1
|
Lin JP, Brake A, Donadieu M, Lee A, Smith G, Hu K, Nair G, Kawaguchi R, Sati P, Geschwind DH, Jacobson S, Schafer DP, Reich DS. 4D marmoset brain map reveals MRI and molecular signatures for onset of multiple sclerosis-like lesions. Science 2025; 387:eadp6325. [PMID: 40014701 DOI: 10.1126/science.adp6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/11/2024] [Accepted: 11/13/2024] [Indexed: 03/01/2025]
Abstract
Inferring cellular and molecular dynamics of multiple sclerosis (MS) lesions from postmortem tissue collected decades after onset is challenging. Using magnetic resonance image (MRI)-guided spatiotemporal RNA profiling in marmoset experimental autoimmune encephalitis (EAE), we mapped lesion dynamics and modeled molecular perturbations relevant to MS. Five distinct lesion microenvironments emerged, involving neuroglial responses, tissue destruction and repair, and brain border regulation. Before demyelination, MRI identified a high ratio of proton density-weighted signal to T1 relaxation time, capturing early hypercellularity, and elevated astrocytic and ependymal senescence signals marked perivascular and periventricular areas that later became demyelination hotspots. As lesions expanded, concentric glial barriers formed, initially dominated by proliferating and diversifying microglia and oligodendrocyte precursors, later replaced by monocytes and lymphocytes. We highlight SERPINE1+ astrocytes as a signaling hub underlying lesion onset in both marmoset EAE and MS.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Alexis Brake
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Amanda Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Ginger Smith
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Department of Psychiatry and Semel Institute, UCLA, Los Angeles, CA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Department of Psychiatry and Semel Institute, UCLA, Los Angeles, CA, USA
| | - Steven Jacobson
- Viral Immunology Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Vale-Silva R, de Paes de Faria J, Seixas AI, Brakebusch C, Franklin RJM, Relvas JB. RhoA regulates oligodendrocyte differentiation and myelination by orchestrating cortical and membrane tension. Glia 2025; 73:381-398. [PMID: 39495111 DOI: 10.1002/glia.24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Timely differentiation and myelin formation by oligodendrocytes are essential for the physiological functioning of the central nervous system (CNS). While the Rho GTPase RhoA has been hinted as a negative regulator of myelin sheath formation, the precise in vivo mechanisms have remained elusive. Here we show that RhoA controls the timing and progression of myelination by oligodendrocytes through a fine-tuned balance between cortical tension, membrane tension and cell shape. Using a conditional mouse model, we observe that Rhoa ablation results in the acceleration of myelination driven by hastened differentiation and facilitated through membrane expansion induced by changes in MLCII activity and in F-actin redistribution and turnover within the cell. These findings reveal RhoA as a central molecular integrator of alterations in actin cytoskeleton, actomyosin contractility and membrane tension underlying precise morphogenesis of oligodendrocytes and normal myelination of the CNS.
Collapse
Affiliation(s)
- Raquel Vale-Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Joana de Paes de Faria
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Isabel Seixas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), Københavns Biocenter, Copenhagen, Denmark
| | | | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Stables J, Pal R, Bradford BM, Carter-Cusack D, Taylor I, Pridans C, Khan N, Woodruff TM, Irvine KM, Summers KM, Mabbott NA, Hume DA. The effect of a dominant kinase-dead Csf1r mutation associated with adult-onset leukoencephalopathy on brain development and neuropathology. Neurobiol Dis 2024; 203:106743. [PMID: 39581554 DOI: 10.1016/j.nbd.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Amino acid substitutions in the kinase domain of the human CSF1R protein are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (Glu631Lys; E631K) in the mouse Csf1r locus. Previous analysis demonstrated that heterozygous mutation (Csf1rE631K/+) had a dominant inhibitory effect on CSF1R signaling in vitro and in vivo but did not recapitulate human disease pathology. We speculated that leukoencephalopathy in humans requires an environmental trigger and/or epistatic interaction with common neurodegenerative disease-associated alleles. Here we examine the Csf1rE631K/+ mutation impact on microglial phenotype, postnatal brain development, age-related changes in gene expression and on prion disease and experimental autoimmune encephalitis (EAE), two pathologies in which microgliosis is a prominent feature. The Csf1rE631K/+ mutation reduced microglial abundance and the expression of microglial-associated transcripts relative to wild-type controls at 12 and 43 weeks of age. There was no selective effect on homeostatic markers e.g. P2ry12, or age-related changes in gene expression in striatum and hippocampus. An epistatic interaction was demonstrated between Csf1rE631K/+ and Cx3cr1EGFP/+ genotypes leading to dysregulated microglial and neuronal gene expression in hippocampus and striatum. Heterozygous Csf1rE631K mutation reduced the microgliosis associated with both diseases. There was no significant impact on disease severity or progression in prion disease. In EAE, inflammation-associated transcripts in the hippocampus and striatum were suppressed in parallel with microglia-specific transcripts. The results support a dominant inhibitory model of CSF1R-related leukoencephalopathy and likely contributions of an environmental trigger and/or genetic background to neuropathology.
