1
|
Paul JR, Rhoads MK, Elam A, Pollock DM, Gamble KL. High-Salt Diet Increases Suprachiasmatic Neuronal Excitability Through Endothelin Receptor Type B Signaling. FUNCTION 2025; 6:zqaf014. [PMID: 40042980 PMCID: PMC11940741 DOI: 10.1093/function/zqaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
Circadian rhythms are 24-h oscillations in behavioral and biological processes such as blood pressure and sodium excretion. Endothelin B (ETB) receptor has been connected to the molecular clock in peripheral tissues and plays a key role in the regulation of sodium excretion, especially in response to a high-salt diet. However, little is known about the role of ETB in the primary circadian pacemaker in the brain, the suprachiasmatic nucleus (SCN), despite recent reports showing its enrichment in SCN astrocytes. In this study, we tested the hypothesis that high-salt diet (4.0% NaCl) impacts the circadian system via the ETB receptor at the behavioral, molecular, and physiological levels in C57BL/6 mice. Two weeks of high-salt diet feeding changed the organization of nighttime wheel-running activity, as well as increased the SCN expression of ETB mRNA determined by fluorescence in situ hybridization at night. Neuronal excitability determined using loose-patch electrophysiology was also elevated at night. This high-salt diet-induced increase in SCN activity was ameliorated by ex vivo bath application of an ETB antagonist and could be mimicked with acute treatment of endothelin-3. Finally, we found that the excitatory effects of endothelin-3 were blocked with co-application of an N-methyl-D-aspartate (NMDA) receptor antagonist, suggesting that glutamate mediates endothelin-induced neuronal excitability in the SCN. Together, our data demonstrate the presence of functional ETB receptors in SCN astrocytes and point to a novel role for endothelin signaling in mediating neuronal responses to a dietary sodium intake.
Collapse
Affiliation(s)
- Jodi R Paul
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Megan K Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Anna Elam
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
2
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
van Beurden AW, Meijer JH, Rohling JHT. Incorporating Physical Activity in a New Two-Oscillator Model of Circadian Activity in Nocturnal and Diurnal Mammals. J Biol Rhythms 2025; 40:27-35. [PMID: 39722649 PMCID: PMC11834329 DOI: 10.1177/07487304241303554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
In both diurnal and nocturnal species, the neurons in the suprachiasmatic nucleus (SCN) generate a daily pattern in which the impulse frequency peaks at midday and is lowest during the night. This pattern, common to both day-active and night-active species, has led to the long-standing notion that their functional difference relies merely on a sign reversal in SCN output. However, recent evidence shows that the response of the SCN to the animal's physical activity is opposite in nocturnal and diurnal animals. This finding suggests the presence of additional differences in the circadian system between nocturnal and diurnal species. We therefore attempted to identify these differences in neuronal network organization using the A-B two-oscillator model, which is comprised of Poincaré like oscillators. Based on this model, we infer that in diurnal animals the feedback from physical activity acts on neuronal subpopulations in the SCN that do not receive light input; in contrast, in nocturnal animals, physical activity acts on light-receptive neurons in the SCN in order to produce high-amplitude circadian rhythms.
Collapse
Affiliation(s)
- Anouk W. van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jos H. T. Rohling
- Jos H. T. Rohling, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands; e-mail:
| |
Collapse
|
4
|
Pierre-Ferrer S, Collins B, Lukacsovich D, Wen S, Cai Y, Winterer J, Yan J, Pedersen L, Földy C, Brown SA. A phosphate transporter in VIPergic neurons of the suprachiasmatic nucleus gates locomotor activity during the light/dark transition in mice. Cell Rep 2024; 43:114220. [PMID: 38735047 DOI: 10.1016/j.celrep.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.
Collapse
Affiliation(s)
- Sara Pierre-Ferrer
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Ben Collins
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Biology, Sacred Heart University, 5151 Park Ave., Fairfield, CT 06825, USA
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shao'Ang Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuchen Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lene Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Oka S, Ogawa A, Osada T, Tanaka M, Nakajima K, Kamagata K, Aoki S, Oshima Y, Tanaka S, Kirino E, Nakamura TJ, Konishi S. Diurnal Variation of Brain Activity in the Human Suprachiasmatic Nucleus. J Neurosci 2024; 44:e1730232024. [PMID: 38238074 PMCID: PMC10883613 DOI: 10.1523/jneurosci.1730-23.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.
