoside, is the main component found invivo after the administration of Herba epimedii and has shown some pharmacological effects, such as prevention of osteoporosis and enhancement of immunity. Increased levels of marrow adipose tissue are associated with osteoporosis. S100 calcium-binding protein A16 (S100A16) promotes the differentiation of bone marrow mesenchymal stem cells (BMSCs) into adipocytes. This study aimed to confirm the anti-lipidogenesis effect of Icariside II in the bone marrow by inhibiting S100A16 expression. We used ovariectomy (OVX) and BMSC models. The results showed that Icariside II reduced bone marrow fat content and inhibited BMSCs adipogenic differentiation and S100A16 expression, which correlated with lipogenesis. Overexpression of S100A16 eliminated the inhibitory effect of Icariside II on lipid formation. β-catenin participated in the regulation adipogenesis mediated by Icariside II/S100A16 in the bone. In conclusion, Icariside II protects against OVX-induced bone marrow adipogenesis by downregulating S100A16, in which β-catenin might also be involved.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenhao Cao
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhuofan Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhiyong Chang
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ping Cai
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenxi Zhou
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun Liu
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kaihua Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin Du
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Trivanović D, Vujačić M, Labella R, Djordjević IO, Ćazić M, Chernak B, Jauković A. Molecular Deconvolution of Bone Marrow Adipose Tissue Interactions with Malignant Hematopoiesis: Potential for New Therapy Development. Curr Osteoporos Rep 2024; 22:367-377. [PMID: 38922359 DOI: 10.1007/s11914-024-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE OF REVIEW Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via β-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000, Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY, USA
| | - Ivana Okić Djordjević
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Marija Ćazić
- Department of Hematology and Oncology, University Children's Hospital Tiršova, 11000, Belgrade, Serbia
| | - Brian Chernak
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
7
|
Balcaen T, Benova A, de Jong F, de Oliveira Silva R, Cajka T, Sakellariou D, Tencerova M, Kerckhofs G, De Borggraeve WM. Exploring contrast-enhancing staining agents for studying adipose tissue through contrast-enhanced computed tomography. J Lipid Res 2024; 65:100572. [PMID: 38823780 PMCID: PMC11259937 DOI: 10.1016/j.jlr.2024.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.
Collapse
Affiliation(s)
- Tim Balcaen
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium; Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Flip de Jong
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Rodrigo de Oliveira Silva
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dimitrios Sakellariou
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Greet Kerckhofs
- Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| | - Wim M De Borggraeve
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Widjaja N, Jalava N, Chen Y, Ivaska KK. Perilipin-1 immunostaining improves semi-automated digital quantitation of bone marrow adipocytes in histological bone sections. Adipocyte 2023; 12:2252711. [PMID: 37649225 PMCID: PMC10472850 DOI: 10.1080/21623945.2023.2252711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Bone marrow adipocytes (BMAds) are not just passive fillers inside the bone marrow compartment but respond to various metabolic changes. Assessment of those responses requires evaluation of the number of BMAds and their morphology for which laborious and error-prone manual histological analysis remains the most widely used method. Here, we report an alternative image analysis strategy to semi-automatically quantitate and analyse the morphology of BMAds in histological bone sections. Decalcified, formalin-fixed paraffin-embedded histological sections of long bones of Sprague-Dawley rats were stained with either haematoxylin and eosin (HE) or by immunofluorescent staining for adipocyte-specific protein perilipin-1 (PLIN1). ImageJ-based commands were constructed to detect BMAds sized 200 µm2 or larger from standardized 1 mm2 analysis regions by either classifying the background colour (HE) or the positive and circular PLIN1 fluorescent signal. Semi-automated quantitation strongly correlated with independent, single-blinded manual counts regardless of the staining method (HE-based: r=0.85, p<0.001; PLIN1 based: r=0.95, p<0.001). The detection error was higher in HE-stained sections than in PLIN1-stained sections (14% versus 5%, respectively; p<0.001), which was due to false-positive detections of unstained adipocyte-like circular structures. In our dataset, the total adiposity area from standardised ROIs in PLIN-1-stained sections correlated with that in whole-bone sections (r=0.60, p=0.02).
