1
|
Keskin K, Catal Y, Wolman A, Cagdas Eker M, Saffet Gonul A, Northoff G. The brain's internal echo: Longer timescales, stronger recurrent connections and higher neural excitation in self regions. Neuroimage 2025; 312:121221. [PMID: 40246256 DOI: 10.1016/j.neuroimage.2025.121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Understanding the brain's intrinsic architecture has long been a central focus of neuroscience, with recent advances shedding light on its topographic organization along uni and transmodal regions. How the brain's global uni-transmodal topography relates to psychological features like our sense of self remains yet unclear, though. METHOD We here combine fMRI brain imaging with computational modeling (Wilson Cowan model) to better understand the temporal, spatial and physiological features underlying the distinction of self and non-self regions within the brain's global topography. RESULTS fMRI resting state shows lower myelin content, longer timescales (measured by the autocorrelation window/ACW), and lower global functional connectivity/synchronization (measured by global signal correlation/GSCORR) in self regions (based on the three-layer self topography; Qin et al. 2020) compared to non-self regions. Next, we fit the fMRI data with a neural mass model, the Wilson-Cowan model, which is enriched by structural and functional connectivity data from human MRI/fMRI. We first replicate the empirical data with longer ACW and lower GSCORR in self regions. Next, we demonstrate that self and non-self regions can, based on the same measures in the model, not only be distinguished within the brain's global topography but also within the unimodal and transmodal regions themselves, respectively. Finally, the neural mass model shows that such topographic differentiation relates to two physiological features: self regions exhibit higher intra-regional excitatory recurrent connection and higher levels in their basal neural excitation than non-self regions. CONCLUSION Our findings demonstrate the intrinsic nature of the distinction of self and non-self regions within the brain's global uni-transmodal topography as well as their underlying physiological differences with higher levels in both recurrent connections and neural excitation in self regions. The increased recurrent connections in self regions, together with their higher levels of neural excitation and the longer autocorrelation window, may be ideally suited to mediate their self-referential processing: this can thus be seen as a form of 'psychological recurrence' where one and the same input/stimulus is processed in a prolonged echo-chamber like way, that is, an internal echo within the self regions themselves.
Collapse
Affiliation(s)
- Kaan Keskin
- Department of Psychiatry, Ege University, Izmir, Turkey; SoCAT Lab, Ege University, Izmir, Turkey; Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| | - Yasir Catal
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| | - Mehmet Cagdas Eker
- Department of Psychiatry, Ege University, Izmir, Turkey; SoCAT Lab, Ege University, Izmir, Turkey.
| | - Ali Saffet Gonul
- Department of Psychiatry, Ege University, Izmir, Turkey; SoCAT Lab, Ege University, Izmir, Turkey.
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Zeisler ZR, Love M, Rutishauser U, Stoll FM, Rudebeck PH. Consistent Hierarchies of Single-Neuron Timescales in Mice, Macaques, and Humans. J Neurosci 2025; 45:e2155242025. [PMID: 40180571 PMCID: PMC12060611 DOI: 10.1523/jneurosci.2155-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
The intrinsic timescales of single neurons are thought to be hierarchically organized across the cortex, but whether hierarchical variation in timescales is a general brain organizing principle across mammalian species remains unclear. Here, we took a cross-species approach and estimated neuronal timescales of thousands of single neurons recorded across frontal cortex, amygdala, and hippocampus in mice, monkeys, and humans of both sexes using a task-agnostic method. We identify largely consistent hierarchies of timescales in frontal and limbic regions across species: hippocampus had the shortest timescale whereas anterior cingulate cortex had the longest. Within this scheme, variability across species was found, most notably in amygdala and orbitofrontal cortex. We show that variation in timescales is not simply related to differences in spiking statistics nor the result of cytoarchitectonic features such as cortical granularity. Thus, hierarchically organized timescales are a consistent organizing principle across species and appear to be related to a combination of intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Zachary R Zeisler
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Marques Love
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Center for Neural Science and Medicine, Department of Biological Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
3
|
