1
|
Longden T, Isaacs D. Pericyte Electrical Signalling and Brain Haemodynamics. Basic Clin Pharmacol Toxicol 2025; 136:e70030. [PMID: 40159653 PMCID: PMC11955720 DOI: 10.1111/bcpt.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Dominic Isaacs
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Ferris HR, Jeffrey DA, Guerrero MB, Birnbaumer L, Zheng F, Dabertrand F. Increased luminal pressure in brain capillaries drives TRPC3-dependent depolarization and constriction of transitional pericytes. Sci Signal 2025; 18:eads1903. [PMID: 40299956 DOI: 10.1126/scisignal.ads1903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Cerebral autoregulation ensures constant blood flow, an essential condition of brain health. A fundamental parameter of the brain circulation is the dynamic regulation of microvessel diameter to allow for adjustments in resistance to blood pressure changes. Pericytes are a family of mural cells that wrap around the capillary endothelium and contribute to the dynamic control of capillary diameter. We sought to determine whether and how brain pericytes constrict in response to blood pressure elevation with in vivo two-photon microscopy, electrophysiology, and ex vivo arteriolar-capillary myography of mice with conditional mural cell knockout or with expression of a genetically encoded Ca2+ indicator. In first- to fourth-order capillaries, pericytes displayed a rapid and measurable response to pressure by decreasing luminal diameter, depolarizing membrane potentials, and increasing cytoplasmic Ca2+ signaling. Pharmacological and imaging approaches revealed that transient receptor potential channel 3 (TRPC3) and voltage-gated Ca2+ channels were sequentially activated to promote fast constriction. Genetic ablation of TRPC3 resulted in decreased currents, loss of membrane depolarization, and near-complete ablation of the generation of tone over a standard pressure curve in transitional pericytes but not in upstream arterioles. Together, our findings identify TRPC3 channel activation as critical for proximal pericyte depolarization and contraction in response to pressure, highlighting the signaling differences between arteriolar and capillary blood flow regulation.
Collapse
Affiliation(s)
- Hannah R Ferris
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Danielle A Jeffrey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayra Bueno Guerrero
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lutz Birnbaumer
- Signal Transduction, National Institute of Environmental Sciences, Research Triangle Park, NC 27709, USA
- Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires C1107AAZ, Argentina
| | - Fang Zheng
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Isis Yonza AK, Tao L, Zhang X, Postnov D, Kucharz K, Lind B, Asiminas A, Han A, Sonego V, Kim K, Cai C. Spatially and temporally mismatched blood flow and neuronal activity by high-intensity intracortical microstimulation. Brain Stimul 2025; 18:885-896. [PMID: 40246195 DOI: 10.1016/j.brs.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
INTRODUCTION Intracortial microstimulation (ICMS) is widely used in neuroprosthetic brain-machine interfacing, particularly in restoring lost sensory and motor functions. Spiking neuronal activity requires increased cerebral blood flow to meet local metabolic demands, a process conventionally denoted as neurovascular coupling (NVC). However, it is unknown precisely how and to what extent ICMS elicits NVC and how the neuronal and blood flow responses to ICMS correlate. Suboptimal NVC by ICMS may compromise oxygen and energy delivery to the activated neurons thus impair neuroprosthetic functionality. MATERIAL AND METHOD We used wide-field imaging (WFI), laser speckle imaging (LSI) and two-photon microscopy (TPM) to study living, transgenic mice expressing calcium (Ca2+) fluorescent indicators in either neurons or vascular mural cells (VMC), as well as to measure vascular inner lumen diameters. RESULT By testing a range of stimulation amplitudes and examining cortical tissue responses at different distances from the stimulating electrode tip, we found that high stimulation intensities (≥50 μA) elicited a spatial and temporal neurovascular decoupling in regions most adjacent to electrode tip (<200 μm), with significantly delayed onset times of blood flow responses to ICMS and compromised maximum blood flow increases. We attribute these effects respectively to delayed Ca2+ signalling and decreased Ca2+ sensitivity in VMCs. CONCLUSION Our study offers new insights into ICMS-associated neuronal and vascular physiology with potentially critical implications towards the optimal design of ICMS in neuroprosthetic therapies: low intensities preserve NVC; high intensities disrupt NVC responses and potentially precipitate blood supply deficits.