Collapse
Affiliation(s)
- Nicko Widjaja
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Niki Jalava
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Yimeng Chen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa K. Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Remark LH, Leclerc K, Ramsukh M, Lin Z, Lee S, Dharmalingam B, Gillinov L, Nayak VV, El Parente P, Sambon M, Atria PJ, Ali MAE, Witek L, Castillo AB, Park CY, Adams RH, Tsirigos A, Morgani SM, Leucht P. Loss of Notch signaling in skeletal stem cells enhances bone formation with aging. Bone Res 2023; 11:50. [PMID: 37752132 PMCID: PMC10522593 DOI: 10.1038/s41413-023-00283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 09/28/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.
Collapse
Affiliation(s)
- Lindsey H Remark
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Kevin Leclerc
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Malissa Ramsukh
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Sooyeon Lee
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Backialakshmi Dharmalingam
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Lauren Gillinov
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paulo El Parente
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Margaux Sambon
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Pablo J Atria
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Mohamed A E Ali
- Department of Pathology, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Alesha B Castillo
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Christopher Y Park
- Department of Pathology, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Sophie M Morgani
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA
| | - Philipp Leucht
- Department of Orthopaedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Wells KV, Krackeler ML, Jathal MK, Parikh M, Ghosh PM, Leach JK, Genetos DC. Prostate cancer and bone: clinical presentation and molecular mechanisms. Endocr Relat Cancer 2023; 30:e220360. [PMID: 37226936 PMCID: PMC10696925 DOI: 10.1530/erc-22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Maitreyee K Jathal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
- Veterans Affairs-Northern California Health System, Mather, California, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health System, Mather, California, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
13
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Austin MJ, Kalampalika F, Cawthorn WP, Patel B. Turning the spotlight on bone marrow adipocytes in haematological malignancy and non-malignant conditions. Br J Haematol 2023; 201:605-619. [PMID: 37067783 PMCID: PMC10952811 DOI: 10.1111/bjh.18748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Whilst bone marrow adipocytes (BMAd) have long been appreciated by clinical haemato-pathologists, it is only relatively recently, in the face of emerging data, that the adipocytic niche has come under the watchful eye of biologists. There is now mounting evidence to suggest that BMAds are not just a simple structural entity of bone marrow microenvironments but a bona fide driver of physio- and pathophysiological processes relevant to multiple aspects of health and disease. Whilst the truly multifaceted nature of BMAds has only just begun to emerge, paradigms have shifted already for normal, malignant and non-malignant haemopoiesis incorporating a view of adipocyte regulation. Major efforts are ongoing, to delineate the routes by which BMAds participate in health and disease with a final aim of achieving clinical tractability. This review summarises the emerging role of BMAds across the spectrum of normal and pathological haematological conditions with a particular focus on its impact on cancer therapy.
Collapse
Affiliation(s)
- Michael J. Austin
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - William P. Cawthorn
- BHF/University Centre for Cardiovascular Science, Edinburgh BioquarterUniversity of EdinburghEdinburghUK
| | - Bela Patel
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| |
Collapse
|
15
|
Zhang Z, Huang Z, Awad M, Elsalanty M, Cray J, Ball LE, Maynard JC, Burlingame AL, Zeng H, Mansky KC, Ruan HB. O-GlcNAc glycosylation orchestrates fate decision and niche function of bone marrow stromal progenitors. eLife 2023; 12:e85464. [PMID: 36861967 PMCID: PMC10032655 DOI: 10.7554/elife.85464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 03/03/2023] Open
Abstract
In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.