Cusinato R, Seiler A, Schindler K, Tzovara A. Sleep Modulates Neural Timescales and Spatiotemporal Integration in the Human Cortex. J Neurosci 2025; 45:e1845242025. [PMID: 39965931 PMCID: PMC11984084 DOI: 10.1523/jneurosci.1845-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Spontaneous neural dynamics manifest across multiple temporal and spatial scales, which are thought to be intrinsic to brain areas and exhibit hierarchical organization across the cortex. In wake, a hierarchy of timescales is thought to naturally emerge from microstructural properties, gene expression, and recurrent connections. A fundamental question is timescales' organization and changes in sleep, where physiological needs are different. Here, we describe two measures of neural timescales, obtained from broadband activity and gamma power, which display complementary properties. We leveraged intracranial electroencephalography in 106 human epilepsy patients (48 females) to characterize timescale changes from wake to sleep across the cortical hierarchy. We show that both broadband and gamma timescales are globally longer in sleep than in wake. While broadband timescales increase along the sensorimotor-association axis, gamma ones decrease. During sleep, slow waves can explain the increase of broadband and gamma timescales, but only broadband ones show a positive association with slow-wave density across the cortex. Finally, we characterize spatial correlations and their relationship with timescales as a proxy for spatiotemporal integration, finding high integration at long distances in wake for broadband and at short distances in sleep for gamma timescales. Our results suggest that mesoscopic neural populations possess different timescales that are shaped by anatomy and are modulated by the sleep/wake cycle.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Andrea Seiler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
4
|
Ponce-Alvarez A. Network Mechanisms Underlying the Regional Diversity of Variance and Time Scales of the Brain's Spontaneous Activity Fluctuations. J Neurosci 2025; 45:e1699242024. [PMID: 39843234 PMCID: PMC11884397 DOI: 10.1523/jneurosci.1699-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025] Open
Abstract
The brain's activity fluctuations have different temporal scales across the brain regions, with associative regions displaying slower timescales than sensory areas. This hierarchy of timescales has been shown to correlate with both structural brain connectivity and intrinsic regional properties. Here, using publicly available human resting-state fMRI and dMRI data, it was found that, while more structurally connected brain regions presented activity fluctuations with longer timescales, their activity fluctuations presented lower variance. The opposite relationships between the structural connectivity and the variance and temporal scales of resting-state fluctuations, respectively, were not trivially explained by simple network propagation principles. To understand these structure-function relationships, two commonly used whole-brain models were studied, namely, the Hopf and Wilson-Cowan models. These models use the brain's connectome to couple local nodes (representing brain regions) displaying noise-driven oscillations. The models show that the variance and temporal scales of activity fluctuations can oppositely relate to connectivity within specific parameter regions, even when all nodes have the same intrinsic dynamics-but also when intrinsic dynamics are constrained by the myelinization-related macroscopic gradient. These results show that, setting aside intrinsic regional differences, connectivity and network state are sufficient to explain the regional differences in fluctuations' scales. State dependence supports the vision that structure-function relationships can serve as biomarkers of altered brain states. Finally, the results indicate that the hierarchies of timescales and variances reflect a balance between stability and responsivity, with greater and faster responsiveness at the network periphery, while the network core ensures overall system robustness.
Collapse
Affiliation(s)
- Adrián Ponce-Alvarez
- Department of Mathematics, Polytechnic University of Catalonia, Barcelona 08028, Spain
- Institut de Matemàtiques de la UPC - Barcelona Tech (IMTech), Barcelona 08028, Spain
- Centre de Recerca Matemàtica, Barcelona 08193, Spain
| |
Collapse
|
5
|
Barzon G, Busiello DM, Nicoletti G. Excitation-Inhibition Balance Controls Information Encoding in Neural Populations. PHYSICAL REVIEW LETTERS 2025; 134:068403. [PMID: 40021162 DOI: 10.1103/physrevlett.134.068403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/17/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Understanding how the complex connectivity structure of the brain shapes its information-processing capabilities is a long-standing question. By focusing on a paradigmatic architecture, we study how the neural activity of excitatory and inhibitory populations encodes information on external signals. We show that at long times information is maximized at the edge of stability, where inhibition balances excitation, both in linear and nonlinear regimes. In the presence of multiple external signals, this maximum corresponds to the entropy of the input dynamics. By analyzing the case of a prolonged stimulus, we find that stronger inhibition is instead needed to maximize the instantaneous sensitivity, revealing an intrinsic tradeoff between short-time responses and long-time accuracy. In agreement with recent experimental findings, our results pave the way for a deeper information-theoretic understanding of how the balance between excitation and inhibition controls optimal information-processing in neural populations.