Collapse
Affiliation(s)
- Jennifer Stables
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Reiss Pal
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Isis Taylor
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Nemat Khan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Neil A Mabbott
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
4
|
Wu J, Kislinger G, Duschek J, Durmaz AD, Wefers B, Feng R, Nalbach K, Wurst W, Behrends C, Schifferer M, Simons M. Nonvesicular lipid transfer drives myelin growth in the central nervous system. Nat Commun 2024; 15:9756. [PMID: 39528474 PMCID: PMC11554831 DOI: 10.1038/s41467-024-53511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Oligodendrocytes extend numerous cellular processes that wrap multiple times around axons to generate lipid-rich myelin sheaths. Myelin biogenesis requires an enormously productive biosynthetic machinery for generating and delivering these large amounts of newly synthesized lipids. Yet, a complete understanding of this process remains elusive. Utilizing volume electron microscopy, we demonstrate that the oligodendroglial endoplasmic reticulum (ER) is enriched in developing myelin, extending into and making contact with the innermost myelin layer where growth occurs. We explore the possibility of transfer of lipids from the ER to myelin, and find that the glycolipid transfer protein (GLTP), implicated in nonvesicular lipid transport, is highly enriched in the growing myelin sheath. Mice with a specific knockout of Gltp in oligodendrocytes exhibit ER pathology, hypomyelination and a decrease in myelin glycolipid content. In summary, our results demonstrate a role for nonvesicular lipid transport in CNS myelin growth, revealing a cellular pathway in developmental myelination.
Collapse
Affiliation(s)
- Jianping Wu
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jerome Duschek
- Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ayşe Damla Durmaz
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ruoqing Feng
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Karsten Nalbach
- Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christian Behrends
- Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
Zhu J, Gan Y, Yang C, Gu W, Wang Y, Zhang J, Liu Z. In utero aspirin exposure and child neurocognitive development: A propensity score-matched analysis. BJOG 2024; 131:1630-1639. [PMID: 38808468 DOI: 10.1111/1471-0528.17871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE To evaluate the association between a short-period, high-dose in utero aspirin exposure and child neurocognitive development. DESIGN A propensity score-matched analysis of a multicentre prospective cohort study. SETTING The US Collaborative Perinatal Project (1959-1976). POPULATION A total of 50 565 singleton live births with maternal information. METHODS We performed a propensity score matching to balance maternal characteristics between women with and without aspirin exposure. Inverse probability-weighted marginal structural models were used to estimate associations between aspirin exposure and child neurocognitive assessments. MAIN OUTCOME MEASURES Child neurocognitive development was assessed using the Bayley Scales at 8 months, the Stanford Binet Intelligence Scale at 4 years, and the Wechsler Intelligence Scale and Wide-Range Achievement Test (WRAT) at 7 years. RESULTS Children exposed to aspirin in utero were associated with an 8%-16% reduced risk of having suspect/abnormal or below-average scores in most neurocognitive assessments. A trend of lower risks of having suspect/abnormal or below-average scores was further observed in children with in utero aspirin exposure for more than 7 days, particularly on Bayley Mental (relative risk [RR] 0.82, 95% CI 0.74-0.92), WRAT Reading (RR 0.88, 95% CI 0.78-0.98) and WRAT Arithmetic tests (RR 0.76, 95% CI 0.66-0.86). This association was mainly observed in the second trimester of pregnancy. CONCLUSIONS In utero aspirin exposure was associated with improved child neurocognitive development in a prospective cohort study. Further studies are warranted to evaluate the impact of long-period and low-dose in utero aspirin exposure on child short- and long-term neurodevelopment.