Collapse
Affiliation(s)
- Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical SchoolMinneapolisUnited States
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural UniversityNanjingChina
| | - Mohamed Awad
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health SciencesPomonaUnited States
| | - Mohammed Elsalanty
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health SciencesPomonaUnited States
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, and Division of Biosciences, The Ohio State University College of DentistryColumbusUnited States
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South CarolinaCharlestonUnited States
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Hu Zeng
- Division of Rheumatology, Department of Internal Medicine, Mayo ClinicRochesterUnited States
- Department of Immunology, Mayo ClinicRochesterUnited States
| | - Kim C Mansky
- Department of Developmental and Surgical Sciences, School of Dentistry, University of MinnesotaMinneapolisUnited States
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
16
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Zhong L, Lu J, Fang J, Yao L, Yu W, Gui T, Duffy M, Holdreith N, Bautista CA, Huang X, Bandyopadhyay S, Tan K, Chen C, Choi Y, Jiang JX, Yang S, Tong W, Dyment N, Qin L. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. eLife 2023; 12:e82112. [PMID: 36779854 PMCID: PMC10005765 DOI: 10.7554/elife.82112] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023] Open
Abstract
Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize Csf1 to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone. Compared to other mesenchymal subpopulations, MALPs expressed Csf1 at a much higher level and this expression was further increased during aging. To investigate its role, we constructed MALP-deficient Csf1 CKO mice using AdipoqCre. These mice had increased femoral trabecular bone mass, but their cortical bone appeared normal. In comparison, depletion of Csf1 in the entire mesenchymal lineage using Prrx1Cre led to a more striking high bone mass phenotype, suggesting that additional mesenchymal subpopulations secrete Csf1. TRAP staining revealed diminished osteoclasts in the femoral secondary spongiosa region of Csf1 CKOAdipoq mice, but not at the chondral-osseous junction nor at the endosteal surface of cortical bone. Moreover, Csf1 CKOAdipoq mice were resistant to LPS-induced calvarial osteolysis. Bone marrow cellularity, hematopoietic progenitors, and macrophages were also reduced in these mice. Taken together, our studies demonstrate that MALPs synthesize Csf1 to control bone remodeling and hematopoiesis.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiankang Fang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan UniversityGuangzhouChina
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Holdreith
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Catherine A Bautista
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shovik Bandyopadhyay
- Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Medical Scientist Training Program, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Center for Childhood Cancer Research, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Tong
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nathanial Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
18
|
Paré A, Charbonnier B, Veziers J, Vignes C, Dutilleul M, De Pinieux G, Laure B, Bossard A, Saucet-Zerbib A, Touzot-Jourde G, Weiss P, Corre P, Gauthier O, Marchat D. Standardized and axially vascularized calcium phosphate-based implants for segmental mandibular defects: A promising proof of concept. Acta Biomater 2022; 154:626-640. [PMID: 36210043 DOI: 10.1016/j.actbio.2022.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The reconstruction of massive segmental mandibular bone defects (SMDs) remains challenging even today; the current gold standard in human clinics being vascularized bone transplantation (VBT). As alternative to this onerous approach, bone tissue engineering strategies have been widely investigated. However, they displayed limited clinical success, particularly in failing to address the essential problem of quick vascularization of the implant. Although routinely used in clinics, the insertion of intrinsic vascularization in bioengineered constructs for the rapid formation of a feeding angiosome remains uncommon. In a clinically relevant model (sheep), a custom calcium phosphate-based bioceramic soaked with autologous bone marrow and perfused by an arteriovenous loop was tested to regenerate a massive SMD and was compared to VBT (clinical standard). Animals did not support well the VBT treatment, and the study was aborted 2 weeks after surgery due to ethical and animal welfare considerations. SMD regeneration was successful with the custom vascularized bone construct. Implants were well osseointegrated and vascularized after only 3 months of implantation and totally entrapped in lamellar bone after 12 months; a healthy yellow bone marrow filled the remaining space. STATEMENT OF SIGNIFICANCE: Regenerative medicine struggles with the generation of large functional bone volume. Among them segmental mandibular defects are particularly challenging to restore. The standard of care, based on bone free flaps, still displays ethical and technical drawbacks (e.g., donor site morbidity). Modern engineering technologies (e.g., 3D printing, digital chain) were combined to relevant surgical techniques to provide a pre-clinical proof of concept, investigating for the benefits of such a strategy in bone-related regenerative field. Results proved that a synthetic-biologics-free approach is able to regenerate a critical size segmental mandibular defect of 15 cm3 in a relevant preclinical model, mimicking real life scenarii of segmental mandibular defect, with a full physiological regeneration of the defect after 12 months.