1
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. J Cell Biol 2025; 224:e202406153. [PMID: 40261303 PMCID: PMC12013514 DOI: 10.1083/jcb.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells, macrophages, and cultured human cells by facilitating the trafficking of cargos that are acted on by peripherally localized dynein. Our data suggest that CCSer2 disfavors the interaction between dynein and its regulator Ndel1 at the cell edge, resulting in localized dynein activation. These findings support a model where the spatial specificity of dynein is achieved by the localization of proteins that trigger Ndel1's release from dynein. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via regulating Ndel1-dynein interaction.
Collapse
Affiliation(s)
- Juliana L. Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Catherine M. Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Morgan E. DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Colombo S, Michel C, Speroni S, Ruhnow F, Gili M, Brito C, Surrey T. NuMA is a mitotic adaptor protein that activates dynein and connects it to microtubule minus ends. J Cell Biol 2025; 224:e202408118. [PMID: 39932518 PMCID: PMC11812572 DOI: 10.1083/jcb.202408118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Nuclear mitotic apparatus protein (NuMA) is indispensable for the mitotic functions of the major microtubule minus-end directed motor cytoplasmic dynein 1. NuMA and dynein are both essential for correct spindle pole organization. How these proteins cooperate to gather microtubule minus ends at spindle poles remains unclear. Here, we use microscopy-based in vitro reconstitutions to demonstrate that NuMA is a dynein adaptor, activating processive dynein motility together with dynein's cofactors dynactin and Lissencephaly-1 (Lis1). Additionally, we find that NuMA binds and stabilizes microtubule minus ends, allowing dynein/dynactin/NuMA to transport microtubule minus ends as cargo to other minus ends. We further show that the microtubule-nucleating γ-tubulin ring complex (γTuRC) hinders NuMA binding and that NuMA only caps minus ends of γTuRC-nucleated microtubules after γTuRC release. These results provide new mechanistic insight into how dynein, dynactin, NuMA, and Lis1 together with γTuRC and uncapping proteins cooperate to organize spindle poles in cells.
Collapse
Affiliation(s)
- Sabina Colombo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Christel Michel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Speroni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Felix Ruhnow
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Gili
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Abid Ali F, Zwetsloot AJ, Stone CE, Morgan TE, Wademan RF, Carter AP, Straube A. KIF1C activates and extends dynein movement through the FHF cargo adapter. Nat Struct Mol Biol 2025; 32:756-766. [PMID: 39747486 PMCID: PMC11996680 DOI: 10.1038/s41594-024-01418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/03/2024] [Indexed: 01/04/2025]
Abstract
Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins. Activation requires only a fragment of the KIF1C nonmotor stalk binding the cargo adapter HOOK3. The interaction site is separate from the constitutive factors FTS and FHIP, which link HOOK3 to small G-proteins on cargos. We provide a structural model for the autoinhibited FTS-HOOK3-FHIP1B (an FHF complex) and explain how KIF1C relieves it. Collectively, we explain codependency by revealing how mutual activation of dynein and kinesin occurs through their shared adapter. Many adapters bind both dynein and kinesins, suggesting this mechanism could be generalized to other bidirectional complexes.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- MRC Laboratory of Molecular Biology, Cambridge, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Alexander J Zwetsloot
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Caroline E Stone
- MRC Laboratory of Molecular Biology, Cambridge, UK
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Anne Straube
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
4
|
Gümüşderelioğlu S, Sahabandu N, Elnatan D, Gregory EF, Chiba K, Niwa S, Luxton GWG, McKenney RJ, Starr DA. The KASH protein UNC-83 differentially regulates kinesin-1 activity to control developmental stage-specific nuclear migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641899. [PMID: 40093101 PMCID: PMC11908248 DOI: 10.1101/2025.03.06.641899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope KASH protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity. The shorter UNC-83c isoform promotes kinesin-1-dependent nuclear movement in embryonic hyp7 precursors, while longer UNC-83a/b isoforms facilitate dynein-mediated nuclear migration in larval P cells. We demonstrate that UNC-83a's N-terminal domain functions as a kinesin-1 inhibitory module by directly binding kinesin heavy chain (UNC-116). This isoform-specific inhibition, combined with differential affinity for kinesin light chain (KLC-2), establishes a molecular switch for directional control. Together, these interdisciplinary studies reveal how alternative isoforms of cargo adaptors can generate developmental stage-specific regulation of motor activity during development.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Natalie Sahabandu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| |