Collapse
Affiliation(s)
- Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo Shizuoka Hospital, Shizuoka 410-2211, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
6
|
Richardson R, Feigin CY, Bano-Otalora B, Johnson MR, Allen AE, Park J, McDowell RJ, Mereby SA, Lin IH, Lucas RJ, Mallarino R. The genomic basis of temporal niche evolution in a diurnal rodent. Curr Biol 2023; 33:3289-3298.e6. [PMID: 37480852 PMCID: PMC10529858 DOI: 10.1016/j.cub.2023.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023]
Abstract
Patterns of diel activity-how animals allocate their activity throughout the 24-h daily cycle-play key roles in shaping the internal physiology of an animal and its relationship with the external environment.1,2,3,4,5 Although shifts in diel activity patterns have occurred numerous times over the course of vertebrate evolution,6 the genomic correlates of such transitions remain unknown. Here, we use the African striped mouse (Rhabdomys pumilio), a species that transitioned from the ancestrally nocturnal diel niche of its close relatives to a diurnal one,7,8,9,10,11 to define patterns of naturally occurring molecular variation in diel niche traits. First, to facilitate genomic analyses, we generate a chromosome-level genome assembly of the striped mouse. Next, using transcriptomics, we show that the switch to daytime activity in this species is associated with a realignment of daily rhythms in peripheral tissues with respect to the light:dark cycle and the central circadian clock. To uncover selection pressures associated with this temporal niche shift, we perform comparative genomic analyses with closely related rodent species and find evidence of relaxation of purifying selection on striped mouse genes in the rod phototransduction pathway. In agreement with this, electroretinogram measurements demonstrate that striped mice have functional differences in dim-light visual responses compared with nocturnal rodents. Taken together, our results show that striped mice have undergone a drastic change in circadian organization and provide evidence that the visual system has been a major target of selection as this species transitioned to a novel temporal niche.
Collapse
Affiliation(s)
- Rose Richardson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology, & Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Annette E Allen
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Richard J McDowell
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Neuroscience, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
7
|
Traxler L, Lucciola R, Herdy JR, Jones JR, Mertens J, Gage FH. Neural cell state shifts and fate loss in ageing and age-related diseases. Nat Rev Neurol 2023; 19:434-443. [PMID: 37268723 PMCID: PMC10478103 DOI: 10.1038/s41582-023-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/04/2023]
Abstract
Most age-related neurodegenerative diseases remain incurable owing to an incomplete understanding of the disease mechanisms. Several environmental and genetic factors contribute to disease onset, with human biological ageing being the primary risk factor. In response to acute cellular damage and external stimuli, somatic cells undergo state shifts characterized by temporal changes in their structure and function that increase their resilience, repair cellular damage, and lead to their mobilization to counteract the pathology. This basic cell biological principle also applies to human brain cells, including mature neurons that upregulate developmental features such as cell cycle markers or glycolytic reprogramming in response to stress. Although such temporary state shifts are required to sustain the function and resilience of the young human brain, excessive state shifts in the aged brain might result in terminal fate loss of neurons and glia, characterized by a permanent change in cell identity. Here, we offer a new perspective on the roles of cell states in sustaining health and counteracting disease, and we examine how cellular ageing might set the stage for pathological fate loss and neurodegeneration. A better understanding of neuronal state and fate shifts might provide the means for a controlled manipulation of cell fate to promote brain resilience and repair.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
8
|
Roberts BL, Karatsoreos IN. Circadian desynchronization disrupts physiological rhythms of prefrontal cortex pyramidal neurons in mice. Sci Rep 2023; 13:9181. [PMID: 37280307 PMCID: PMC10244337 DOI: 10.1038/s41598-023-35898-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Disruption of circadian rhythms, such as shift work and jet lag, are associated with negative physiological and behavioral outcomes, including changes in affective state, learning and memory, and cognitive function. The prefrontal cortex (PFC) is heavily involved in all of these processes. Many PFC-associated behaviors are time-of-day dependent, and disruption of daily rhythms negatively impacts these behavioral outputs. Yet how disruption of daily rhythms impacts the fundamental function of PFC neurons, and the mechanism(s) by which this occurs, remains unknown. Using a mouse model, we demonstrate that the activity and action potential dynamics of prelimbic PFC neurons are regulated by time-of-day in a sex specific manner. Further, we show that postsynaptic K+ channels play a central role in physiological rhythms, suggesting an intrinsic gating mechanism mediating physiological activity. Finally, we demonstrate that environmental circadian desynchronization alters the intrinsic functioning of these neurons independent of time-of-day. These key discoveries demonstrate that daily rhythms contribute to the mechanisms underlying the essential physiology of PFC circuits and provide potential mechanisms by which circadian disruption may impact the fundamental properties of neurons.
