1
|
Tang Z, Xing C, Araszkiewicz A, Yang K, Huai W, Jeltema D, Dobbs N, Zhang Y, Sun LO, Yan N. STING mediates lysosomal quality control and recovery through its proton channel function and TFEB activation in lysosomal storage disorders. Mol Cell 2025; 85:1624-1639.e5. [PMID: 40185098 PMCID: PMC12009194 DOI: 10.1016/j.molcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Lysosomes are essential organelles for cellular homeostasis. Defective lysosomes are associated with diseases like lysosomal storage disorders (LSDs). How lysosomal defects are detected and lysosomal function restored remain incompletely understood. Here, we show that STING mediates a neuroinflammatory gene signature in three distinct LSD mouse models, Galctwi/twi, Ppt1-/-, and Cln7-/-. Transcriptomic analysis of Galctwi/twi mouse brain tissue revealed that STING also mediates the expression of lysosomal genes that are regulated by transcriptional factor EB (TFEB). Immunohistochemical and single-nucleus RNA-sequencing (snRNA-seq) analysis show that STING regulates lysosomal gene expression in microglia. Mechanistically, we show that STING activation leads to TFEB dephosphorylation, nuclear translocation, and expression of lysosomal genes. This process requires STING's proton channel function, the V-ATPase-ATG5-ATG8 cascade, and is independent of immune signaling. Furthermore, we show that the STING-TFEB axis facilitates lysosomal repair. Together, our data identify STING-TFEB as a lysosomal quality control mechanism that responds to lysosomal dysfunction.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Araszkiewicz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Leon F, Espinoza-Esparza JM, Deng V, Coyle MC, Espinoza S, Booth DS. Cell differentiation controls iron assimilation in the choanoflagellate Salpingoeca rosetta. mSphere 2025; 10:e0091724. [PMID: 40008892 PMCID: PMC11934334 DOI: 10.1128/msphere.00917-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understanding their roles in critical biogeochemical cycles. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types. Here, we report that cell differentiation in the marine choanoflagellate Salpingoeca rosetta endows one of its cell types with the ability to utilize insoluble ferric colloids. These colloids are a predominant form of iron in marine environments and are largely inaccessible to cell-walled microbes. Therefore, choanoflagellates and other phagotrophic eukaryotes may serve critical ecological roles by cycling this essential nutrient through iron utilization pathways. We found that S. rosetta can utilize these ferric colloids via the expression of a cytochrome b561 iron reductase (cytb561a). This gene and its mammalian ortholog, the duodenal cytochrome b561 (DCYTB) that reduces ferric cations for uptake in gut epithelia, belong to a subgroup of cytochrome b561 proteins with distinct biochemical features that contribute to iron reduction activity. Overall, our findings provide insight into the ecological roles choanoflagellates perform and inform reconstructions of early animal evolution where functionally distinct cell types became an integrated whole at the origin of animal multicellularity. IMPORTANCE This study examines how cell differentiation in a choanoflagellate enables the uptake of iron, an essential nutrient. Choanoflagellates are widespread, aquatic microeukaryotes that are the closest living relatives of animals. Similar to their animal relatives, we found that the model choanoflagellate, S. rosetta, divides metabolic functions between distinct cell types. One cell type uses an iron reductase to acquire ferric colloids, a key source of iron in the ocean. We also observed that S. rosetta has three variants of this reductase, each with distinct biochemical properties that likely lead to differences in how they reduce iron. These reductases are variably distributed across ocean regions, suggesting a role for choanoflagellates in cycling iron in marine environments.