Collapse
Affiliation(s)
- Alexandra Katherine Isis Yonza
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Lechan Tao
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Xiao Zhang
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | | | - Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Barbara Lind
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Antonios Asiminas
- Center for Translational Neuromedicine, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Anpan Han
- Department of Civil and Mechanical Engineering, Technical University of Denmark, DK2800, Kgs. Lyngby, Denmark
| | - Victor Sonego
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kayeon Kim
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Győri F, Mészáros Á, Krecsmarik M, Molnár K, Balta C, Hermenean A, Farkas AE, Krizbai IA, Wilhelm I. Expression of alpha smooth muscle actin decreases with ageing and increases upon lumen obstruction in mouse brain pericytes. GeroScience 2025; 47:2525-2540. [PMID: 39592519 PMCID: PMC11979061 DOI: 10.1007/s11357-024-01429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Cerebral pericytes are mural cells covering brain microvessels, organized as ensheathing, mesh and thin-strand pericytes. These latter two, together called capillary pericytes, have low levels of alpha smooth muscle actin (α-SMA), regulating basal vascular tone and applying a slow influence on cerebral blood flow. Pericytes are subject to alterations in ageing which may be even more pronounced in age-related pathologies, including microinfarcts, which usually affect a large number of vessels in the ageing brain. We modelled this condition by injecting 10 µm-size microspheres into the circulation of mice resulting in the occlusion of capillaries covered by ensheathing and mesh pericytes. We observed that α-SMA and Acta2, the gene encoding it, as well as TGF-β1/Tgfb1, the major regulator of α-SMA, decreased during ageing in cerebral microvessels. In the vicinity of the microspheres stalled in the capillaries, expression of α-SMA increased significantly in both ensheathing and especially in mesh pericytes, both in young (2 to 3 months of age) and old (24 months of age) mice. On the other hand, γ-actin was detected in endothelial cells, but not in pericytes, and decreased in microvessels of microsphere-containing hemispheres. Altogether, our data show that obstruction of cerebral microvessels increases α-SMA expression in pericytes in both age groups, but this does not compensate for the lower expression of the contractile protein in old animals. Increased α-SMA expression may lead to constriction of the obstructed vessels probably aggravating flow heterogeneity in the aged brain.
Collapse
Affiliation(s)
- Fanni Győri
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Mészáros
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Mónika Krecsmarik
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Cornel Balta
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania
| | - Anca Hermenean
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania
| | - Attila E Farkas
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania.
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania.
| |
Collapse
|
5
|
Zhang YY, Li JZ, Xie HQ, Jin YX, Wang WT, Zhao B, Jia JM. High-resolution vasomotion analysis reveals novel arteriole physiological features and progressive modulation of cerebral vascular networks by stroke. J Cereb Blood Flow Metab 2024; 44:1330-1348. [PMID: 38820436 PMCID: PMC11542124 DOI: 10.1177/0271678x241258576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Spontaneous cerebral vasomotion, characterized by ∼0.1 Hz rhythmic contractility, is crucial for brain homeostasis. However, our understanding of vasomotion is limited due to a lack of high-precision analytical methods to determine single vasomotion events at basal levels. Here, we developed a novel strategy that integrates a baseline smoothing algorithm, allowing precise measurements of vasodynamics and concomitant Ca2+ dynamics in mouse cerebral vasculature imaged by two-photon microscopy. We identified several previously unrecognized vasomotion properties under different physiological and pathological conditions, especially in ischemic stroke, which is a highly harmful brain disease that results from vessel occlusion. First, the dynamic characteristics between SMCs Ca2+ and corresponding arteriolar vasomotion are correlated. Second, compared to previous diameter-based estimations, our radius-based measurements reveal anisotropic vascular movements, enabling a more precise determination of the latency between smooth muscle cell (SMC) Ca2+ activity and vasoconstriction. Third, we characterized single vasomotion event kinetics at scales of less than 4 seconds. Finally, following pathological vasoconstrictions induced by ischemic stroke, vasoactive arterioles entered an inert state and persisted despite recanalization. In summary, we developed a highly accurate technique for analyzing spontaneous vasomotion, and our data suggested a potential strategy to reduce stroke damage by promoting vasomotion recovery.
Collapse
Affiliation(s)
- Yi-Yi Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin-Ze Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Hui-Qi Xie
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Xiao Jin
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wen-Tao Wang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
6
|
Bonney SK, Nielson CD, Sosa MJ, Bonnar O, Shih AY. Capillary regression leads to sustained local hypoperfusion by inducing constriction of upstream transitional vessels. Proc Natl Acad Sci U S A 2024; 121:e2321021121. [PMID: 39236241 PMCID: PMC11406265 DOI: 10.1073/pnas.2321021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a feature of many neurological disorders and injuries and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ~59% of the injuries resulted in regression of the capillary segment 7 to 14 d following injury, and the remaining repaired to reestablish blood flow within 7 d. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days postinjury in both awake and anesthetized mice. The degree of vasomotor dynamics was chronically attenuated in the ACT zone consequently reducing blood flow in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how focal capillary injury and regression can impair the microvascular sensory web and contribute to cerebral hypoperfusion.