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Baptiste Charbonnier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Maeva Dutilleul
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Gonzague De Pinieux
- Department of Pathology, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Boris Laure
- Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Annaëlle Saucet-Zerbib
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Gwenola Touzot-Jourde
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Pierre Corre
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Clinique de Stomatologie et Chirurgie Maxillo-Faciale, Nantes University Hospital, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - David Marchat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| |
Collapse
|
19
|
Li Z, Bagchi DP, Zhu J, Bowers E, Yu H, Hardij J, Mori H, Granger K, Skjaerlund J, Mandair G, Abrishami S, Singer K, Hankenson KD, Rosen CJ, MacDougald OA. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight 2022; 7:160915. [PMID: 36048537 PMCID: PMC9675472 DOI: 10.1172/jci.insight.160915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
BM adipocytes (BMAd) are a unique cell population derived from BM mesenchymal progenitors and marrow adipogenic lineage precursors. Although they have long been considered to be a space filler within bone cavities, recent studies have revealed important physiological roles in hematopoiesis and bone metabolism. To date, the approaches used to study BMAd function have been confounded by contributions by nonmarrow adipocytes or by BM stromal cells. To address this gap in the field, we have developed a BMAd-specific Cre mouse model to deplete BMAds by expression of diphtheria toxin A (DTA) or by deletion of peroxisome proliferator-activated receptor gamma (Pparg). We found that DTA-induced loss of BMAds results in decreased hematopoietic stem and progenitor cell numbers and increased bone mass in BMAd-enriched locations, including the distal tibiae and caudal vertebrae. Elevated bone mass appears to be secondary to enhanced endosteal bone formation, suggesting a local effect caused by depletion of BMAd. Augmented bone formation with BMAd depletion protects mice from bone loss induced by caloric restriction or ovariectomy, and it facilitates the bone-healing process after fracture. Finally, ablation of Pparg also reduces BMAd numbers and largely recapitulates high-bone mass phenotypes observed with DTA-induced BMAd depletion.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology and
| | | | - Junxiong Zhu
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Emily Bowers
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hui Yu
- Department of Molecular & Integrative Physiology and
| | - Julie Hardij
- Department of Molecular & Integrative Physiology and
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology and
| | | | - Jon Skjaerlund
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gurjit Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Simin Abrishami
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kanakadurga Singer
- Department of Molecular & Integrative Physiology and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology and
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Jeffery EC, Mann TLA, Pool JA, Zhao Z, Morrison SJ. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 2022; 29:1547-1561.e6. [PMID: 36272401 DOI: 10.1016/j.stem.2022.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
A fundamental question in bone biology concerns the contributions of skeletal stem/progenitor cells (SSCs) in the bone marrow versus the periosteum to bone repair. We found that SSCs in adult bone marrow can be identified based on Leprcre and Adiponectin-cre/creER expression while SSCs in adult periosteum can be identified based on Gli1creERT2 expression. Under steady-state conditions, new bone arose primarily from bone marrow SSCs. After bone injuries, both SSC populations began proliferating but made very different contributions to bone repair. Drill injuries were primarily repaired by LepR+/Adiponectin+ bone marrow SSCs. Conversely, bicortical fractures were primarily repaired by Gli1+ periosteal SSCs, though LepR+/Adiponectin+ bone marrow cells transiently formed trabecular bone at the fracture site. Gli1+ periosteal cells also regenerated LepR+ bone marrow stromal cells that expressed hematopoietic niche factors at fracture sites. Different bone injuries are thus repaired by different SSCs, with periosteal cells regenerating bone and marrow stroma after non-stabilized fractures.