Collapse
Affiliation(s)
- Fredrick Leon
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
- Tetrad Graduate Program, University of California, San Francisco, California, USA
| | - Jesus M. Espinoza-Esparza
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Vicki Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Maxwell C. Coyle
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Sarah Espinoza
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - David S. Booth
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, California, USA
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| |
Collapse
|
3
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 PMCID: PMC11877805 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
4
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
5
|
Marques JT, Meignin C, Imler JL. An evolutionary perspective to innate antiviral immunity in animals. Cell Rep 2024; 43:114678. [PMID: 39196781 DOI: 10.1016/j.celrep.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses pose a significant threat to cellular organisms. Innate antiviral immunity encompasses both RNA- and protein-based mechanisms designed to sense and respond to infections, a fundamental aspect present in all living organisms. A potent RNA-based antiviral mechanism is RNA interference, where small RNA-programmed nucleases target viral RNAs. Protein-based mechanisms often rely on the induction of transcriptional responses triggered by the recognition of viral infections through innate immune receptors. These responses involve the upregulation of antiviral genes aimed at countering viral infections. In this review, we delve into recent advances in understanding the diversification of innate antiviral immunity in animals. An evolutionary perspective on the gains and losses of mechanisms in diverse animals coupled to mechanistic studies in model organisms such as the fruit fly Drosophila melanogaster is essential to provide deep understanding of antiviral immunity that can be translated to new strategies in the treatment of viral diseases.
Collapse
Affiliation(s)
- Joao T Marques
- Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084 Strasbourg, France; Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Leon F, Espinoza-Esparza JM, Deng V, Coyle MC, Espinoza S, Booth DS. Cell differentiation controls iron assimilation in a choanoflagellate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595918. [PMID: 39345370 PMCID: PMC11429873 DOI: 10.1101/2024.05.25.595918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understand their roles in essential biogeochemical cycles1,2. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types3-6. Here we report that cell differentiation in the marine choanoflagellate Salpingoeca rosetta endows one of its cell types with the ability to utilize insoluble ferric colloids for improved growth through the expression of a cytochrome b561 iron reductase (cytb561a). This gene is an ortholog of the mammalian duodenal cytochrome b561 (DCYTB) that reduces ferric cations prior to their uptake in gut epithelia7 and is part of an iron utilization toolkit that choanoflagellates and their closest living relatives, the animals, inherited from a last common eukaryotic ancestor. In a database of oceanic metagenomes8,9, the abundance of cytb561a transcripts from choanoflagellates positively correlates with upwellings, which are a major source of ferric colloids in marine environments10. As this predominant form of iron11,12 is largely inaccessible to cell-walled microbes13,14, choanoflagellates and other phagotrophic eukaryotes may serve critical ecological roles by first acquiring ferric colloids through phagocytosis and then cycling this essential nutrient through iron utilization pathways13-15. These findings provide insight into the ecological roles choanoflagellates perform and inform reconstructions of early animal evolution where functionally distinct cell types became an integrated whole at the origin of animal multicellularity16-22.
Collapse
Affiliation(s)
- Fredrick Leon
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Jesus M. Espinoza-Esparza
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Vicki Deng
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
- Current Address: Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712
| | - Maxwell C. Coyle
- Howard Hughes Medical Institute & Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Current Address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Sarah Espinoza
- Howard Hughes Medical Institute & Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - David S. Booth
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| |
Collapse
|
7
|
Phillips JE, Zheng Y, Pan D. Assembling a Hippo: the evolutionary emergence of an animal developmental signaling pathway. Trends Biochem Sci 2024; 49:681-692. [PMID: 38729842 PMCID: PMC11316659 DOI: 10.1016/j.tibs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function of the Hippo pathway in cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Lin W, Szabo C, Liu T, Tao H, Wu X, Wu J. STING trafficking activates MAPK-CREB signaling to trigger regulatory T cell differentiation. Proc Natl Acad Sci U S A 2024; 121:e2320709121. [PMID: 38985760 PMCID: PMC11260101 DOI: 10.1073/pnas.2320709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-β2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.