Collapse
Affiliation(s)
- Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
| | - Cara D. Nielson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | - Maria J. Sosa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
| | - Orla Bonnar
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
- Department of Pediatrics, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
| |
Collapse
|
7
|
Broggini T, Duckworth J, Ji X, Liu R, Xia X, Mächler P, Shaked I, Munting LP, Iyengar S, Kotlikoff M, van Veluw SJ, Vergassola M, Mishne G, Kleinfeld D. Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex. Neuron 2024; 112:2349-2367.e8. [PMID: 38781972 PMCID: PMC11257831 DOI: 10.1016/j.neuron.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Brain arterioles are active, multicellular complexes whose diameters oscillate at ∼ 0.1 Hz. We assess the physiological impact and spatiotemporal dynamics of vaso-oscillations in the awake mouse. First, vaso-oscillations in penetrating arterioles, which source blood from pial arterioles to the capillary bed, profoundly impact perfusion throughout neocortex. The modulation in flux during resting-state activity exceeds that of stimulus-induced activity. Second, the change in perfusion through arterioles relative to the change in their diameter is weak. This implies that the capillary bed dominates the hydrodynamic resistance of brain vasculature. Lastly, the phase of vaso-oscillations evolves slowly along arterioles, with a wavelength that exceeds the span of the cortical mantle and sufficient variability to establish functional cortical areas as parcels of uniform phase. The phase-gradient supports traveling waves in either direction along both pial and penetrating arterioles. This implies that waves along penetrating arterioles can mix, but not directionally transport, interstitial fluids.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Goethe University Frankfurt, Department of Neurosurgery, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Jacob Duckworth
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Xia
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp Mächler
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Iftach Shaked
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leon Paul Munting
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Kotlikoff
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Gal Mishne
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Sancho M, Klug NR, Harraz OF, Hill-Eubanks D, Nelson MT. Distinct potassium channel types in brain capillary pericytes. Biophys J 2024; 123:2110-2121. [PMID: 38444160 PMCID: PMC11309962 DOI: 10.1016/j.bpj.2024.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Capillaries, composed of electrically coupled endothelial cells and overlying pericytes, constitute the vast majority of blood vessels in the brain. The most arteriole-proximate three to four branches of the capillary bed are covered by α-actin-expressing, contractile pericytes. These mural cells have a distinctive morphology and express different markers compared with their smooth muscle cell (SMC) cousins but share similar excitation-coupling contraction machinery. Despite this similarity, pericytes are considerably more depolarized than SMCs at low intravascular pressures. We have recently shown that pericytes, such as SMCs, possess functional voltage-dependent Ca2+ channels and ATP-sensitive K+ channels. Here, we further investigate the complement of pericyte ion channels, focusing on members of the K+ channel superfamily. Using NG2-DsRed-transgenic mice and diverse configurations of the patch-clamp technique, we demonstrate that pericytes display robust inward-rectifier K+ currents that are primarily mediated by the Kir2 family, based on their unique biophysical characteristics and sensitivity to micromolar concentrations of Ba2+. Moreover, multiple lines of evidence, including characteristic kinetics, sensitivity to specific blockers, biophysical attributes, and distinctive single-channel properties, established the functional expression of two voltage-dependent K+ channels: KV1 and BKCa. Although these three types of channels are also present in SMCs, they exhibit distinctive current density and kinetics profiles in pericytes. Collectively, these findings underscore differences in the operation of shared molecular features between pericytes and SMCs and highlight the potential contribution of these three K+ ion channels in setting pericyte membrane potential, modulating capillary hemodynamics, and regulating cerebral blood flow.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, Vermont; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Nicholas R Klug
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, Vermont; Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont; Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, Vermont; Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Li J, Yang F, Zhan F, Estin J, Iyer A, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Liou JY, Ma H, Schwartz TH. Mesoscopic mapping of hemodynamic responses and neuronal activity during pharmacologically induced interictal spikes in awake and anesthetized mice. J Cereb Blood Flow Metab 2024; 44:911-924. [PMID: 38230631 PMCID: PMC11318398 DOI: 10.1177/0271678x241226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Imaging hemodynamic responses to interictal spikes holds promise for presurgical epilepsy evaluations. Understanding the hemodynamic response function is crucial for accurate interpretation. Prior interictal neurovascular coupling data primarily come from anesthetized animals, impacting reliability. We simultaneously monitored calcium fluctuations in excitatory neurons, hemodynamics, and local field potentials (LFP) during bicuculline-induced interictal events in both isoflurane-anesthetized and awake mice. Isoflurane significantly affected LFP amplitude but had little impact on the amplitude and area of the calcium signal. Anesthesia also dramatically blunted the amplitude and latency of the hemodynamic response, although not its area of spread. Cerebral blood volume change provided the best spatial estimation of excitatory neuronal activity in both states. Targeted silencing of the thalamus in awake mice failed to recapitulate the impact of anesthesia on hemodynamic responses suggesting that isoflurane's interruption of the thalamocortical loop did not contribute either to the dissociation between the LFP and the calcium signal nor to the alterations in interictal neurovascular coupling. The blood volume increase associated with interictal spikes represents a promising mapping signal in both the awake and anesthetized states.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fengrui Zhan
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Joshua Estin
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Aditya Iyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Mingrui Zhao
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jyun-you Liou
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| |
Collapse
|
10
|
Looser ZJ, Faik Z, Ravotto L, Zanker HS, Jung RB, Werner HB, Ruhwedel T, Möbius W, Bergles DE, Barros LF, Nave KA, Weber B, Saab AS. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K + and maintains axonal health. Nat Neurosci 2024; 27:433-448. [PMID: 38267524 PMCID: PMC10917689 DOI: 10.1038/s41593-023-01558-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.