Collapse
|
5
|
Carvalho C, Moreira M, Barbosa DJ, Chan FY, Koehnen CB, Teixeira V, Rocha H, Green M, Carvalho AX, Cheerambathur DK, Gassmann R. ZYG-12/Hook's dual role as a dynein adaptor for early endosomes and nuclei is regulated by alternative splicing of its cargo binding domain. Mol Biol Cell 2025; 36:ar19. [PMID: 39718769 PMCID: PMC11809306 DOI: 10.1091/mbc.e24-08-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024] Open
Abstract
The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Caenorhabditis elegans Hook homologue ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we demonstrate that ZYG-12 recruits dynein to EE in epithelia. We identify and functionally characterize the homologues of FTS (UBC-19) and FHIP (FHIP-1) that constitute the C. elegans FHF complex, validate the predicted FHIP-1-RAB-5 binding interface in vivo, and show that ZYG-12 forms FHF via a conserved segment that precedes, and is distinct from, its C-terminal NE targeting domain. Finally, we show that C-terminal ZYG-12 splice isoforms differ in their ability to target to the NE and EE. We conclude that the C. elegans Hook adaptor evolved to recruit dynein to two distinct organelles, and that cargo specificity of ZYG-12 is regulated by alternative splicing.
Collapse
Affiliation(s)
- Cátia Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Matilde Moreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Daniel J. Barbosa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- 1H-Toxrun – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Fung-Yi Chan
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Carlota Boal Koehnen
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Vanessa Teixeira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Helder Rocha
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
- ATC de Anatomia Patológica, Citológica e Tanatológica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-075 Porto, Portugal
| | - Mattie Green
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Ana Xavier Carvalho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Dhanya K. Cheerambathur
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Reto Gassmann
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
7
|
Zhang J, Qiu R, Xie S, Rasmussen M, Xiang X. VezA/vezatin facilitates proper assembly of the dynactin complex in vivo. Cell Rep 2024; 43:114943. [PMID: 39487986 PMCID: PMC11661459 DOI: 10.1016/j.celrep.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, the cellular factors involved in dynactin assembly remain unexplored. Here, we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo-adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components, including p150, p50, and an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with the Arp1 mini-filament either directly or indirectly. Loss of VezA significantly decreases the amount of Arp1 pulled down with pointed-end proteins, as well as the protein levels of p50 and p150 in cell extract. Using various dynactin mutants, we further revealed that the dynactin assembly process must be highly coordinated. Together, these results shed light on dynactin assembly in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Sean Xie
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA; Montgomery Blair High School, Silver Spring, MD, USA
| | - Megan Rasmussen
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
8
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Beaudet D, Berger CL, Hendricks AG. The types and numbers of kinesins and dyneins transporting endocytic cargoes modulate their motility and response to tau. J Biol Chem 2024; 300:107323. [PMID: 38677516 PMCID: PMC11130734 DOI: 10.1016/j.jbc.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Suárez-Martínez E, Piersma SR, Pham TV, Bijnsdorp IV, Jimenez CR, Carnero A. Protein homeostasis maintained by HOOK1 levels promotes the tumorigenic and stemness properties of ovarian cancer cells through reticulum stress and autophagy. J Exp Clin Cancer Res 2024; 43:150. [PMID: 38807192 PMCID: PMC11134651 DOI: 10.1186/s13046-024-03071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.
Collapse
Affiliation(s)
- Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Avda. Manuel Siurot S/N; Campus HUVR, Ed. IBIS,, Seville, 41013, Spain
- CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sander R Piersma
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Avda. Manuel Siurot S/N; Campus HUVR, Ed. IBIS,, Seville, 41013, Spain.
- CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Wong CH, Wingett SW, Qian C, Hunter MR, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based transport revealed by a high-content arrayed CRISPR screen. J Cell Biol 2024; 223:e202306048. [PMID: 38448164 PMCID: PMC10916854 DOI: 10.1083/jcb.202306048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
The microtubule motor dynein plays a key role in cellular organization. However, little is known about how dynein's biosynthesis, assembly, and functional diversity are orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a genome-wide gRNA library, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints revealed co-functional proteins involved in many cellular processes, including several candidate novel regulators of core dynein functions. Further analysis of one of these factors, the RNA-binding protein SUGP1, indicates that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our data represent a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organization captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Centre for Genomic Research, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Steven W. Wingett
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Morag Rose Hunter
- Centre for Genomic Research, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
12
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Hollingsworth LR, Veeraraghavan P, Paulo JA, Harper JW. Spatiotemporal proteomic profiling of cellular responses to NLRP3 agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590338. [PMID: 38659763 PMCID: PMC11042255 DOI: 10.1101/2024.04.19.590338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3) is an innate immune sensor that forms an inflammasome in response to various cellular stressors. Gain-of-function mutations in NLRP3 cause autoinflammatory diseases and NLRP3 signalling itself exacerbates the pathogenesis of many other human diseases. Despite considerable therapeutic interest, the primary drivers of NLRP3 activation remain controversial due to the diverse array of signals that are integrated through NLRP3. Here, we mapped subcellular proteome changes to lysosomes, mitochondrion, EEA1-positive endosomes, and Golgi caused by the NLRP3 inflammasome agonists nigericin and CL097. We identified several common disruptions to retrograde trafficking pathways, including COPI and Shiga toxin-related transport, in line with recent studies. We further characterized mouse NLRP3 trafficking throughout its activation using temporal proximity proteomics, which supports a recent model of NLRP3 recruitment to endosomes during inflammasome activation. Collectively, these findings provide additional granularity to our understanding of the molecular events driving NLRP3 activation and serve as a valuable resource for cell biological research. We have made our proteomics data accessible through an open-access Shiny browser to facilitate future research within the community, available at: https://harperlab.connect.hms.harvard.edu/inflame/. We will display anonymous peer review for this manuscript on pubpub.org (https://harperlab.pubpub.org/pub/nlrp3/) rather than a traditional journal. Moreover, we invite community feedback on the pubpub version of this manuscript, and we will address criticisms accordingly.
Collapse
Affiliation(s)
- L. Robert Hollingsworth
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| | | | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Zhang J, Qiu R, Xie S, Rasmussen M, Xiang X. VezA/vezatin facilitates proper assembly of the dynactin complex in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590248. [PMID: 38659795 PMCID: PMC11042379 DOI: 10.1101/2024.04.19.590248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, cellular factors involved in dynactin assembly remain unexplored. Here we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components including an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with dynactin either directly or indirectly via the Arp1 mini-filament and its pointed-end sub-complex. Loss of VezA causes a defect in dynactin integrity, most likely by affecting the connection between the Arp1 mini-filament and its pointed-end sub-complex. Using various dynactin mutants, we further revealed that assembly of the dynactin complex must be highly coordinated. Together, these results shed important new light on dynactin assembly in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Sean Xie
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
- Montgomery Blair High School, Silver Spring, Maryland, USA
| | - Megan Rasmussen
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
15
|
Tirumala NA, Redpath GMI, Skerhut SV, Dolai P, Kapoor-Kaushik N, Ariotti N, Vijay Kumar K, Ananthanarayanan V. Single-molecule imaging of stochastic interactions that drive dynein activation and cargo movement in cells. J Cell Biol 2024; 223:e202210026. [PMID: 38240798 PMCID: PMC10798859 DOI: 10.1083/jcb.202210026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Cytoplasmic dynein 1 (dynein) is the primary minus end-directed motor protein in most eukaryotic cells. Dynein remains in an inactive conformation until the formation of a tripartite complex comprising dynein, its regulator dynactin, and a cargo adaptor. How this process of dynein activation occurs is unclear since it entails the formation of a three-protein complex inside the crowded environs of a cell. Here, we employed live-cell, single-molecule imaging to visualize and track fluorescently tagged dynein. First, we observed that only ∼30% of dynein molecules that bound to the microtubule (MT) engaged in minus end-directed movement, and that too for a short duration of ∼0.6 s. Next, using high-resolution imaging in live and fixed cells and using correlative light and electron microscopy, we discovered that dynactin and endosomal cargo remained in proximity to each other and to MTs. We then employed two-color imaging to visualize cargo movement effected by single motor binding. Finally, we performed long-term imaging to show that short movements are sufficient to drive cargo to the perinuclear region of the cell. Taken together, we discovered a search mechanism that is facilitated by dynein's frequent MT binding-unbinding kinetics: (i) in a futile event when dynein does not encounter cargo anchored in proximity to the MT, dynein dissociates and diffuses into the cytoplasm, (ii) when dynein encounters cargo and dynactin upon MT binding, it moves cargo in a short run. Several of these short runs are undertaken in succession for long-range directed movement. In conclusion, we demonstrate that dynein activation and cargo capture are coupled in a step that relies on the reduction of dimensionality to enable minus end-directed transport in cellulo and that complex cargo behavior emerges from stochastic motor-cargo interactions.