Collapse
Affiliation(s)
- Wei Lin
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Claudia Szabo
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Tao Liu
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Huangheng Tao
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Xianfang Wu
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Jianjun Wu
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| |
Collapse
|
9
|
Hu XM, Peng L, Wang Y, Ma F, Tao Y, Liang X, Yang JL. Bacterial c-di-GMP triggers metamorphosis of mussel larvae through a STING receptor. NPJ Biofilms Microbiomes 2024; 10:51. [PMID: 38902226 PMCID: PMC11190208 DOI: 10.1038/s41522-024-00523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteria induced metamorphosis observed in nearly all marine invertebrates. However, the mechanism of bacteria regulating the larvae-juvenile metamorphosis remains unknown. Here, we test the hypothesis that c-di-GMP, a ubiquitous bacterial second-messenger molecule, directly triggers the mollusc Mytilus coruscus larval metamorphosis via the stimulator of interferon genes (STING) receptor. We determined that the deletion of c-di-GMP synthesis genes resulted in reduced c-di-GMP levels and biofilm-inducing activity on larval metamorphosis, accompanied by alterations in extracellular polymeric substances. Additionally, c-di-GMP extracted from tested varying marine bacteria all exhibited inducing activity on larval metamorphosis. Simultaneously, through pharmacological and molecular experiments, we demonstrated that M. coruscus STING (McSTING) participates in larval metamorphosis by binding with c-di-GMP. Our findings reveal that new role of bacterial c-di-GMP that triggers mussel larval metamorphosis transition, and extend knowledge in the interaction of bacteria and host development in marine ecosystems.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Yuyi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Fan Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Yu Tao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
10
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
11
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. eLife 2024; 12:RP90818. [PMID: 38517944 PMCID: PMC10959527 DOI: 10.7554/elife.90818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
12
|
Hédelin L, Thiébaut A, Huang J, Li X, Lemoine A, Haas G, Meignin C, Cai H, Waterhouse RM, Martins N, Imler JL. Investigating the Evolution of Drosophila STING-Dependent Antiviral Innate Immunity by Multispecies Comparison of 2'3'-cGAMP Responses. Mol Biol Evol 2024; 41:msae032. [PMID: 38377349 PMCID: PMC10917227 DOI: 10.1093/molbev/msae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.
Collapse
Affiliation(s)
- Léna Hédelin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Antonin Thiébaut
- Department of Ecology and Evolution, SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jingxian Huang
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Li
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Aurélie Lemoine
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gabrielle Haas
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Hua Cai
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Robert M Waterhouse
- Department of Ecology and Evolution, SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Nelson Martins
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Culbertson EM, Levin TC. Eukaryotic CD-NTase, STING, and viperin proteins evolved via domain shuffling, horizontal transfer, and ancient inheritance from prokaryotes. PLoS Biol 2023; 21:e3002436. [PMID: 38064485 PMCID: PMC10732462 DOI: 10.1371/journal.pbio.3002436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Animals use a variety of cell-autonomous innate immune proteins to detect viral infections and prevent replication. Recent studies have discovered that a subset of mammalian antiviral proteins have homology to antiphage defense proteins in bacteria, implying that there are aspects of innate immunity that are shared across the Tree of Life. While the majority of these studies have focused on characterizing the diversity and biochemical functions of the bacterial proteins, the evolutionary relationships between animal and bacterial proteins are less clear. This ambiguity is partly due to the long evolutionary distances separating animal and bacterial proteins, which obscures their relationships. Here, we tackle this problem for 3 innate immune families (CD-NTases [including cGAS], STINGs, and viperins) by deeply sampling protein diversity across eukaryotes. We find that viperins and OAS family CD-NTases are ancient immune proteins, likely inherited since the earliest eukaryotes first arose. In contrast, we find other immune proteins that were acquired via at least 4 independent events of horizontal gene transfer (HGT) from bacteria. Two of these events allowed algae to acquire new bacterial viperins, while 2 more HGT events gave rise to distinct superfamilies of eukaryotic CD-NTases: the cGLR superfamily (containing cGAS) that has since diversified via a series of animal-specific duplications and a previously undefined eSMODS superfamily, which more closely resembles bacterial CD-NTases. Finally, we found that cGAS and STING proteins have substantially different histories, with STING protein domains undergoing convergent domain shuffling in bacteria and eukaryotes. Overall, our findings paint a picture of eukaryotic innate immunity as highly dynamic, where eukaryotes build upon their ancient antiviral repertoires through the reuse of protein domains and by repeatedly sampling a rich reservoir of bacterial antiphage genes.