Collapse
Affiliation(s)
- Jing Zhu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Cuiping Yang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wei Gu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yanlin Wang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jun Zhang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Liu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
6
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
7
|
Li C, Luo Y, Li S. The roles of neural stem cells in myelin regeneration and repair therapy after spinal cord injury. Stem Cell Res Ther 2024; 15:204. [PMID: 38978125 PMCID: PMC11232222 DOI: 10.1186/s13287-024-03825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury that results in a wide range of physical deficits, including permanent or progressive disabilities of sensory, motor and autonomic functions. To date, limitations in current clinical treatment options can leave SCI patients with lifelong disabilities. There is an urgent need to develop new therapies for reconstructing the damaged spinal cord neuron-glia network and restoring connectivity with the supraspinal pathways. Neural stem cells (NSCs) possess the ability to self-renew and differentiate into neurons and neuroglia, including oligodendrocytes, which are cells responsible for the formation and maintenance of the myelin sheath and the regeneration of demyelinated axons. For these properties, NSCs are considered to be a promising cell source for rebuilding damaged neural circuits and promoting myelin regeneration. Over the past decade, transplantation of NSCs has been extensively tested in a variety of preclinical models of SCI. This review aims to highlight the pathophysiology of SCI and promote the understanding of the role of NSCs in SCI repair therapy and the current advances in pathological mechanism, pre-clinical studies, as well as clinical trials of SCI via NSC transplantation therapeutic strategy. Understanding and mastering these frontier updates will pave the way for establishing novel therapeutic strategies to improve the quality of recovery from SCI.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuping Luo
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
8
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
9
|
Wang X, Tazearslan C, Kim S, Guo Q, Contreras D, Yang J, Hudgins AD, Suh Y. In vitro heterochronic parabiosis identifies pigment epithelium-derived factor as a systemic mediator of rejuvenation by young blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592258. [PMID: 38746475 PMCID: PMC11092633 DOI: 10.1101/2024.05.02.592258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.
Collapse
Affiliation(s)
- Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- These authors contributed equally
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- These authors contributed equally
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Adam D. Hudgins
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| |
Collapse
|
10
|
González‐Llera L, Sobrido‐Cameán D, Quelle‐Regaldie A, Sánchez L, Barreiro‐Iglesias A. An in vivo drug screen in zebrafish reveals that cyclooxygenase 2-derived prostaglandin D 2 promotes spinal cord neurogenesis. Cell Prolif 2024; 57:e13594. [PMID: 38155412 PMCID: PMC11056714 DOI: 10.1111/cpr.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord. These results fitted very nicely with available single-cell RNAseq data revealing that floor plate cells show differential expression of 1 of the 2 COX2 zebrafish genes (ptgs2a). Indeed, several selective COX2 inhibitors and two different morpholinos against ptgs2a reduced the number of serotonergic neurons in the ventral spinal cord and led to locomotor deficits. Single-cell RNAseq data and different pharmacological manipulations further revealed that COX2-floor plate-derived prostaglandin D2 promotes neurogenesis in the developing spinal cord by promoting mitotic activity in progenitor cells. Rescue experiments using a phosphodiesterase-4 inhibitor suggest that intracellular changes in cAMP levels underlie the effects of COX inhibitors on neurogenesis and locomotion. Our study provides compelling in vivo evidence showing that prostaglandin signalling promotes neurogenesis in the ventral spinal cord.