Collapse
Affiliation(s)
- Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Zainab Faik
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Ahmadpour N, Kantroo M, Stobart MJ, Meza-Resillas J, Shabanipour S, Parra-Nuñez J, Salamovska T, Muzaleva A, O'Hara F, Erickson D, Di Gaetano B, Carrion-Falgarona S, Weber B, Lamont A, Lavine NE, Kauppinen TM, Jackson MF, Stobart JL. Cortical astrocyte N-methyl-D-aspartate receptors influence whisker barrel activity and sensory discrimination in mice. Nat Commun 2024; 15:1571. [PMID: 38383567 PMCID: PMC10882001 DOI: 10.1038/s41467-024-45989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Astrocytes express ionotropic receptors, including N-methyl-D-aspartate receptors (NMDARs). However, the contribution of NMDARs to astrocyte-neuron interactions, particularly in vivo, has not been elucidated. Here we show that a knockdown approach to selectively reduce NMDARs in mouse cortical astrocytes decreases astrocyte Ca2+ transients evoked by sensory stimulation. Astrocyte NMDAR knockdown also impairs nearby neuronal circuits by elevating spontaneous neuron activity and limiting neuronal recruitment, synchronization, and adaptation during sensory stimulation. Furthermore, this compromises the optimal processing of sensory information since the sensory acuity of the mice is reduced during a whisker-dependent tactile discrimination task. Lastly, we rescue the effects of astrocyte NMDAR knockdown on neurons and improve the tactile acuity of the animal by supplying exogenous ATP. Overall, our findings show that astrocytes can respond to nearby neuronal activity via their NMDAR, and that these receptors are an important component for purinergic signaling that regulate astrocyte-neuron interactions and cortical sensory discrimination in vivo.
Collapse
Affiliation(s)
| | - Meher Kantroo
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | - Anna Muzaleva
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Finnegan O'Hara
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Bruno Di Gaetano
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alana Lamont
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Natalie E Lavine
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Center, Health Sciences Center, Winnipeg, MB, Canada
| | - Jillian L Stobart
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada.
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
McDonald H, Gardner-Russell J, Alarcon-Martinez L. Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication. Results Probl Cell Differ 2024; 73:229-247. [PMID: 39242382 DOI: 10.1007/978-3-031-62036-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Collapse
Affiliation(s)
- Hannah McDonald
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Melbourne, VIC, Australia.
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Bonney SK, Nielson CD, Sosa MJ, Shih AY. Capillary regression leads to sustained local hypoperfusion by inducing constriction of upstream transitional vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564529. [PMID: 37961686 PMCID: PMC10635020 DOI: 10.1101/2023.10.28.564529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a hallmark of many neurological disorders and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ∼63% of the injuries resulted in regression of the capillary segment 7-14 days following injury, and the remaining repaired to re-establish blood flow within 7 days. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days post-injury in both awake and anesthetized mice. This abnormal vasoconstriction involved attenuation of vasomotor dynamics and uncoupling from mural cell calcium signaling following capillary regression. Consequently, blood flow was reduced in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how capillary injury and regression, as often seen in age-related neurological disease, can impair the microvascular sensory web and contribute to cerebral hypoperfusion. SIGNIFICANCE Deterioration of the capillary network is a characteristic of many neurological diseases and can exacerbate neuronal dysfunction and degeneration due to poor blood perfusion. Here we show that focal capillary injuries can induce vessel regression and elicit sustained vasoconstriction in upstream transitional vessels that branch from cortical penetrating arterioles. This reduces blood flow to broader, uninjured regions of the same microvascular network. These findings suggest that widespread and cumulative damage to brain capillaries in neurological disease may broadly affect blood supply and contribute to hypoperfusion through their remote actions.
Collapse
|
14
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Shariff M, Dobariya A, Albaghdadi O, Awkal J, Moussa H, Reyes G, Syed M, Hart R, Longfellow C, Douglass D, El Ahmadieh TY, Good LB, Jakkamsetti V, Kathote G, Angulo G, Ma Q, Brown R, Dunbar M, Shelton JM, Evers BM, Patnaik S, Hoffmann U, Hackmann AE, Mickey B, Peltz M, Jessen ME, Pascual JM. Maintenance of pig brain function under extracorporeal pulsatile circulatory control (EPCC). Sci Rep 2023; 13:13942. [PMID: 37626089 PMCID: PMC10457326 DOI: 10.1038/s41598-023-39344-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Selective vascular access to the brain is desirable in metabolic tracer, pharmacological and other studies aimed to characterize neural properties in isolation from somatic influences from chest, abdomen or limbs. However, current methods for artificial control of cerebral circulation can abolish pulsatility-dependent vascular signaling or neural network phenomena such as the electrocorticogram even while preserving individual neuronal activity. Thus, we set out to mechanically render cerebral hemodynamics fully regulable to replicate or modify native pig brain perfusion. To this end, blood flow to the head was surgically separated from the systemic circulation and full extracorporeal pulsatile circulatory control (EPCC) was delivered via a modified aorta or brachiocephalic artery. This control relied on a computerized algorithm that maintained, for several hours, blood pressure, flow and pulsatility at near-native values individually measured before EPCC. Continuous electrocorticography and brain depth electrode recordings were used to evaluate brain activity relative to the standard offered by awake human electrocorticography. Under EPCC, this activity remained unaltered or minimally perturbed compared to the native circulation state, as did cerebral oxygenation, pressure, temperature and microscopic structure. Thus, our approach enables the study of neural activity and its circulatory manipulation in independence of most of the rest of the organism.