Collapse
Affiliation(s)
- Elise C Jeffery
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Terry L A Mann
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jade A Pool
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Collins KH, Gui C, Ely EV, Lenz KL, Harris CA, Guilak F, Meyer GA. Leptin mediates the regulation of muscle mass and strength by adipose tissue. J Physiol 2022; 600:3795-3817. [PMID: 35844058 PMCID: PMC9378542 DOI: 10.1113/jp283034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Adipose tissue secretes numerous cytokines (termed 'adipokines') that have known or hypothesized actions on skeletal muscle. The majority of adipokines have been implicated in the pathological link between excess adipose and muscle insulin resistance, but approximately half also have documented in vitro effects on myogenesis and/or hypertrophy. This complexity suggests a potential dual role for adipokines in the regulation of muscle mass in homeostasis and the development of pathology. In this study, we used lipodystrophic 'fat-free' mice to demonstrate that adipose tissue is indeed necessary for the development of normal muscle mass and strength. Fat-free mice had significantly reduced mass (∼15%) and peak contractile tension (∼20%) of fast-twitch muscles, a slowing of contractile dynamics and decreased cross-sectional area of fast twitch fibres compared to wild-type littermates. These deficits in mass and contractile tension were fully rescued by reconstitution of ∼10% of normal adipose mass, indicating that this phenotype is the direct consequence of absent adipose. We then showed that the rescue is solely mediated by the adipokine leptin, as similar reconstitution of adipose from leptin-knockout mice fails to rescue mass or strength. Together, these data indicate that the development of muscle mass and strength in wild-type mice is dependent on adipose-secreted leptin. This finding extends our current understanding of the multiple roles of adipokines in physiology as well as disease pathophysiology to include a critical role for the adipokine leptin in muscle homeostasis. KEY POINTS: Adipose-derived cytokines (adipokines) have long been implicated in the pathogenesis of insulin resistance in obesity but likely have other under-appreciated roles in muscle physiology. Here we use a fat-free mouse to show that adipose tissue is necessary for the normal development of muscle mass and strength. Through add-back of genetically modified adipose tissue we show that leptin is the key adipokine mediating this regulation. This expands our understanding of leptin's role in adipose-muscle signalling to include development and homeostasis and adds the surprising finding that leptin is the sole mediator of the maintenance of muscle mass and strength by adipose tissue.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA
| | - Chang Gui
- Department of Biomedical EngineeringWashington University in St. LouisMOUSA,Program in Physical TherapyWashington UniversitySt LouisMOUSA
| | - Erica V. Ely
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA,Department of Biomedical EngineeringWashington University in St. LouisMOUSA
| | - Kristin L. Lenz
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA
| | - Charles A. Harris
- Division of EndocrinologyMetabolism & Lipid ResearchWashington UniversitySt LouisMissouriUSA
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Shriners Hospitals for ChildrenSt LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA,Department of Biomedical EngineeringWashington University in St. LouisMOUSA
| | - Gretchen A. Meyer
- Department of Orthopaedic SurgeryWashington University in St. LouisMOUSA,Center of Regenerative MedicineWashington University in St. LouisMOUSA,Department of Biomedical EngineeringWashington University in St. LouisMOUSA,Program in Physical TherapyWashington UniversitySt LouisMOUSA,Department of NeurologyWashington University in St. LouisSt LouisMOUSA
| |
Collapse
|
22
|
Palmisano B, Labella R, Donsante S, Remoli C, Spica E, Coletta I, Farinacci G, Dello Spedale Venti M, Saggio I, Serafini M, Robey PG, Corsi A, Riminucci M. Gsα R201C and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Res 2022; 10:50. [PMID: 35853852 PMCID: PMC9296668 DOI: 10.1038/s41413-022-00220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
The Gsα/cAMP signaling pathway mediates the effect of a variety of hormones and factors that regulate the homeostasis of the post-natal skeleton. Hence, the dysregulated activity of Gsα due to gain-of-function mutations (R201C/R201H) results in severe architectural and functional derangements of the entire bone/bone marrow organ. While the consequences of gain-of-function mutations of Gsα have been extensively investigated in osteoblasts and in bone marrow osteoprogenitor cells at various differentiation stages, their effect in adipogenically-committed bone marrow stromal cells has remained unaddressed. We generated a mouse model with expression of GsαR201C driven by the Adiponectin (Adq) promoter. Adq-GsαR201C mice developed a complex combination of metaphyseal, diaphyseal and cortical bone changes. In the