Collapse
Affiliation(s)
- Edward M. Culbertson
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Tera C. Levin
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
15
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
16
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Ruiz-Trillo I, Kin K, Casacuberta E. The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annu Rev Microbiol 2023; 77:499-516. [PMID: 37406343 DOI: 10.1146/annurev-micro-032421-120023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
- ICREA, Barcelona, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| |
Collapse
|
18
|
Cai H, Li L, Slavik KM, Huang J, Yin T, Ai X, Hédelin L, Haas G, Xiang Z, Yang Y, Li X, Chen Y, Wei Z, Deng H, Chen D, Jiao R, Martins N, Meignin C, Kranzusch PJ, Imler JL. The virus-induced cyclic dinucleotide 2'3'-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila. Immunity 2023; 56:1991-2005.e9. [PMID: 37659413 PMCID: PMC11781366 DOI: 10.1016/j.immuni.2023.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| | - Lihua Li
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingxian Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ting Yin
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xianlong Ai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Léna Hédelin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Gabrielle Haas
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| | - Xiaoyan Li
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuqiang Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ziming Wei
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Huimin Deng
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Nelson Martins
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
19
|
Culbertson EM, Levin TC. Eukaryotic antiviral immune proteins arose via convergence, horizontal transfer, and ancient inheritance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546753. [PMID: 37425898 PMCID: PMC10327000 DOI: 10.1101/2023.06.27.546753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Animals use a variety of cell-autonomous innate immune proteins to detect viral infections and prevent replication. Recent studies have discovered that a subset of mammalian antiviral proteins have homology to anti-phage defense proteins in bacteria, implying that there are aspects of innate immunity that are shared across the Tree of Life. While the majority of these studies have focused on characterizing the diversity and biochemical functions of the bacterial proteins, the evolutionary relationships between animal and bacterial proteins are less clear. This ambiguity is partly due to the long evolutionary distances separating animal and bacterial proteins, which obscures their relationships. Here, we tackle this problem for three innate immune families (CD-NTases [including cGAS], STINGs, and Viperins) by deeply sampling protein diversity across eukaryotes. We find that Viperins and OAS family CD-NTases are truly ancient immune proteins, likely inherited since the last eukaryotic common ancestor and possibly longer. In contrast, we find other immune proteins that arose via at least four independent events of horizontal gene transfer (HGT) from bacteria. Two of these events allowed algae to acquire new bacterial viperins, while two more HGT events gave rise to distinct superfamilies of eukaryotic CD-NTases: the Mab21 superfamily (containing cGAS) which has diversified via a series of animal-specific duplications, and a previously undefined eSMODS superfamily, which more closely resembles bacterial CD-NTases. Finally, we found that cGAS and STING proteins have substantially different histories, with STINGs arising via convergent domain shuffling in bacteria and eukaryotes. Overall, our findings paint a picture of eukaryotic innate immunity as highly dynamic, where eukaryotes build upon their ancient antiviral repertoires through the reuse of protein domains and by repeatedly sampling a rich reservoir of bacterial anti-phage genes.
Collapse
Affiliation(s)
| | - Tera C. Levin
- University of Pittsburgh, Department of Biological Sciences
| |
Collapse
|
20
|
Li Y, Slavik KM, Toyoda HC, Morehouse BR, de Oliveira Mann CC, Elek A, Levy S, Wang Z, Mears KS, Liu J, Kashin D, Guo X, Mass T, Sebé-Pedrós A, Schwede F, Kranzusch PJ. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 2023; 186:3261-3276.e20. [PMID: 37379839 PMCID: PMC10527820 DOI: 10.1016/j.cell.2023.05.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity. Building on recent analysis in Drosophila, we identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screening of 150 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of isomers of the nucleotide signals cGAMP, c-UMP-AMP, and c-di-AMP. Combining structural biology and in vivo analysis in coral and oyster animals, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.