Collapse
Affiliation(s)
- Muhammed Shariff
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Obada Albaghdadi
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jacob Awkal
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hadi Moussa
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gabriel Reyes
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mansur Syed
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Robert Hart
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Cameron Longfellow
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Douglass
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tarek Y El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Gus Angulo
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Ronnie Brown
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misha Dunbar
- Animal Resource Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sourav Patnaik
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ulrike Hoffmann
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amy E Hackmann
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Heart and Vascular Center Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Bruce Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Bai Y, Li G, Yung L, Yu PB, Ai X. Intrapulmonary arterial contraction assay reveals region-specific deregulation of vasoreactivity to lung injuries. Am J Physiol Lung Cell Mol Physiol 2023; 325:L114-L124. [PMID: 37278410 PMCID: PMC10393320 DOI: 10.1152/ajplung.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice. We found that PaAs exhibited robust vasoconstriction in response to contractile agonists and significant nitric oxide (NO)-induced vasodilation. In comparison, IaAs were less contractile and displayed a greater relaxation response to NO. Furthermore, in a mouse model of pulmonary arterial hypertension (PAH) induced by chronic exposure to ovalbumin (OVA) allergen and hypoxia (OVA-HX), IaAs demonstrated a reduced vasocontraction despite vascular wall thickening with the emergence of new αSMA+ cells coexpressing markers of pericytes. In contrast, PaAs became hypercontractile and less responsive to NO. The reduction in relaxation of PaAs was associated with decreased expression of protein kinase G, a key component of the NO pathway, following chronic OVA-HX exposure. Taken together, the PCLS prepared using the modified preparation method enables functional evaluation of pulmonary arteries in different anatomical locations and reveals region-specific mechanisms underlying the pathophysiology of PAH in a mouse model.NEW & NOTEWORTHY Utilizing mouse precision-cut lung slices with preserved intrapulmonary vessels, we demonstrated a location-dependent structural and contractile regulation of pulmonary arteries in health and on noxious stimulations. For instance, chronic ovalbumin and hypoxic exposure increased pulmonary arterial pressure (PAH) by remodeling intraacinar arterioles to reduce vascular wall compliance while enhancing vasoconstriction in proximal preacinar arteries. These findings suggest region-specific mechanisms and therapeutic targets for pulmonary vascular diseases such as PAH.
Collapse
Affiliation(s)
- Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital and Wuhan University, Wuhan, People's Republic of China
| | - Laiming Yung
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Benarroch E. What Are the Roles of Pericytes in the Neurovascular Unit and Its Disorders? Neurology 2023; 100:970-977. [PMID: 37188542 PMCID: PMC10186232 DOI: 10.1212/wnl.0000000000207379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
|
18
|
Phillips B, Clark J, Martineau É, Rungta RL. Orai, RyR, and IP 3R channels cooperatively regulate calcium signaling in brain mid-capillary pericytes. Commun Biol 2023; 6:493. [PMID: 37149720 PMCID: PMC10164186 DOI: 10.1038/s42003-023-04858-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Pericytes are multifunctional cells of the vasculature that are vital to brain homeostasis, yet many of their fundamental physiological properties, such as Ca2+ signaling pathways, remain unexplored. We performed pharmacological and ion substitution experiments to investigate the mechanisms underlying pericyte Ca2+ signaling in acute cortical brain slices of PDGFRβ-Cre::GCaMP6f mice. We report that mid-capillary pericyte Ca2+ signalling differs from ensheathing type pericytes in that it is largely independent of L- and T-type voltage-gated calcium channels. Instead, Ca2+ signals in mid-capillary pericytes were inhibited by multiple Orai channel blockers, which also inhibited Ca2+ entry triggered by endoplasmic reticulum (ER) store depletion. An investigation into store release pathways indicated that Ca2+ transients in mid-capillary pericytes occur through a combination of IP3R and RyR activation, and that Orai store-operated calcium entry (SOCE) is required to sustain and amplify intracellular Ca2+ increases evoked by the GqGPCR agonist endothelin-1. These results suggest that Ca2+ influx via Orai channels reciprocally regulates IP3R and RyR release pathways in the ER, which together generate spontaneous Ca2+ transients and amplify Gq-coupled Ca2+ elevations in mid-capillary pericytes. Thus, SOCE is a major regulator of pericyte Ca2+ and a target for manipulating their function in health and disease.