Collapse
Affiliation(s)
- Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Tobin Hall, 135 Hicks Way, Amherst, MA, 01003S, USA.
| |
Collapse
|
9
|
Brécier A, Li VW, Smith CS, Halievski K, Ghasemlou N. Circadian rhythms and glial cells of the central nervous system. Biol Rev Camb Philos Soc 2023; 98:520-539. [PMID: 36352529 DOI: 10.1111/brv.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types - astrocytes, microglia, and oligodendrocytes - across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.
Collapse
Affiliation(s)
- Aurélie Brécier
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Vina W Li
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Chloé S Smith
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Katherine Halievski
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
- Department of Anesthesiology & Perioperative Medicine, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
- Centre for Neuroscience Studies, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
10
|
Azzalini LJ, Crompton D, D'Eleuterio GMT, Skinner F, Lankarany M. Adaptive unscented Kalman filter for neuronal state and parameter estimation. J Comput Neurosci 2023; 51:223-237. [PMID: 36854929 DOI: 10.1007/s10827-023-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Data assimilation techniques for state and parameter estimation are frequently applied in the context of computational neuroscience. In this work, we show how an adaptive variant of the unscented Kalman filter (UKF) performs on the tracking of a conductance-based neuron model. Unlike standard recursive filter implementations, the robust adaptive unscented Kalman filter (RAUKF) jointly estimates the states and parameters of the neuronal model while adjusting noise covariance matrices online based on innovation and residual information. We benchmark the adaptive filter's performance against existing nonlinear Kalman filters and explore the sensitivity of the filter parameters to the system being modelled. To evaluate the robustness of the proposed solution, we simulate practical settings that challenge tracking performance, such as a model mismatch and measurement faults. Compared to standard variants of the Kalman filter the adaptive variant implemented here is more accurate and robust to faults.
Collapse
Affiliation(s)
- Loïc J Azzalini
- Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, Canada
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Crompton
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | - Frances Skinner
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Milad Lankarany
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
12
|
Morioka E, Miyamoto T, Tamogami S, Koketsu T, Kim J, Yoshikawa T, Mochizuki T, Ikeda M. Action potential firing rhythms in the suprachiasmatic nucleus of the diurnal grass rat, Arvicanthis niloticus. Neurosci Lett 2023; 792:136954. [PMID: 36347340 DOI: 10.1016/j.neulet.2022.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
In mammals, daily physiological activities are regulated by a central circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Recently, an increasing number of studies have used diurnal grass rats to analyze neuronal mechanisms regulating diurnal behavior. However, spontaneous action potential firing rhythms in SCN neurons have not been demonstrated clearly in diurnal grass rats. Therefore, the present study examined extracellular single-unit recordings from SCN neurons in acute hypothalamic slices of Arvicanthis niloticus (Nile grass rats). The results of this study found that circadian firing rhythms with the highest frequency occurred at dusk (6.4 Hz at zeitgeber time (ZT)10-12), while the secondary peak occurred at dawn (5.6 Hz at ZT0-2), and the lowest frequency took place in the middle of the night (3.6 Hz at ZT14-16). Locomotor activity recordings from a separate group of animals demonstrated that the Nile grass rats of the laboratory colony used in this study displayed diurnal behaviors that coincided with large crepuscular peaks under 12:12 h light-dark cycles and bimodal rhythms under constant dim red light. Thus, a positive correlation between SCN firing frequencies and locomotor activity levels was observed in the Nile grass rats. Previously, behavioral coupling of action potential firings in SCN neurons has been suggested by in vivo recordings while the present study demonstrates that the sustenance of bimodal firing rhythms in grass rat SCN neurons can last at least one day in vitro.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tsubasa Miyamoto
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Sakura Tamogami