Collapse
Affiliation(s)
- Laura González‐Llera
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Daniel Sobrido‐Cameán
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
- Present address:
Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Ana Quelle‐Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary ScienceUniversidade de Santiago de CompostelaLugoSpain
- Present address:
Translational Research for Neurological DiseasesInstitut Imagine, INSERM UMR 1163, Université Paris CitéParisFrance
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary ScienceUniversidade de Santiago de CompostelaLugoSpain
- Preclinical Animal Models GroupHealth Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
| | - Antón Barreiro‐Iglesias
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
11
|
Hupp MT, Santos EN, Heo D, Call CL, Guttenplan KA. Vesicle Fusion in Oligodendrocyte Maturation and Myelination. J Neurosci 2024; 44:e2203232024. [PMID: 38631918 PMCID: PMC11026360 DOI: 10.1523/jneurosci.2203-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Madison T Hupp
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Erin N Santos
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Dongeun Heo
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Cody L Call
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kevin A Guttenplan
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
12
|
Nishida N, Nagata N, Shimoji K, Jingami N, Uemura K, Ozaki A, Takahashi M, Urade Y, Matsumoto S, Iwasaki K, Okumura R, Ishikawa M, Toda H. Lipocalin-type prostaglandin D synthase: a glymphopathy marker in idiopathic hydrocephalus. Front Aging Neurosci 2024; 16:1364325. [PMID: 38638193 PMCID: PMC11024442 DOI: 10.3389/fnagi.2024.1364325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Idiopathic normal pressure hydrocephalus in elderly people is considered a form of glymphopathy caused by malfunction of the waste clearance pathway, called the glymphatic system. Tau is a representative waste material similar to amyloid-β. During neurodegeneration, lipocalin-type prostaglandin D synthase (L-PGDS), a major cerebrospinal fluid (CSF) protein, is reported to act as a chaperone that prevents the neurotoxic aggregation of amyloid-β. L-PGDS is also a CSF biomarker in idiopathic normal pressure hydrocephalus and significantly correlates with tau concentration, age, and age-related brain white matter changes detected by magnetic resonance imaging. To investigate this glymphopathy, we aimed to analyze white matter changes and contributing factors in vivo and their interactions ex vivo. Cerebrospinal tap tests were performed in 60 patients referred for symptomatic ventriculomegaly. Patients were evaluated using an idiopathic normal pressure hydrocephalus grading scale, mini-mental state examination, frontal assessment battery, and timed up-and-go test. The typical morphological features of high convexity tightness and ventriculomegaly were measured using the callosal angle and Evans index, and parenchymal white matter properties were evaluated with diffusion tensor imaging followed by tract-based spatial statistics. Levels of CSF biomarkers, including tau, amyloid-β, and L-PGDS, were determined by ELISA, and their interaction, and localization were determined using immunoprecipitation and immunohistochemical analyses. Tract-based spatial statistics for fractional anisotropy revealed clusters that positively correlated with mini-mental state examination, frontal assessment battery, and callosal angle, and clusters that negatively correlated with age, disease duration, idiopathic normal pressure hydrocephalus grading scale, Evans index, and L-PGDS. Other parameters also indicated clusters that correlated with symptoms, microstructural white matter changes, and L-PGDS. Tau co-precipitated with L-PGDS, and colocalization was confirmed in postmortem specimens of neurodegenerative disease obtained from the human Brain Bank. Our study supports the diagnostic value of L-PGDS as a surrogate marker for white matter integrity in idiopathic normal pressure hydrocephalus. These results increase our understanding of the molecular players in the glymphatic system. Moreover, this study indicates the potential utility of enhancing endogenous protective factors to maintain brain homeostasis.