Collapse
Affiliation(s)
| | - Gregory Michael Ian Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Sarah Viktoria Skerhut
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Pritha Dolai
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | | | - Nicholas Ariotti
- Electron Microscopy Unit, University of New South Wales, Sydney, Australia
| | - K. Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Hicks C, Gardner J, Eiger DS, Camarda ND, Pham U, Dhar S, Rodriguez H, Chundi A, Rajagopal S. ACKR3 Proximity Labeling Identifies Novel G protein- and β-arrestin-independent GPCR Interacting Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577545. [PMID: 38410489 PMCID: PMC10896341 DOI: 10.1101/2024.01.27.577545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The canonical paradigm of GPCR signaling recognizes G proteins and β-arrestins as the two primary transducers that promote GPCR signaling. Recent evidence suggests the atypical chemokine receptor 3 (ACKR3) does not couple to G proteins, and β-arrestins are dispensable for some of its functions. Here, we employed proximity labeling to identify proteins that interact with ACKR3 in cells devoid of β-arrestin. We identified proteins involved in the endocytic machinery and evaluated a subset of proteins conserved across several GPCR-based proximity labeling experiments. We discovered that the bone morphogenic protein 2-inducible kinase (BMP2K) interacts with many different GPCRs with varying dependency on β-arrestin. Together, our work highlights the existence of modulators that can act independently of G proteins and β-arrestins to regulate GPCR signaling and provides important evidence for other targets that may regulate GPCR signaling.
Collapse
Affiliation(s)
- Chloe Hicks
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia Gardner
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Nicholas D. Camarda
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Saisha Dhar
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
17
|
Krishnamoorthy S, Muruganantham B, Yu JR, Park WY, Muthusami S. Exploring the utility of FTS as a bonafide binding partner for EGFR: A potential drug target for cervical cancer. Comput Biol Med 2023; 167:107592. [PMID: 37976824 DOI: 10.1016/j.compbiomed.2023.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Establishment of human papilloma virus (HPV) infection and its progression to cervical cancer (CC) requires the participation of epidermal growth factor (EGF) receptor (EGFR) and fused toes homolog (FTS). This review is an attempt to understand the structure-function relationship between FTS and EGFR as a tool for the development of newer CC drugs. Motif analysis was performed using national center for biotechnology information (NCBI), kyoto encyclopedia of genes and genomes (KEGG), simple modular architecture research tool (SMART) and multiple expectation maximizations for motif elicitation (MEME) database. The secondary and tertiary structure prediction of FTS was performed using DISOPRED3 and threading assembly, respectively. A positive correlation was found between the transcript levels of FTS and EGFR. Amino acids responsible for interaction between EGFR and FTS were determined. The nine micro-RNAs (miRNAs) that regulates the expression of FTS were predicted using Network Analyst 3.0 database. hsa-miR-629-5p and hsa-miR-615-3p are identified as significant positive and negative regulators of FTS gene expression. This review opens up new avenues for the development of CC drugs which interfere with the interaction between FTS and EGFR.