Collapse
Affiliation(s)
- Yao Li
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Hunter C Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin R Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shani Levy
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Zhenwei Wang
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Kepler S Mears
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingjing Liu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dmitry Kashin
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Cai H, Li L, Slavik K, Huang J, Yin T, Hédelin L, Xiang Z, Yang Y, Li X, Chen Y, Wei Z, Deng H, Chen D, Jiao R, Martins N, Meignin C, Kranzusch P, Imler JL. A novel virus-induced cyclic dinucleotide, 2'3'-c-di-GMP, mediates STING-dependent antiviral immunity in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539652. [PMID: 37214844 PMCID: PMC10197528 DOI: 10.1101/2023.05.08.539652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP. This CDN binds to and activates the protein STING to trigger immunity. We recently discovered in the model organism Drosophila melanogaster two cGAS-like receptors (cGLRs) that activate STING-dependent antiviral immunity and can produce 3'2'-cGAMP, in addition to 2'3'-cGAMP. Here we explore CDN-mediated immunity in 14 different Drosophila species covering 50 million years of evolution and report that 2'3'-cGAMP and 3'2'-cGAMP fail to control infection by Drosophila C virus in D. serrata, D. sechellia and D. mojavensis . Using an accurate and sensitive mass spectrometry method, we discover an unexpected diversity of CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster , including a novel CDN, 2'3'-c-di-GMP. We show that 2'3'-c-di-GMP is the most potent STING agonist identified so far in D. melanogaster and that this molecule also activates a strong antiviral transcriptional response in D. serrata . Our results shed light on the evolution of cGLRs in flies and provide a basis for the understanding of the function and regulation of this emerging family of PRRs in animal innate immunity.
Collapse
|
22
|
Li Y, Slavik KM, Morehouse BR, de Oliveira Mann CC, Mears K, Liu J, Kashin D, Schwede F, Kranzusch PJ. cGLRs are a diverse family of pattern recognition receptors in animal innate immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529553. [PMID: 36865129 PMCID: PMC9980059 DOI: 10.1101/2023.02.22.529553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
cGAS (cyclic GMP-AMP synthase) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates the protein STING and downstream immunity. Here we discover cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in animal innate immunity. Building on recent analysis in Drosophila , we use a bioinformatic approach to identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screen of 140 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of alternative nucleotide signals including isomers of cGAMP and cUMP-AMP. Using structural biology, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Together our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.
Collapse
Affiliation(s)
- Yao Li
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kailey M. Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin R. Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Kepler Mears
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingjing Liu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dmitry Kashin
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Lead Contact
| |
Collapse
|
23
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
24
|
Jeltema D, Abbott K, Yan N. STING trafficking as a new dimension of immune signaling. J Exp Med 2023; 220:213837. [PMID: 36705629 PMCID: PMC9930166 DOI: 10.1084/jem.20220990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA,Correspondence to Nan Yan:
| |
Collapse
|
25
|
Vila IK, Guha S, Kalucka J, Olagnier D, Laguette N. Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine Growth Factor Rev 2022; 68:54-68. [PMID: 36085258 DOI: 10.1016/j.cytogfr.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| | - Soumyabrata Guha
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Joanna Kalucka
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Nadine Laguette
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
26
|
Caiazza C, Brusco T, D’Alessio F, D’Agostino M, Avagliano A, Arcucci A, Ambrosino C, Fiume G, Mallardo M. The Lack of STING Impairs the MHC-I Dependent Antigen Presentation and JAK/STAT Signaling in Murine Macrophages. Int J Mol Sci 2022; 23:ijms232214232. [PMID: 36430709 PMCID: PMC9697192 DOI: 10.3390/ijms232214232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, we assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of β2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response. Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Teresa Brusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Federica D’Alessio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Via De Sanctis, 82100 Benevento, Italy
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (G.F.); (M.M.)
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
- Correspondence: (G.F.); (M.M.)
| |
Collapse
|
27
|
Williams LM, Gilmore TD. An innate ability: How do basal invertebrates manage their chronic exposure to microbes? PLoS Pathog 2022; 18:e1010897. [PMID: 36315570 PMCID: PMC9621439 DOI: 10.1371/journal.ppat.1010897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologs of mammalian innate immune sensing and downstream pathway proteins have been discovered in a variety of basal invertebrates, including cnidarians and sponges, as well as some single-celled protists. Although the structures of these proteins vary among the basal organisms, many of the activities found in their mammalian counterparts are conserved. This is especially true for the Toll-like receptor (TLR) and cGAS-STING pathways that lead to downstream activation of transcription factor NF-κB. In this short perspective, we describe the evidence that TLR and cGAS-STING signaling to NF-κB is also involved in immunity in basal animals, as well as in the maintenance of microbial symbionts. Different from terrestrial animals, immunity in many marine invertebrates might have a constitutively active state (to protect against continual exposure to resident or waterborne microbes), as well as a hyperactive state that can be induced by pathogens at both transcriptional and posttranscriptional levels. Research on basal immunity may be important for (1) understanding different approaches that organisms take to sensing and protecting against microbes, as well as in maintaining microbial symbionts; (2) the identification of novel antimicrobial effector genes and processes; and (3) the molecular pathways that are being altered in basal marine invertebrates in the face of the effects of a changing environment.