Collapse
Affiliation(s)
- Giacomo Barzon
- University of Padova, Padova Neuroscience Center, Padova, Italy
| | - Daniel Maria Busiello
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- University of Padova, Department of Physics and Astronomy "G. Galilei," , Padova, Italy
| | - Giorgio Nicoletti
- École Polytechnique Fédérale de Lausanne, ECHO Laboratory, Lausanne, Switzerland
- The Abdus Salam International Center for Theoretical Physics (ICTP), Quantitative Life Sciences section, Trieste, Italy
| |
Collapse
|
6
|
Song M, Shin EJ, Seo H, Soltani A, Steinmetz NA, Lee D, Jung MW, Paik SB. Hierarchical gradients of multiple timescales in the mammalian forebrain. Proc Natl Acad Sci U S A 2024; 121:e2415695121. [PMID: 39671181 DOI: 10.1073/pnas.2415695121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Many anatomical and physiological features of cortical circuits, ranging from the biophysical properties of synapses to the connectivity patterns among different neuron types, exhibit consistent variation along the hierarchical axis from sensory to association areas. Notably, the temporal correlation of neural activity at rest, known as the intrinsic timescale, increases systematically along this hierarchy in both primates and rodents, analogous to the increasing scale and complexity of spatial receptive fields. However, how the timescales for task-related activity vary across brain regions and whether their hierarchical organization appears consistently across different mammalian species remain unexplored. Here, we show that both the intrinsic timescale and those of task-related activity follow a similar hierarchical gradient in the cortices of monkeys, rats, and mice. We also found that these timescales covary similarly in both the cortex and basal ganglia, whereas the timescales of thalamic activity are shorter than cortical timescales and do not conform to the hierarchical order predicted by their cortical projections. These results suggest that the hierarchical gradient of cortical timescales might represent a universal feature of intracortical circuits in the mammalian brain.
Collapse
Affiliation(s)
- Min Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eun Ju Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Hyojung Seo
- Department of Psychiatry, Yale University, New Haven, CT 06520
| | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Nicholas A Steinmetz
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Daeyeol Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218
- Kavli Discovery Neuroscience Institute, Johns Hopkins University, Baltimore, MD 21218
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz RI. Decoding cortical chronotopy-Comparing the influence of different cortical organizational schemes. Neuroimage 2024; 303:120914. [PMID: 39491762 DOI: 10.1016/j.neuroimage.2024.120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Jana Fehring
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Institute for Biomagnetism and Biosignal Analysis, Münster, Germany.