Collapse
Affiliation(s)
- Braxton Phillips
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Jenna Clark
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Éric Martineau
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Ravi L Rungta
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
19
|
Jarrah R, Nathani KR, Bhandarkar S, Ezeudu CS, Nguyen RT, Amare A, Aljameey UA, Jarrah SI, Bhandarkar AR, Fiani B. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations. Regen Med 2023; 18:413-423. [PMID: 37125510 DOI: 10.2217/rme-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Among the greatest general challenges in bioengineering is to mimic human physiology. Advanced efforts in tissue engineering have led to sophisticated 'brain-on-chip' (BoC) microfluidic devices that can mimic structural and functional aspects of brain tissue. BoC may be used to understand the biochemical pathways of neurolgical pathologies and assess promising therapeutic agents for facilitating regenerative medicine. We evaluated the potential of microfluidic BoC devices in various neurological pathologies, such as Alzheimer's, glioblastoma, traumatic brain injury, stroke and epilepsy. We also discuss the principles, limitations and future considerations of BoC technology. Results suggest that BoC models can help understand complex neurological pathologies and augment drug testing efforts for regenerative applications. However, implementing organ-on-chip technology to clinical practice has some practical limitations that warrant greater attention to improve large-scale applicability. Nevertheless, they remain to be versatile and powerful tools that can broaden our understanding of pathophysiological and therapeutic uncertainties to neurological diseases.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Shaan Bhandarkar
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Chibuze S Ezeudu
- Texas A&M School of Medicine,Texas A&M University, Bryan, TX 77807, USA
| | - Ryan T Nguyen
- University of Hawaii John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Abrham Amare
- Morehouse School of Medicine, Morehouse College, Atlanta, GA 30310, USA
| | - Usama A Aljameey
- Lincoln Memorial University DeBusk School of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Brian Fiani
- Department of Neurosurgery, Cornell Medical Center/New York Presbyterian, New York, NY 10065, USA
| |
Collapse
|
20
|
Dion-Albert L, Dudek KA, Russo SJ, Campbell M, Menard C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci 2023; 46:276-292. [PMID: 36805768 DOI: 10.1016/j.tins.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The neurovascular unit (NVU) is a dynamic center for substance exchange between the blood and the brain, making it an essential gatekeeper for central nervous system (CNS) homeostasis. Recent evidence supports a role for the NVU in modulating brain function and cognition. In addition, alterations in NVU processes are observed in response to stress, although the mechanisms via which they can affect mood and cognitive functions remain elusive. Here, we summarize recent studies of neurovascular regulation of emotional processes and cognitive function, including under stressful conditions. We also highlight relevant RNA-sequencing (RNA-seq) databases aiming to profile the NVU along with innovative tools to study and manipulate NVU function that can be exploited in the context of cognition and stress research throughout development, aging, or brain disorders.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Katarzyna A Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai and Center for Affective Neuroscience, 1 Gustave L Levy Place, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
21
|
Klug NR, Sancho M, Gonzales AL, Heppner TJ, O’Brien RIC, Hill-Eubanks D, Nelson MT. Intraluminal pressure elevates intracellular calcium and contracts CNS pericytes: Role of voltage-dependent calcium channels. Proc Natl Acad Sci U S A 2023; 120:e2216421120. [PMID: 36802432 PMCID: PMC9992766 DOI: 10.1073/pnas.2216421120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023] Open
Abstract
Arteriolar smooth muscle cells (SMCs) and capillary pericytes dynamically regulate blood flow in the central nervous system in the face of fluctuating perfusion pressures. Pressure-induced depolarization and Ca2+ elevation provide a mechanism for regulation of SMC contraction, but whether pericytes participate in pressure-induced changes in blood flow remains unknown. Here, utilizing a pressurized whole-retina preparation, we found that increases in intraluminal pressure in the physiological range induce contraction of both dynamically contractile pericytes in the arteriole-proximate transition zone and distal pericytes of the capillary bed. We found that the contractile response to pressure elevation was slower in distal pericytes than in transition zone pericytes and arteriolar SMCs. Pressure-evoked elevation of cytosolic Ca2+ and contractile responses in SMCs were dependent on voltage-dependent Ca2+ channel (VDCC) activity. In contrast, Ca2+ elevation and contractile responses were partially dependent on VDCC activity in transition zone pericytes and independent of VDCC activity in distal pericytes. In both transition zone and distal pericytes, membrane potential at low inlet pressure (20 mmHg) was approximately -40 mV and was depolarized to approximately -30 mV by an increase in pressure to 80 mmHg. The magnitude of whole-cell VDCC currents in freshly isolated pericytes was approximately half that measured in isolated SMCs. Collectively, these results indicate a loss of VDCC involvement in pressure-induced constriction along the arteriole-capillary continuum. They further suggest that alternative mechanisms and kinetics of Ca2+ elevation, contractility, and blood flow regulation exist in central nervous system capillary networks, distinguishing them from neighboring arterioles.
Collapse
Affiliation(s)
- Nicholas R. Klug
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Maria Sancho
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Albert L. Gonzales
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV89557
| | - Thomas J. Heppner
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | | | - David Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
| | - Mark T. Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT05405
- Division of Cardiovascular Sciences, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
22
|