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Takahiro Koketsu
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Juhyon Kim
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan; Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
13
|
Schoonderwoerd RA, de Torres Gutiérrez P, Blommers R, van Beurden AW, Coenen TCJJ, Klett NJ, Michel SH, Meijer JH. Inhibitory responses to retinohypothalamic tract stimulation in the circadian clock of the diurnal rodent Rhabdomys pumilio. FASEB J 2022; 36:e22415. [PMID: 35867045 PMCID: PMC9544711 DOI: 10.1096/fj.202200477r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
In both diurnal and nocturnal mammals, the timing of activity is regulated by the central circadian clock of the suprachiasmatic nucleus (SCN). The SCN is synchronized to the external light cycle via the retinohypothalamic tract (RHT). To investigate potential differences in light processing between nocturnal mice and the diurnal rodent Rhabdomys pumilio, we mimicked retinal input by stimulation of the RHT ex vivo. Using Ca2+ imaging, we observed excitations as well as inhibitions of SCN neurons in response to electrical RHT stimulation. In mice, the vast majority of responses were excitatory (85%), whereas in Rhabdomys, the proportion of excitatory and inhibitory responses was similar (51% excitatory, 49% inhibitory). Glutamate blockers AP5 and CNQX blocked the excitatory responses to RHT stimulation but did not abolish the inhibitory responses in mice or Rhabdomys, indicating that the inhibitions were monosynaptically transmitted via the RHT. Simultaneous application of glutamate blockers with the GABAA antagonist gabazine blocked all inhibitory responses in mice, but not in Rhabdomys. Collectively, our results indicate that in Rhabdomys, considerably more inhibitory responses to light are present and that these responses are driven directly by the RHT. We propose that this increased proportion of inhibitory input could reflect a difference in the entrainment mechanism employed by diurnal rodents.
Collapse
Affiliation(s)
- Robin A Schoonderwoerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ruben Blommers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tineke C J J Coenen
- Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathan J Klett
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan H Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Kawakami S, Yoshitane H, Morimura T, Kimura W, Fukada Y. Diurnal shift of mouse activity by the deficiency of an aging-related gene Lmna. J Biochem 2022; 171:509-518. [PMID: 35137145 DOI: 10.1093/jb/mvac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear lamina is a fundamental structure of the cell nucleus and regulates a wide range of molecular pathways. Defects of components of the nuclear lamina cause aging-like physiological disorders, called laminopathy. Generally, aging and diseases are often associated with perturbation of various time-of-day-dependent regulations, but it remains still elusive whether laminopathy induces any changes of the circadian clock and physiological rhythms. Here we demonstrated that deficiency of Lmna gene in mice caused an obvious shift of locomotor activities to the daytime. The abnormal activity profile was accompanied by a remarkable change in phase-angle between the central clock in the suprachiasmatic nucleus (SCN) and lung peripheral clocks, leaving the phase of the SCN clock unaffected by the mutation. These observations suggest that Lmna deficiency causes a change of the habitat from nocturnal to diurnal behaviors. On the other hand, molecular oscillation and its phase resetting mechanism were intact in both the Lmna-deficient cells and progeria-mimicking cells. Intriguingly, high-fat diet feeding extended the short lifespan and ameliorated the abnormalities of the behaviors and the phase of the peripheral clock in the Lmna-deficient mice. The present study supports the important contribution of the energy conditions to a shift between the diurnal and nocturnal activities.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Taiki Morimura
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Kimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Andreatta G, Allen CN. How neurons adjust to diurnality. eLife 2021; 10:e74704. [PMID: 34845985 PMCID: PMC8631939 DOI: 10.7554/elife.74704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Being active during the day requires a slow-closing ion channel that dampens the activity of neurons in a specific area of the brain.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Department of Behavioral NeurosciencePortlandUnited States
| |
Collapse
|