| | - Ricarda I Schubotz
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
8
|
Zeisler ZR, Love M, Rutishauser U, Stoll FM, Rudebeck PH. Consistent hierarchies of single-neuron timescales in mice, macaques and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621133. [PMID: 39553955 PMCID: PMC11565977 DOI: 10.1101/2024.10.30.621133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The intrinsic timescales of single neurons are thought to be hierarchically organized across the cortex. This conclusion, however, is primarily based on analyses of neural responses from macaques. Whether hierarchical variation in timescales is a general brain organizing principle across mammals remains unclear. Here we took a cross-species approach and estimated neuronal timescales of thousands of single neurons recorded across multiple areas in mice, monkeys, and humans using a task-agnostic method. We identify largely consistent hierarchies of timescales in frontal and limbic regions across species: hippocampus had the shortest timescale whereas anterior cingulate cortex had the longest. Within this scheme, variability across species was found, most notably in amygdala and orbitofrontal cortex. We show that variation in timescales is not simply related to differences in spiking statistics nor the result of cytoarchitectonic features such as cortical granularity. Thus, hierarchically organized timescales are a consistent organizing principle across species and appear to be related to a combination of intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Zachary R. Zeisler
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Marques Love
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Center for Neural Science and Medicine, Department of Biological Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Frederic M. Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
9
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Song M, Shin EJ, Seo H, Soltani A, Steinmetz NA, Lee D, Jung MW, Paik SB. Hierarchical gradients of multiple timescales in the mammalian forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540610. [PMID: 39211168 PMCID: PMC11361088 DOI: 10.1101/2023.05.12.540610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Many anatomical and physiological features of cortical circuits, ranging from the biophysical properties of synapses to the connectivity patterns among different neuron types, exhibit consistent variation along the hierarchical axis from sensory to association areas. Notably, the scale of temporal correlation of neural activity at rest, known as the intrinsic timescale, increases systematically along this hierarchy in both primates and rodents, analogous to the growing scale and complexity of spatial receptive fields. However, how the timescales for task-related activity vary across brain regions and whether their hierarchical organization appears consistently across different mammalian species remain unexplored. Here, we show that both the intrinsic timescale and the timescales of task-related activity follow a similar hierarchical gradient in the cortices of monkeys, rats, and mice. We also found that these timescales covary similarly in both the cortex and basal ganglia, whereas the timescales of thalamic activity are shorter than cortical timescales and do not conform to the hierarchical order predicted by their cortical projections. These results suggest that the hierarchical gradient of cortical timescales might be a universal feature of intra-cortical circuits in the mammalian brain.
Collapse
|
11
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The primate cortical LFP exhibits multiple spectral and temporal gradients and widespread task dependence during visual short-term memory. J Neurophysiol 2024; 132:206-225. [PMID: 38842507 PMCID: PMC11383615 DOI: 10.1152/jn.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3 and 80 Hz that differ between the two monkeys. The LFP power in each band, as well as the sample entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in cortical pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task-dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread, and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.NEW & NOTEWORTHY We recorded extracellular electrophysiological signals from roughly the breadth and depth of a cortical hemisphere in nonhuman primates (NHPs) performing a visual memory task. Analyses of the band-limited local field potential (LFP) power displayed widespread, frequency-dependent cortical gradients in spectral power. Using a machine learning classifier, these features allowed robust cortical area decoding. Further task dependence in LFP power were found to be widespread, indicating large-scale gradients of LFP activity, and task-related activity.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Salk Institute for Biological Studies, La Jolla, California, United States
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
12
|
Boring MJ, Richardson RM, Ghuman AS. Interacting ventral temporal gradients of timescales and functional connectivity and their relationships to visual behavior. iScience 2024; 27:110003. [PMID: 38868193 PMCID: PMC11166696 DOI: 10.1016/j.isci.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cortical gradients in endogenous and stimulus-evoked neurodynamic timescales, and long-range cortical interactions, provide organizational constraints to the brain and influence neural populations' roles in cognition. It is unclear how these functional gradients interrelate and which influence behavior. Here, intracranial recordings from 4,090 electrode contacts in 35 individuals map gradients of neural timescales and functional connectivity to assess their interactions along category-selective ventral temporal cortex. Endogenous and stimulus-evoked information processing timescales were not significantly correlated with one another suggesting that local neural timescales are context dependent and may arise through distinct neurophysiological mechanisms. Endogenous neural timescales correlated with functional connectivity even after removing the effects of shared anatomical gradients. Neural timescales and functional connectivity correlated with how strongly a population's activity predicted behavior in a simple visual task. These results suggest both interrelated and distinct neurophysiological processes give rise to different functional connectivity and neural timescale gradients, which together influence behavior.