Collapse
Affiliation(s)
- Namiko Nishida
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Nanae Nagata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoto Jingami
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Ozaki
- Department of Neurology, Osaka Red Cross Hospital, Osaka, Japan
| | - Makio Takahashi
- Department of Neurodegenerative Disorders, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of Tokyo, Fukushima, Japan
| | - Sadayuki Matsumoto
- Department of Neurology, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Koichi Iwasaki
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Ryosuke Okumura
- Department of Diagnostic Radiology, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Masatsune Ishikawa
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Hiroki Toda
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| |
Collapse
|
13
|
Castillo-Armengol J, Marzetta F, Rodriguez Sanchez-Archidona A, Fledelius C, Evans M, McNeilly A, McCrimmon RJ, Ibberson M, Thorens B. Disrupted hypothalamic transcriptomics and proteomics in a mouse model of type 2 diabetes exposed to recurrent hypoglycaemia. Diabetologia 2024; 67:371-391. [PMID: 38017352 PMCID: PMC10789691 DOI: 10.1007/s00125-023-06043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/07/2023] [Indexed: 11/30/2023]
Abstract
AIMS/HYPOTHESIS Repeated exposures to insulin-induced hypoglycaemia in people with diabetes progressively impairs the counterregulatory response (CRR) that restores normoglycaemia. This defect is characterised by reduced secretion of glucagon and other counterregulatory hormones. Evidence indicates that glucose-responsive neurons located in the hypothalamus orchestrate the CRR. Here, we aimed to identify the changes in hypothalamic gene and protein expression that underlie impaired CRR in a mouse model of defective CRR. METHODS High-fat-diet fed and low-dose streptozocin-treated C57BL/6N mice were exposed to one (acute hypoglycaemia [AH]) or multiple (recurrent hypoglycaemia [RH]) insulin-induced hypoglycaemic episodes and plasma glucagon levels were measured. Single-nuclei RNA-seq (snRNA-seq) data were obtained from the hypothalamus and cortex of mice exposed to AH and RH. Proteomic data were obtained from hypothalamic synaptosomal fractions. RESULTS The final insulin injection resulted in similar plasma glucose levels in the RH group and AH groups, but glucagon secretion was significantly lower in the RH group (AH: 94.5±9.2 ng/l [n=33]; RH: 59.0±4.8 ng/l [n=37]; p<0.001). Analysis of snRNA-seq data revealed similar proportions of hypothalamic cell subpopulations in the AH- and RH-exposed mice. Changes in transcriptional profiles were found in all cell types analysed. In neurons from RH-exposed mice, we observed a significant decrease in expression of Avp, Pmch and Pcsk1n, and the most overexpressed gene was Kcnq1ot1, as compared with AH-exposed mice. Gene ontology analysis of differentially expressed genes (DEGs) indicated a coordinated decrease in many oxidative phosphorylation genes and reduced expression of vacuolar H+- and Na+/K+-ATPases; these observations were in large part confirmed in the proteomic analysis of synaptosomal fractions. Compared with AH-exposed mice, oligodendrocytes from RH-exposed mice had major changes in gene expression that suggested reduced myelin formation. In astrocytes from RH-exposed mice, DEGs indicated reduced capacity for neurotransmitters scavenging in tripartite synapses as compared with astrocytes from AH-exposed mice. In addition, in neurons and astrocytes, multiple changes in gene expression suggested increased amyloid beta (Aβ) production and stability. The snRNA-seq analysis of the cortex showed that the adaptation to RH involved different biological processes from those seen in the hypothalamus. CONCLUSIONS/INTERPRETATION The present study provides a model of defective counterregulation in a mouse model of type 2 diabetes. It shows that repeated hypoglycaemic episodes induce multiple defects affecting all hypothalamic cell types and their interactions, indicative of impaired neuronal network signalling and dysegulated hypoglycaemia sensing, and displaying features of neurodegenerative diseases. It also shows that repeated hypoglycaemia leads to specific molecular adaptation in the hypothalamus when compared with the cortex. DATA AVAILABILITY The transcriptomic dataset is available via the GEO ( http://www.ncbi.nlm.nih.gov/geo/ ), using the accession no. GSE226277. The proteomic dataset is available via the ProteomeXchange data repository ( http://www.proteomexchange.org ), using the accession no. PXD040183.
Collapse
Affiliation(s)
- Judit Castillo-Armengol
- Novo Nordisk A/S, Måløv, Denmark
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Mark Evans
- IMS Metabolic Research Laboratories, Addenbrookes Biomedical Campus, Cambridge, UK
| | | | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland.