metaphysis, GsαR201C caused an early phase of bone resorption followed by bone deposition. Metaphyseal bone formation was sustained by cells that were traced by Adq-Cre and eventually resulted in a high trabecular bone mass phenotype. In the diaphysis, GsαR201C, in combination with estrogen, triggered the osteogenic activity of Adq-Cre-targeted perivascular bone marrow stromal cells leading to intramedullary bone formation. Finally, consistent with the previously unnoticed presence of Adq-Cre-marked pericytes in intraosseous blood vessels, GsαR201C caused the development of a lytic phenotype that affected both cortical (increased porosity) and trabecular (tunneling resorption) bone. These results provide the first evidence that the Adq-cell network in the skeleton not only regulates bone resorption but also contributes to bone formation, and that the Gsα/cAMP pathway is a major modulator of both functions.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Rossella Labella
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
- Tettamanti Research Center, Department of Pediatrics, University of Milano Bicocca/Fondazione MBBM, Monza, 20900, Italy
| | - Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Emanuela Spica
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Ilenia Coletta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | | | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
- Institute of Structural Biology and School of Biological Sciences Nanyang Technological University, 639798, Singapore, Singapore
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano Bicocca/Fondazione MBBM, Monza, 20900, Italy
| | - Pamela Gehron Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
23
|
Peng Z, Xu R, You Q. Role of Traditional Chinese Medicine in Bone Regeneration and Osteoporosis. Front Bioeng Biotechnol 2022; 10:911326. [PMID: 35711635 PMCID: PMC9194098 DOI: 10.3389/fbioe.2022.911326] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
According to World Health Organization (WHO), osteoporosis is a systematic bone disability marked by reduced bone mass and microarchitectural degeneration of osseous cells, which leads to increased bones feebleness and fractures vulnerability. It is a polygenetic, physiological bone deformity that frequently leads to osteoporotic fractures and raises the risk of fractures in minimal trauma. Additionally, the molecular changes that cause osteoporosis are linked to decreased fracture repair and delayed bone regeneration. Bones have the ability to regenerate as part of the healing mechanism after an accident or trauma, including musculoskeletal growth and ongoing remodeling throughout adulthood. The principal treatment approaches for bone loss illnesses, such as osteoporosis, are hormone replacement therapy (HRT) and bisphosphonates. In this review, we searched literature regarding the Traditional Chinese medicines (TCM) in osteoporosis and bone regeneration. The literature results are summarized in this review for osteoporosis and bone regeneration. Traditional Chinese medicines (TCM) have grown in popularity as a result of its success in curing ailments while causing minimal adverse effects. Natural Chinese medicine has already been utilized to cure various types of orthopedic illnesses, notably osteoporosis, bone fractures and rheumatism with great success. TCM is a discipline of conventional remedy that encompasses herbal medication, massage (tui na), acupuncture, food, and exercise (qigong) therapy. It is based on more than 2,500 years of Chinese healthcare profession. This article serves as a comprehensive review summarizing the osteoporosis, bone regeneration and the traditional Chinese medicines used since ancient times for the management of osteoporosis and bone regeneration.
Collapse
|
24
|
Matsushita Y, Ono W, Ono N. Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Front Endocrinol (Lausanne) 2022; 13:882297. [PMID: 35528017 PMCID: PMC9075612 DOI: 10.3389/fendo.2022.882297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the bone marrow that is particularly abundant in adults. BMAT is composed of the proximal "regulated" BMAT containing individual adipocytes interspersed within actively hematopoietic marrow, and the distal "constitutive" BMAT containing large adipocytes in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage and possess trilineage differentiation potential into osteoblasts, chondrocytes and adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse genetic lineage-tracing studies reveal that these adipocyte precursor cells possess diverse functions in homeostasis and regeneration. These adipogenic subsets of BMSCs are abundant in the central marrow space and can directly convert not only into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under regenerative conditions. It remains determined whether there are distinct adipocyte precursor cell types contributing to two types of BMATs. In this short review, we discuss the functions of the recently identified subsets of BMSCs and their trajectory toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous and non-cell autonomous regulations.