Collapse
Affiliation(s)
- Leah M. Williams
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Thomas D. Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lu Y, Ning H, Kang J, Bai G, Zhou L, Kang Y, Wu Z, Tian M, Zhao J, Ma Y, Bai Y. Cyclic-di-AMP Phosphodiesterase Elicits Protective Immune Responses Against Mycobacterium tuberculosis H37Ra Infection in Mice. Front Cell Infect Microbiol 2022; 12:871135. [PMID: 35811674 PMCID: PMC9256937 DOI: 10.3389/fcimb.2022.871135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Many antigens from Mycobacterium tuberculosis (M. tuberculosis) have been demonstrated as strong immunogens and proved to have application potential as vaccine candidate antigens. Cyclic di-AMP (c-di-AMP) as a bacterial second messenger regulates various bacterial processes as well as the host immune responses. Rv2837c, the c-di-AMP phosphodiesterase (CnpB), was found to be relative to virulence of M. tuberculosis and interference with host innate immune response. In this study, recombinant CnpB was administered subcutaneously to mice. We found that CnpB had strong immunogenicity and induced high levels of humoral response and lung mucosal immunity after M. tuberculosis intranasally infection. CnpB immunization stimulated splenocyte proliferation and the increasing number of activated NK cells but had little effects on Th1/Th2 cellular immune responses in spleens. However, CnpB induced significant Th1/Th2 cellular immune responses with a decreased number of T and B cells in the lungs, and significantly recruits of CD4+ and CD8+ T cells after M. tuberculosis attenuated strain H37Ra infection. Besides, we first reported that CnpB could stimulate IFN-β expression transitorily and inhibit the autophagy of macrophages in vitro. In mice intranasally infection model, CnpB immunization alleviated pathological changes and reduced M. tuberculosis H37Ra loads in the lungs. Thus, our results suggested that CnpB interferes with host innate and adaptive immune responses and confers protection against M. tuberculosis respiratory infection, which should be considered in vaccine development as well as a drug target.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yali Kang
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Zhengfeng Wu
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Maolin Tian
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Junhao Zhao
- Student Brigade, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Yueyun Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, China
- *Correspondence: Yinlan Bai, ; Yueyun Ma,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Yueyun Ma,
| |
Collapse
|
29
|
Stenglein MD. The Case for Studying New Viruses of New Hosts. Annu Rev Virol 2022; 9:157-172. [PMID: 35671564 DOI: 10.1146/annurev-virology-100220-112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virology has largely focused on viruses that are pathogenic to humans or to the other species that we care most about. There is no doubt that this has been a worthwhile investment. But many transformative advances have been made through the in-depth study of relatively obscure viruses that do not appear on lists of prioritized pathogens. In this review, I highlight the benefits that can accrue from the study of viruses and hosts off the beaten track. I take stock of viral sequence diversity across host taxa as an estimate of the bias that exists in our understanding of host-virus interactions. I describe the gains that have been made through the metagenomic discovery of thousands of new viruses in previously unsampled hosts as well as the limitations of metagenomic surveys. I conclude by suggesting that the study of viruses that naturally infect existing and emerging model organisms represents an opportunity to push virology forward in useful and hard to predict ways.Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mark D Stenglein
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| |
Collapse
|
30
|
Glittenberg MT, Kounatidis I, Atilano M, Ligoxygakis P. A genetic screen in Drosophila reveals the role of fucosylation in host susceptibility to Candida infection. Dis Model Mech 2022; 15:dmm049218. [PMID: 35142345 PMCID: PMC9118035 DOI: 10.1242/dmm.049218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Candida infections constitute a blind spot in global public health as very few new anti-fungal drugs are being developed. Genetic surveys of host susceptibilities to such infections using mammalian models have certain disadvantages in that obtaining results is time-consuming, owing to relatively long lifespans, and these results have low statistical resolution because sample sizes are usually small. Here, we report a targeted genetic screening of 5698 RNAi lines encompassing 4135 Drosophila genes with human homologues, several of which we identify as important for host survival after Candida albicans infection. These include genes in a variety of functional classes encompassing gene expression, intracellular signalling, metabolism and enzymatic regulation. Analysis of one of the screen hits, the infection-induced α-(1,3)-fucosylase FucTA, showed that N-glycan fucosylation has several targets among proteins involved in host defence, which provides multiple avenues of investigation for the mechanistic analysis of host survival to systemic C. albicans infection.