Collapse
Affiliation(s)
- Matthew J. Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Vogel JW, Alexander-Bloch AF, Wagstyl K, Bertolero MA, Markello RD, Pines A, Sydnor VJ, Diaz-Papkovich A, Hansen JY, Evans AC, Bernhardt B, Misic B, Satterthwaite TD, Seidlitz J. Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain. Proc Natl Acad Sci U S A 2024; 121:e2219137121. [PMID: 38861593 PMCID: PMC11194492 DOI: 10.1073/pnas.2219137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
Collapse
Affiliation(s)
- Jacob W. Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden202 13
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, LondonWC1N 3AR, United Kingdom
| | - Maxwell A. Bertolero
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Ross D. Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Diaz-Papkovich
- Quantitative Life Sciences, McGill University, Montreal, QCH3A 1E3, Canada
- McGill Genome Centre, McGill University, Montreal, QCH3A 0G1, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
14
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Bienkowska N, London L, Fleysher L, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. Nat Commun 2024; 15:4669. [PMID: 38821963 PMCID: PMC11143237 DOI: 10.1038/s41467-024-49140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and the underlying patterns of neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the amygdala of two male macaques. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5 Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-modal approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Satoka H Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Liza London
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brian E Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University at Langone, 550 1st Avenue, New York, NY, 10016, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Manea AMG, Maisson DJN, Voloh B, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. Nat Commun 2024; 15:2151. [PMID: 38461167 PMCID: PMC10925022 DOI: 10.1038/s41467-024-46488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Previous work demonstrated a highly reproducible cortical hierarchy of neural timescales at rest, with sensory areas displaying fast, and higher-order association areas displaying slower timescales. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this lack of variability in the hierarchical organization of neural timescales could reflect the structure of the laboratory contexts. We posit that unconstrained paradigms are ideal to test whether the dynamics of neural timescales reflect behavioral demands. Here we measured timescales of local field potential activity while male rhesus macaques foraged in an open space. We found a hierarchy of neural timescales that differs from previous work. Importantly, although the magnitude of neural timescales expanded with task engagement, the brain areas' relative position in the hierarchy was stable. Next, we demonstrated that the change in neural timescales is dynamic and contains functionally-relevant information, differentiating between similar events in terms of motor demands and associated reward. Finally, we demonstrated that brain areas are differentially affected by these behavioral demands. These results demonstrate that while the space of neural timescales is anatomically constrained, the observed hierarchical organization and magnitude is dependent on behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Voloh
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Monosov IE. Curiosity: primate neural circuits for novelty and information seeking. Nat Rev Neurosci 2024; 25:195-208. [PMID: 38263217 DOI: 10.1038/s41583-023-00784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
17
|
Lurie DJ, Pappas I, D'Esposito M. Cortical timescales and the modular organization of structural and functional brain networks. Hum Brain Mapp 2024; 45:e26587. [PMID: 38339903 PMCID: PMC10823764 DOI: 10.1002/hbm.26587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.
Collapse
Affiliation(s)
- Daniel J. Lurie
- Department of PsychologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Biomedical Informatics University of Pittsburgh School of Medicine PittsburghPennsylvaniaUSA
| | - Ioannis Pappas
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mark D'Esposito
- Department of Psychology and Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
18
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The Primate Cortical LFP Exhibits Multiple Spectral and Temporal Gradients and Widespread Task-Dependence During Visual Short-Term Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577843. [PMID: 38352585 PMCID: PMC10862751 DOI: 10.1101/2024.01.29.577843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3-80 Hz that differ between the two monkeys. The LFP power in each band, as well as the Sample Entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in layer 3 pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
19
|
Ruesseler M, Weber LA, Marshall TR, O'Reilly J, Hunt LT. Quantifying decision-making in dynamic, continuously evolving environments. eLife 2023; 12:e82823. [PMID: 37883173 PMCID: PMC10602589 DOI: 10.7554/elife.82823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
During perceptual decision-making tasks, centroparietal electroencephalographic (EEG) potentials report an evidence accumulation-to-bound process that is time locked to trial onset. However, decisions in real-world environments are rarely confined to discrete trials; they instead unfold continuously, with accumulation of time-varying evidence being recency-weighted towards its immediate past. The neural mechanisms supporting recency-weighted continuous decision-making remain unclear. Here, we use a novel continuous task design to study how the centroparietal positivity (CPP) adapts to different environments that place different constraints on evidence accumulation. We show that adaptations in evidence weighting to these different environments are reflected in changes in the CPP. The CPP becomes more sensitive to fluctuations in sensory evidence when large shifts in evidence are less frequent, and the potential is primarily sensitive to fluctuations in decision-relevant (not decision-irrelevant) sensory input. A complementary triphasic component over occipito-parietal cortex encodes the sum of recently accumulated sensory evidence, and its magnitude covaries with parameters describing how different individuals integrate sensory evidence over time. A computational model based on leaky evidence accumulation suggests that these findings can be accounted for by a shift in decision threshold between different environments, which is also reflected in the magnitude of pre-decision EEG activity. Our findings reveal how adaptations in EEG responses reflect flexibility in evidence accumulation to the statistics of dynamic sensory environments.