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
14
|
Iyer M, Kantarci H, Cooper MH, Ambiel N, Novak SW, Andrade LR, Lam M, Jones G, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nat Commun 2024; 15:265. [PMID: 38177161 PMCID: PMC10767123 DOI: 10.1038/s41467-023-44238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Jones
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-, Champaign, IL, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
16
|
Xiao Y, Czopka T. Myelination-independent functions of oligodendrocyte precursor cells in health and disease. Nat Neurosci 2023; 26:1663-1669. [PMID: 37653126 DOI: 10.1038/s41593-023-01423-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a population of tissue-resident glial cells found throughout the CNS, constituting approximately 5% of all CNS cells and persisting from development to adulthood and aging. The canonical role of OPCs is to give rise to myelinating oligodendrocytes. However, additional functions of OPCs beyond this traditional role as precursors have been suggested for a long time. In this Perspective, we provide an overview of the multiple myelination-independent functions that have been described for OPCs in the context of neuron development, angiogenesis, inflammatory response, axon regeneration and their recently discovered roles in neural circuit remodeling.
Collapse
Affiliation(s)
- Yan Xiao
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
17
|
Fekete CD, Horning RZ, Doron MS, Nishiyama A. Cleavage of VAMP2/3 Affects Oligodendrocyte Lineage Development in the Developing Mouse Spinal Cord. J Neurosci 2023; 43:6592-6608. [PMID: 37620160 PMCID: PMC10538588 DOI: 10.1523/jneurosci.2206-21.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/20/2022] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
In the developing and adult CNS, new oligodendrocytes (OLs) are generated from a population of cells known as oligodendrocyte precursor cells (OPCs). As they begin to differentiate, OPCs undergo a series of highly regulated changes to morphology, gene expression, and membrane organization. This stage represents a critical bottleneck in oligodendrogliogenesis, and the regulatory program that guides it is still not fully understood. Here, we show that in vivo toxin-mediated cleavage of the vesicle associated SNARE proteins VAMP2/3 in the OL lineage of both male and female mice impairs the ability of early OLs to mature into functional, myelinating OLs. In the developing mouse spinal cord, many VAMP2/3-cleaved OLs appeared to stall in the premyelinating, early OL stage, resulting in an overall loss of both myelin density and OL number. The Src kinase Fyn, a key regulator of oligodendrogliogenesis and myelination, is highly expressed among premyelinating OLs, but its expression decreases as OLs mature. We found that OLs with cleaved VAMP2/3 in the spinal cord white matter showed significantly higher expression of Fyn compared with neighboring control cells, potentially because of an extended premyelinating stage. Overall, our results show that functional VAMP2/3 in OL lineage cells is essential for proper myelin formation and plays a major role in controlling the maturation and terminal differentiation of premyelinating OLs.SIGNIFICANCE STATEMENT The production of mature oligodendrocytes (OLs) is essential for CNS myelination during development, myelin remodeling in adulthood, and remyelination following injury or in demyelinating disease. Before myelin sheath formation, newly formed OLs undergo a series of highly regulated changes during a stage of their development known as the premyelinating, or early OL stage. This stage acts as a critical checkpoint in OL development, and much is still unknown about the dynamic regulatory processes involved. In this study, we show that VAMP2/3, SNARE proteins involved in vesicular trafficking and secretion play an essential role in regulating premyelinating OL development and are required for healthy myelination in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Robert Z Horning
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Matan S Doron
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
18
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
19
|
Iyer M, Kantarci H, Ambiel N, Novak SW, Andrade LR, Lam M, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling sculpts myelin sheath morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536299. [PMID: 37090556 PMCID: PMC10120717 DOI: 10.1101/2023.04.11.536299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length and thickness are regulated by neuronal activity and can precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation and remodeling is unknown. Here, we used genetic tools to attenuate oligodendrocyte calcium signaling during active myelination in the developing mouse CNS. Surprisingly, we found that genetic calcium attenuation did not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation caused striking myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduced actin filaments in oligodendrocytes, and an intact actin cytoskeleton was necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a novel cellular mechanism required for accurate CNS myelin formation and provides mechanistic insight into how oligodendrocytes may respond to neuronal activity to sculpt myelin sheaths throughout the nervous system.
Collapse
|
20
|
Pan L, Trimarco A, Zhang AJ, Fujimori K, Urade Y, Sun LO, Taveggia C, Zhang Y. Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination. eLife 2023; 12:e77441. [PMID: 36779701 PMCID: PMC9946447 DOI: 10.7554/elife.77441] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.
Collapse
Affiliation(s)
- Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Amelia Trimarco
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Alice J Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of TokyoFukushimaJapan
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Carla Taveggia
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|