Arora Y, Dutta A. Perspective: Disentangling the effects of tES on neurovascular unit. Front Neurol 2023; 13:1038700. [PMID: 36698881 PMCID: PMC9868757 DOI: 10.3389/fneur.2022.1038700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can modulate the neurovascular unit, including the perivascular space morphology, but the mechanisms are unclear. In this perspective article, we used an open-source "rsHRF toolbox" and an open-source functional magnetic resonance imaging (fMRI) transcranial direct current stimulation (tDCS) data set to show the effects of tDCS on the temporal profile of the haemodynamic response function (HRF). We investigated the effects of tDCS in the gray matter and at three regions of interest in the gray matter, namely, the anodal electrode (FC5), cathodal electrode (FP2), and an independent site remote from the electrodes (PZ). A "canonical HRF" with time and dispersion derivatives and a finite impulse response (FIR) model with three parameters captured the effects of anodal tDCS on the temporal profile of the HRF. The FIR model showed tDCS onset effects on the temporal profile of HRF for verum and sham tDCS conditions that were different from the no tDCS condition, which questions the validity of the sham tDCS (placebo). Here, we postulated that the effects of tDCS onset on the temporal profile of HRF are subserved by the effects on neurovascular coupling. We provide our perspective based on previous work on tES effects on the neurovascular unit, including mechanistic grey-box modeling of the effects of tES on the vasculature that can facilitate model predictive control (MPC). Future studies need to investigate grey-box modeling of online effects of tES on the neurovascular unit, including perivascular space, neurometabolic coupling, and neurovascular coupling, that can facilitate MPC of the tES dose-response to address the momentary ("state") and phenotypic ("trait") factors.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurugram, India
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
23
|
Stobart JL, Erlebach E, Glück C, Huang SF, Barrett MJ, Li M, Vinogradov SA, Klohs J, Zarb Y, Keller A, Weber B. Altered hemodynamics and vascular reactivity in a mouse model with severe pericyte deficiency. J Cereb Blood Flow Metab 2022; 43:763-777. [PMID: 36545806 PMCID: PMC10108184 DOI: 10.1177/0271678x221147366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2 and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Matthew Jp Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Max Li
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan Klohs
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yvette Zarb
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Annika Keller
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Arora Y, Dutta A. Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective. Brain Sci 2022; 12:1294. [PMID: 36291228 PMCID: PMC9599464 DOI: 10.3390/brainsci12101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Individual differences in the responsiveness of the brain to transcranial electrical stimulation (tES) are increasingly demonstrated by the large variability in the effects of tES. Anatomically detailed computational brain models have been developed to address this variability; however, static brain models are not “realistic” in accounting for the dynamic state of the brain. Therefore, human-in-the-loop optimization at the point of care is proposed in this perspective article based on systems analysis of the neurovascular effects of tES. First, modal analysis was conducted using a physiologically detailed neurovascular model that found stable modes in the 0 Hz to 0.05 Hz range for the pathway for vessel response through the smooth muscle cells, measured with functional near-infrared spectroscopy (fNIRS). During tES, the transient sensations can have arousal effects on the hemodynamics, so we present a healthy case series for black-box modeling of fNIRS−pupillometry of short-duration tDCS effects. The block exogeneity test rejected the claim that tDCS is not a one-step Granger cause of the fNIRS total hemoglobin changes (HbT) and pupil dilation changes (p < 0.05). Moreover, grey-box modeling using fNIRS of the tDCS effects in chronic stroke showed the HbT response to be significantly different (paired-samples t-test, p < 0.05) between the ipsilesional and contralesional hemispheres for primary motor cortex tDCS and cerebellar tDCS, which was subserved by the smooth muscle cells. Here, our opinion is that various physiological pathways subserving the effects of tES can lead to state−trait variability, which can be challenging for clinical translation. Therefore, we conducted a case study on human-in-the-loop optimization using our reduced-dimensions model and a stochastic, derivative-free covariance matrix adaptation evolution strategy. We conclude from our computational analysis that human-in-the-loop optimization of the effects of tES at the point of care merits investigation in future studies for reducing inter-subject and intra-subject variability in neuromodulation.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation and Simulation-Based Learning (NIRSlearn), University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
25
|
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. NEUROPHOTONICS 2022; 9:031914. [PMID: 35581998 PMCID: PMC9107322 DOI: 10.1117/1.nph.9.3.031914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.
Collapse
Affiliation(s)
- Anna Barkaway
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - David Attwell
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Nils Korte
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| |
Collapse
|
26
|
Bojovic D, Stackhouse TL, Mishra A. Assaying activity-dependent arteriole and capillary responses in brain slices. NEUROPHOTONICS 2022; 9:031913. [PMID: 35558646 PMCID: PMC9089234 DOI: 10.1117/1.nph.9.3.031913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Significance: Neurovascular coupling (NVC) is the process that increases cerebral blood flow in response to neuronal activity. NVC is orchestrated by signaling between neurons, glia, and vascular cells. Elucidating the mechanisms underlying NVC at different vascular segments and in different brain regions is imperative for understanding of brain function and mechanisms of dysfunction. Aim: Our goal is to describe a protocol for concurrently monitoring stimulation-evoked neuronal activity and resultant vascular responses in acute brain slices. Approach: We describe a step-by-step protocol that allows the study of endogenous NVC mechanisms engaged by neuronal activity in a controlled, reduced preparation. Results: This ex vivo NVC assay allows researchers to disentangle the mechanisms regulating the contractile responses of different vascular segments in response to neuronal firing independent of flow and pressure mediated effects from connected vessels. It also enables easy pharmacological manipulations in a simplified, reduced system and can be combined with Ca 2 + imaging or broader electrophysiology techniques to obtain multimodal data during NVC. Conclusions: The ex vivo NVC assay will facilitate investigations of cellular and molecular mechanisms that give rise to NVC and should serve as a valuable complement to in vivo imaging methods.