Collapse
Affiliation(s)
- Maria Ruesseler
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
| | - Lilian Aline Weber
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| | - Tom Rhys Marshall
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
- Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Jill O'Reilly
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| | - Laurence Tudor Hunt
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford Centre for Human Brain Activity (OHBA) University Department of Psychiatry Warneford HospitalOxfordUnited Kingdom
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory QuarterOxfordUnited Kingdom
| |
Collapse
|
20
|
Huang Z. Temporospatial Nestedness in Consciousness: An Updated Perspective on the Temporospatial Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1074. [PMID: 37510023 PMCID: PMC10378228 DOI: 10.3390/e25071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Time and space are fundamental elements that permeate the fabric of nature, and their significance in relation to neural activity and consciousness remains a compelling yet unexplored area of research. The Temporospatial Theory of Consciousness (TTC) provides a framework that links time, space, neural activity, and consciousness, shedding light on the intricate relationships among these dimensions. In this review, I revisit the fundamental concepts and mechanisms proposed by the TTC, with a particular focus on the central concept of temporospatial nestedness. I propose an extension of temporospatial nestedness by incorporating the nested relationship between the temporal circuit and functional geometry of the brain. To further unravel the complexities of temporospatial nestedness, future research directions should emphasize the characterization of functional geometry and the temporal circuit across multiple spatial and temporal scales. Investigating the links between these scales will yield a more comprehensive understanding of how spatial organization and temporal dynamics contribute to conscious states. This integrative approach holds the potential to uncover novel insights into the neural basis of consciousness and reshape our understanding of the world-brain dynamic.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Lurie DJ, Pappas I, D'Esposito M. Cortical timescales and the modular organization of structural and functional brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548751. [PMID: 37502887 PMCID: PMC10370009 DOI: 10.1101/2023.07.12.548751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.
Collapse
Affiliation(s)
- Daniel J Lurie
- Department of Psychology, University of California, Berkeley
| | - Ioannis Pappas
- Department of Neurology, Keck School of Medicine, University of Southern California
| | - Mark D'Esposito
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley
| |
Collapse
|
22
|
Cusinato R, Alnes SL, van Maren E, Boccalaro I, Ledergerber D, Adamantidis A, Imbach LL, Schindler K, Baud MO, Tzovara A. Intrinsic Neural Timescales in the Temporal Lobe Support an Auditory Processing Hierarchy. J Neurosci 2023; 43:3696-3707. [PMID: 37045604 PMCID: PMC10198454 DOI: 10.1523/jneurosci.1941-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sigurd L Alnes
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ellen van Maren
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ida Boccalaro
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | | | - Antoine Adamantidis
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Lukas L Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich 8008, Switzerland
| | - Kaspar Schindler
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Maxime O Baud
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley 94720, California
| |
Collapse
|
23
|
Manea AMG, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534470. [PMID: 37034608 PMCID: PMC10081241 DOI: 10.1101/2023.03.27.534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Previous work has demonstrated remarkably reproducible and consistent hierarchies of neural timescales across cortical areas at rest. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this previously found lack of variability in the hierarchical organization of neural timescales could be a reflection of the structure of the laboratory contexts in which they were measured. Indeed, computational work demonstrates the existence of multiple temporal hierarchies within the same anatomical network when the input structure is altered. We posit that unconstrained behavioral environments where relatively little temporal demands are imposed from the experimenter are an ideal test bed to address the question of whether the hierarchical organization and the magnitude of neural timescales reflect ongoing behavioral demands. To tackle this question, we measured timescales of local field potential activity while rhesus macaques were foraging freely in a large open space. We find a