Collapse
Affiliation(s)
- Marcus T. Glittenberg
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Ilias Kounatidis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Magda Atilano
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
31
|
Booth DS, King N. The history of Salpingoeca rosetta as a model for reconstructing animal origins. Curr Top Dev Biol 2022; 147:73-91. [PMID: 35337467 DOI: 10.1016/bs.ctdb.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Choanoflagellates, the closest living relatives of animals, have the potential to reveal the genetic and cell biological foundations of complex multicellular development in animals. Here we describe the history of research on the choanoflagellate Salpingoeca rosetta. From its original isolation in 2000 to the establishment of CRISPR-mediated genome editing in 2020, S. rosetta provides an instructive case study in the establishment of a new model organism.
Collapse
Affiliation(s)
- David S Booth
- Chan Zuckerberg Biohub and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States.
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
32
|
Cai H, Meignin C, Imler JL. cGAS-like receptor-mediated immunity: the insect perspective. Curr Opin Immunol 2022; 74:183-189. [PMID: 35149240 DOI: 10.1016/j.coi.2022.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The cGAS-STING pathway plays a central role in the detection of DNA in the cytosol of mammalian cells and activation of immunity. Although the early evolutionary origin of this pathway in animals has been noted, its ancestral functions have remained elusive so far. We review here new findings in invertebrates establishing a role in sensing and signaling infection, triggering potent transcriptional responses, in addition to autophagy. Results from flies and moths/butterflies point to the importance of STING signaling in antiviral immunity in insects. The recent characterization of cGAS-like receptors in Drosophila reveals the plasticity of this family of pattern-recognition receptors, able to accommodate ligands different from DNA and to produce cyclic dinucleotides beyond 2'3'-cGAMP.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
33
|
Margolis SR, Dietzen PA, Hayes BM, Wilson SC, Remick BC, Chou S, Vance RE. The cyclic dinucleotide 2'3'-cGAMP induces a broad antibacterial and antiviral response in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2021; 118:e2109022118. [PMID: 34903650 PMCID: PMC8713801 DOI: 10.1073/pnas.2109022118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
In mammals, cyclic dinucleotides (CDNs) bind and activate STING to initiate an antiviral type I interferon response. CDNs and STING originated in bacteria and are present in most animals. By contrast, interferons are believed to have emerged in vertebrates; thus, the function of CDN signaling in invertebrates is unclear. Here, we use a CDN, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP), to activate immune responses in a model cnidarian invertebrate, the starlet sea anemone Nematostella vectensis Using RNA sequencing, we found that 2'3'-cGAMP induces robust transcription of both antiviral and antibacterial genes in N. vectensis Many of the antiviral genes induced by 2'3'-cGAMP are homologs of vertebrate interferon-stimulated genes, implying that the interferon response predates the evolution of interferons. Knockdown experiments identified a role for NF-κB in specifically inducing antibacterial genes downstream of 2'3'-cGAMP. Some of these putative antibacterial genes were also found to be induced during Pseudomonas aeruginosa infection. We characterized the protein product of one of the putative antibacterial genes, the N. vectensis homolog of Dae4, and found that it has conserved antibacterial activity. This work suggests that a broad antibacterial and antiviral transcriptional response is an evolutionarily ancestral output of 2'3'-cGAMP signaling in animals.
Collapse
Affiliation(s)
- Shally R Margolis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Peter A Dietzen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Beth M Hayes
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Stephen C Wilson
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Brenna C Remick
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Seemay Chou
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
- HHMI, University of California, Berkeley, CA 94720
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720
- Cancer Research Laboratory, University of California, Berkeley, CA 94720
| |
Collapse
|