Collapse
|
25
|
Li Y, Cao S, Gaculenko A, Zhan Y, Bozec A, Chen X. Distinct Metabolism of Bone Marrow Adipocytes and their Role in Bone Metastasis. Front Endocrinol (Lausanne) 2022; 13:902033. [PMID: 35800430 PMCID: PMC9253270 DOI: 10.3389/fendo.2022.902033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bone marrow adipocytes (BMAs) represent 10% of the total fat mass of the human body and serve as an energy reservoir for the skeletal niche. They function as an endocrine organ by actively secreting fatty acids, cytokines, and adipokines. The volume of BMAs increases along with age, osteoporosis and/or obesity. With the rapid development of multi-omic analysis and the advance in in vivo imaging technology, further distinct characteristics and functions of BMAs have been revealed. There is accumulating evidence that BMAs are metabolically, biologically and functionally unique from white, brown, beige and pink adipocytes. Bone metastatic disease is an uncurable complication in cancer patients, where primary cancer cells spread from their original site into the bone marrow. Recent publications have highlighted those BMAs could also serve as a rich lipid source of fatty acids that can be utilized by the cancer cells during bone metastasis, particularly for breast, prostate, lung, ovarian and pancreatic cancer as well as melanoma. In this review, we summarize the novel progressions in BMAs metabolism, especially with multi-omic analysis and in vivo imaging technology. We also update the metabolic role of BMAs in bone metastasis, and their potential new avenues for diagnosis and therapies against metastatic cancers.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Cao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anastasia Gaculenko
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoxiang Chen,
| |
Collapse
|
26
|
Tratwal J, Falgayrac G, During A, Bertheaume N, Bataclan C, Tavakol DN, Campos V, Duponchel L, Daley GQ, Penel G, Chauveau C, Naveiras O. Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes. Front Endocrinol (Lausanne) 2022; 13:1001210. [PMID: 36506047 PMCID: PMC9727239 DOI: 10.3389/fendo.2022.1001210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. In vivo, rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts. Mouse models have been used for BMAds research, but isolation of primary BMAds presents many challenges, and thus in vitro models remain the current standard to study nuances of adipocyte differentiation. No in vitro model has yet been described for the study of rBMAds/cBMAds. Here, we present an in vitro model of BM adipogenesis with differential rBMAd and cBMAd-like characteristics. We used OP9 BM stromal cells derived from a (C57BL/6xC3H)F2-op/op mouse, which have been extensively characterized as feeder layer for hematopoiesis research. We observed similar canonical adipogenesis transcriptional signatures for spontaneously-differentiated (sOP9) and induced (iOP9) cultures, while fatty acid composition and desaturase expression of Scd1 and Fads2 differed at the population level. To resolve differences at the single adipocyte level we tested Raman microspectroscopy and show it constitutes a high-resolution method for studying adipogenesis in vitro in a label-free manner, with resolution to individual LDs. We found sOP9 adipocytes have lower unsaturation ratios, smaller LDs and higher hematopoietic support than iOP9 adipocytes, thus functionally resembling rBMAds, while iOP9 more closely resembled cBMAds. Validation in human primary samples confirmed a higher unsaturation ratio for lipids extracted from stable cBMAd-rich sites (femoral head upon hip-replacement surgery) versus labile rBMAds (iliac crest after chemotherapy). As a result, the 16:1/16:0 fatty acid unsaturation ratio, which was already shown to discriminate BMAd subtypes in rabbit and rat marrow, was validated to discriminate cBMAds from rBMAd in both the OP9 model in vitro system and in human samples. We expect our model will be useful for cBMAd and rBMAd studies, particularly where isolation of primary BMAds is a limiting step.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Guillaume Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Alexandrine During
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Nicolas Bertheaume
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Charles Bataclan
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Daniel N. Tavakol
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Vasco Campos
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ludovic Duponchel
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l’Environnement, Lille, France
| | - George Q. Daley
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Boston, MA, United States
| | - Guillaume Penel
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Christophe Chauveau
- Univ. Lille, CHU Lille, Univ. Littoral Côte d’Opale, ULR 4490 - MABLab- Marrow Adiposity Laboratory, Lille, France
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Hematology, Department of Laboratory Medicine Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- *Correspondence: Olaia Naveiras,
| |
Collapse
|