hierarchy of neural timescales that is unique to this foraging environment. Importantly, although the magnitude of neural timescales generally expanded with task engagement, the brain areas' relative position in the hierarchy was stable across the recording sessions. Notably, the magnitude of neural timescales monotonically expanded with task engagement across a relatively long temporal scale spanning the duration of the recording session. Over shorter temporal scales, the magnitude of neural timescales changed dynamically around foraging events. Moreover, the change in the magnitude of neural timescales contained functionally relevant information, differentiating between seemingly similar events in terms of motor demands and associated reward. That is, the patterns of change were associated with the cognitive and behavioral meaning of these events. Finally, we demonstrated that brain areas were differentially affected by these behavioral demands - i.e., the expansion of neural timescales was not the same across all areas. Together, these results demonstrate that the observed hierarchy of neural timescales is context-dependent and that changes in the magnitude of neural timescales are closely related to overall task engagement and behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis MN
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
| |
Collapse
|
24
|
Cushnie AK, Bullock DN, Manea AM, Tang W, Zimmermann J, Heilbronner SR. The use of chemogenetic actuator ligands in nonhuman primate DREADDs-fMRI. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100072. [PMID: 36691404 PMCID: PMC9860110 DOI: 10.1016/j.crneur.2022.100072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered receptors that allow for genetically targeted, reversible manipulation of cellular activity via systemic drug administration. DREADD induced manipulations are initiated via the binding of an actuator ligand. Therefore, the use of DREADDs is contingent on the availability of actuator ligands. Actuator ligands low-dose clozapine (CLZ) and deschloroclozapine (DCZ) are highly selective for DREADDs, and, upon binding, induce physiological and behavioral changes in rodents and nonhuman primates (NHPs). Despite this reported specificity, both CLZ and DCZ have partial affinity for a variety of endogenous receptors and can induce dose-specific changes even in naïve animals. As such, this study aimed to examine the effects of CLZ and DCZ on resting-state functional connectivity (rs-FC) and intrinsic neural timescales (INTs) in naïve NHPs. In doing so, we evaluated whether CLZ and DCZ - in the absence of DREADDs - are inert by examining these ligands' effects on the intrinsic functional properties of the brain. Low-dose DCZ did not induce consistent changes in rs-FC or INTs prior to the expression of DREADDs; however, a high dose resulted in subject-specific changes in rs-FC and INTs. In contrast, CLZ administration induced consistent changes in rs-FC and INTs prior to DREADD expression in our subjects. Our results caution against the use of CLZ by explicitly demonstrating the impact of off-target effects that can confound experimental results. Altogether, these data endorse the use of low dose DCZ for future DREADD-based experiments.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel N. Bullock
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ana M.G. Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Tang
- Department of Computer Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
25
|
Miller JA, Tambini A, Kiyonaga A, D'Esposito M. Long-term learning transforms prefrontal cortex representations during working memory. Neuron 2022; 110:3805-3819.e6. [PMID: 36240768 PMCID: PMC9768795 DOI: 10.1016/j.neuron.2022.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The role of the lateral prefrontal cortex (lPFC) in working memory (WM) is debated. Non-human primate (NHP) electrophysiology shows that the lPFC stores WM representations, but human neuroimaging suggests that the lPFC controls WM content in sensory cortices. These accounts are confounded by differences in task training and stimulus exposure. We tested whether long-term training alters lPFC function by densely sampling WM activity using functional MRI. Over 3 months, participants trained on both a WM and serial reaction time (SRT) task, wherein fractal stimuli were embedded within sequences. WM performance improved for trained (but not novel) fractals and, neurally, delay activity increased in distributed lPFC voxels across learning. Item-level WM representations became detectable within lPFC patterns, and lPFC activity reflected sequence relationships from the SRT task. These findings demonstrate that human lPFC develops stimulus-selective responses with learning, and WM representations are shaped by long-term experience, which could reconcile competing accounts of WM functioning.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|