Collapse
Affiliation(s)
- Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Bharathi Muruganantham
- Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Jae-Ran Yu
- Department of Environmental and Tropical Medicine, Konkuk University College of Medicine, Chungju, South Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology Hospital, College of Medicine, Chungbuk National University, Cheongju, South Korea.
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India.
| |
Collapse
|
18
|
Nieto C, Miller B, Alzofon N, Chimed T, Himes J, Joshi M, Gomez K, Chowdhury FN, Le PN, Weaver A, Somerset H, Morton JJ, Wang JH, Wang XJ, Gao D, Hansen K, Keysar SB, Jimeno A. The programmed death ligand 1 interactome demonstrates bidirectional signaling coordinating immune suppression and cancer progression in head and neck squamous cell carcinoma. J Natl Cancer Inst 2023; 115:1392-1403. [PMID: 37389416 PMCID: PMC10637037 DOI: 10.1093/jnci/djad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) are validated cancer targets; however, emerging mechanisms and impact of PD-L1 intracellular signaling on cancer behavior are poorly understood. METHODS We investigated the cancer cell intrinsic role of PD-L1 in multiple patient-derived models in vitro and in vivo. PD-L1 overexpression, knockdown, and PD-L1 intracellular domain (PD-L1-ICD) deletion (Δ260-290PD-L1) models were assessed for key cancer properties: clonogenicity, motility, invasion, and immune evasion. To determine how PD-L1 transduces signals intracellularly, we used the BioID2 platform to identify the PD-L1 intracellular interactome. Both human papillomavirus-positive and negative patient-derived xenografts were implanted in NOD-scid-gamma and humanized mouse models to investigate the effects of recombinant PD-1, anti-PD-L1, and anti-signal transducer and activator of transcription 3 (STAT3) in vivo. RESULTS PD-L1 intracellular signaling increased clonogenicity, motility, and invasiveness in multiple head and neck squamous cell carcinoma (HNSCC) models, and PD-1 binding enhanced these effects. Protein proximity labeling revealed the PD-L1 interactome, distinct for unbound and bound PD-1, which initiated cancer cell-intrinsic signaling. PD-L1 binding partners interleukin enhancer binding factors 2 and 3 (ILF2-ILF3) transduced their effect through STAT3. Δ260-290PD-L1 disrupted signaling and reversed pro-growth properties. In humanized HNSCC in vivo models bearing T-cells, PD-1 binding triggered PD-L1 signaling, and dual PD-L1 and STAT3 inhibition were required to achieve tumor control. CONCLUSIONS Upon PD-1 binding, the PD-L1 extracellular and intracellular domains exert a synchronized effect to promote immune evasion by inhibiting T-cell function while simultaneously enhancing cancer cell-invasive properties.
Collapse
Affiliation(s)
- Cera Nieto
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Nathaniel Alzofon
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Tugy Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Jack Himes
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | | | - Karina Gomez
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | | | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Alice Weaver
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | | | - J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, UCDSOM, Aurora, CO, USA
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiao-Jing Wang
- Department of Pathology, UCDSOM, Aurora, CO, USA
- Department of Pathology, University of California Davis, Davis, CA, USA
| | - Dexiang Gao
- Department of Pediatrics, UCDSOM, Aurora, CO, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, UCDSOM, Aurora, CO, USA
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, School of Medicine (UCDSOM), Aurora, CO, USA
- Gates Center for Regenerative Medicine, UCDSOM, Aurora, CO, USA
| |
Collapse
|
19
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
20
|
Chan AW, Broncel M, Yifrach E, Haseley N, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523553. [PMID: 36712004 PMCID: PMC9882037 DOI: 10.1101/2023.01.11.523553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eden Yifrach
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nicole Haseley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Elena Andree
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Garner KE, Salter A, Lau CK, Gurusaran M, Villemant CM, Granger EP, McNee G, Woodman PG, Davies OR, Burke BE, Allan VJ. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Biol 2023; 222:e202204042. [PMID: 36946995 PMCID: PMC10071310 DOI: 10.1083/jcb.202204042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.