Collapse
Affiliation(s)
- Danica Bojovic
- Oregon Health & Science University, Jungers Center for Neurosciences Research, Department of Neurology, Portland, Oregon, United States
- Oregon Health & Science University, Vollum Institute, Portland, Oregon, United States
| | - Teresa L. Stackhouse
- Oregon Health & Science University, Jungers Center for Neurosciences Research, Department of Neurology, Portland, Oregon, United States
| | - Anusha Mishra
- Oregon Health & Science University, Jungers Center for Neurosciences Research, Department of Neurology, Portland, Oregon, United States
- Oregon Health & Science University, Knight Cardiovascular Institute, Portland, Oregon, United States
| |
Collapse
|
27
|
Jeffrey DA, Fontaine JT, Dabertrand F. Ex vivo capillary-parenchymal arteriole approach to study brain pericyte physiology. NEUROPHOTONICS 2022; 9:031919. [PMID: 36278784 PMCID: PMC9225307 DOI: 10.1117/1.nph.9.3.031919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 06/16/2023]
Abstract
Significance Vascular mural cells, defined as smooth muscle cells (SMCs) and pericytes, influence brain microcirculation, but how they contribute is not fully understood. Most approaches used to investigate pericyte and capillary interactions include ex vivo retinal/slice preparations or in vivo two-photon microscopy. However, neither method adequately captures mural cell behavior without interfering neuronal tissue. Thus, there is a need to isolate vessels with their respective mural cells to study functional and pathological changes. Aim The aim of our work was to implement an ex vivo method that recapitulates vessel dynamics in the brain. Approach Expanding upon our established ex vivo capillary-parenchymal arteriole (CaPA) preparation, we isolated and pressurized arteriole-capillary branches. Using Alexa Fluor™ 633 Hydrazide, we distinguished arterioles (containing elastin) versus capillaries (lacking elastin). In addition, our transgenic SMMHC-GCaMP6f mice allowed for us to visualize mural cell morphology andCa 2 + signals. Lastly, isolated microvasculature was cultured in DMEM media (up to 72 h), mounted, and pressurized using our CaPA preparation. Results U46619 induced a decrease in capillary lumen diameter using both a bath perfusion and local application. In addition, U46619 increasedCa 2 + signaling both globally and locally in contractile pericytes. In our SMMHC-GCaMP6f mice, we saw that thin strand pericytes had sparse processes while contractile pericytes had long, thick processes that wrapped around the lumen of the capillary. Fresh and cultured pericytes constricted in response to U46619 to the same level, and upstream arteriolar dilation induced by capillary stimulation with 10 mMK + remained unchanged by culture conditions adding another application of longer treatment to our approach. Conclusion Our ex vivo CaPA methodology facilitates observation of arteriolar SMC and pericyte dynamic changes in real-time without environmental factors. This method will help to better understand how mural cells differ based on microvasculature location.
Collapse
Affiliation(s)
- Danielle A. Jeffrey
- University of Colorado Anschutz Medical Campus, Department of Anesthesiology, Aurora, Colorado, United States
| | - Jackson T. Fontaine
- University of Colorado Anschutz Medical Campus, Department of Anesthesiology, Aurora, Colorado, United States
| | - Fabrice Dabertrand
- University of Colorado Anschutz Medical Campus, Department of Anesthesiology, Aurora, Colorado, United States
- University of Colorado Anschutz Medical Campus, Department of Pharmacology, Aurora, Colorado, United States
| |
Collapse
|
28
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
29
|
Moccia F, Negri S, Faris P, Angelone T. Targeting endothelial ion signalling to rescue cerebral blood flow in cerebral disorders. Vascul Pharmacol 2022; 145:106997. [DOI: 10.1016/j.vph.2022.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|
30
|
Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 2022; 38:110484. [PMID: 35263595 DOI: 10.1016/j.celrep.2022.110484] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.
Collapse
Affiliation(s)
- Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Noemi Binini
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Laetitia Thieren
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Stewart Berry
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Holub
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75231 Paris Cedex 05, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
31
|
Hartmann DA, Coelho-Santos V, Shih AY. Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System. Annu Rev Physiol 2022; 84:331-354. [PMID: 34672718 PMCID: PMC10480047 DOI: 10.1146/annurev-physiol-061121-040127] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.
Collapse
Affiliation(s)
- David A Hartmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA;
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA;
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Khaddaj-Mallat R, Aldib N, Bernard M, Paquette AS, Ferreira A, Lecordier S, Saghatelyan A, Flamand L, ElAli A. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiol Dis 2021; 161:105561. [PMID: 34780863 PMCID: PMC8590447 DOI: 10.1016/j.nbd.2021.105561] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.
Collapse
MESH Headings
- Actins/metabolism
- Angiotensin-Converting Enzyme 2/drug effects
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Brain/blood supply
- Brain/metabolism
- COVID-19/metabolism
- COVID-19/physiopathology
- Calcium Signaling
- Collagen Type I/metabolism
- Fibronectins/metabolism
- Humans
- Hypoxia/metabolism
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Inflammation/metabolism
- Lipid Peroxidation/drug effects
- Lipid Peroxidation/genetics
- Macrophage Migration-Inhibitory Factors/drug effects
- Macrophage Migration-Inhibitory Factors/metabolism
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myofibroblasts
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nasal Mucosa
- Nitrosative Stress
- Oxidative Stress
- Pericytes/cytology
- Pericytes/drug effects
- Pericytes/metabolism
- Phenotype
- Receptor, Notch3/metabolism
- Receptors, Coronavirus/drug effects
- Receptors, Coronavirus/genetics
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/pharmacology
Collapse
Affiliation(s)
- Rayan Khaddaj-Mallat
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Natija Aldib
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Research Center CERVO, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Maxime Bernard
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Paquette
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aymeric Ferreira
- Research Center CERVO, Quebec City, QC, Canada; Department of Computer Science and Software Engineering, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- Research Center CERVO, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Louis Flamand
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|