Collapse
Affiliation(s)
- Kirsten E.L. Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna Salter
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cécile M. Villemant
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth P. Granger
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin McNee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip G. Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Brian E. Burke
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Victoria J. Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
22
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
23
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
24
|
Wong CH, Wingett SW, Qian C, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based trafficking revealed by a high-content arrayed CRISPR screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530592. [PMID: 36909483 PMCID: PMC10002790 DOI: 10.1101/2023.03.01.530592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a key role in cellular organisation by transporting a wide variety of cellular constituents towards the minus ends of microtubules. However, relatively little is known about how the biosynthesis, assembly and functional diversity of the motor is orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a guide RNA library targeting 18,253 genes, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints generated from multiplexed images revealed co-functional genes involved in many cellular processes, including several candidate novel regulators of core dynein functions. Mechanistic analysis of one of these proteins, the RNA-binding protein SUGP1, provides evidence that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our dataset represents a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organisation that were captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Discovery Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
- Current address: Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven W. Wingett
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
25
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
26
|
Fu X, Rao L, Li P, Liu X, Wang Q, Son AI, Gennerich A, Liu JSH. Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking. eLife 2022; 11:e82218. [PMID: 36476638 PMCID: PMC9799976 DOI: 10.7554/elife.82218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and regulating the composition of the dynein motor complex.
Collapse
Affiliation(s)
- Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
| | - Alexander I Son
- Center for Neuroscience Research, Children's National Research Institute, Children's National HospitalWashingtonUnited States
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown UniversityProvidenceUnited States
| |
Collapse
|
27
|
Snead DM, Matyszewski M, Dickey AM, Lin YX, Leschziner AE, Reck-Peterson SL. Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules. Nat Struct Mol Biol 2022; 29:1196-1207. [PMID: 36510024 PMCID: PMC9758056 DOI: 10.1038/s41594-022-00863-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most commonly mutated genes in familial Parkinson's disease (PD). Under some circumstances, LRRK2 co-localizes with microtubules in cells, an association enhanced by PD mutations. We report a cryo-EM structure of the catalytic half of LRRK2, containing its kinase, in a closed conformation, and GTPase domains, bound to microtubules. We also report a structure of the catalytic half of LRRK1, which is closely related to LRRK2 but is not linked to PD. Although LRRK1's structure is similar to that of LRRK2, we find that LRRK1 does not interact with microtubules. Guided by these structures, we identify amino acids in LRRK2's GTPase that mediate microtubule binding; mutating them disrupts microtubule binding in vitro and in cells, without affecting LRRK2's kinase activity. Our results have implications for the design of therapeutic LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- David M Snead
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mariusz Matyszewski
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andrea M Dickey
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
| | - Yu Xuan Lin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA.
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, MD, USA.
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, Maryland, MD, USA.
| |
Collapse
|
28
|
Jongsma MLM, Bakker N, Neefjes J. Choreographing the motor-driven endosomal dance. J Cell Sci 2022; 136:282885. [PMID: 36382597 PMCID: PMC9845747 DOI: 10.1242/jcs.259689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.
Collapse
Affiliation(s)
- Marlieke L. M. Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands,Author for correspondence ()
| |
Collapse
|
29
|
Christensen JR, Reck-Peterson SL. Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells. Annu Rev Cell Dev Biol 2022; 38:155-178. [PMID: 35905769 PMCID: PMC10967659 DOI: 10.1146/annurev-cellbio-120420-104341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
- Department of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
30
|
Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol 2022; 23:699-714. [DOI: 10.1038/s41580-022-00491-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
|
31
|
Gillies JP, Reimer JM, Karasmanis EP, Lahiri I, Htet ZM, Leschziner AE, Reck-Peterson SL. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 2022; 11:e71229. [PMID: 34994688 PMCID: PMC8824474 DOI: 10.7554/elife.71229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.
Collapse
Affiliation(s)
- John P Gillies
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research MohaliMohaliIndia
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Molecular Biology Section, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San DiegoSan DiegoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|