1
|
Wu L, He J, Shen N, Chen S. Molecular and cellular mechanisms underlying peripheral nerve injury-induced cellular ecological shifts: Implications for neuroregeneration. IBRO Neurosci Rep 2025; 18:120-129. [PMID: 39877591 PMCID: PMC11773043 DOI: 10.1016/j.ibneur.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life. Accordingly, the continued pursuit of more efficacious treatments is of paramount importance. In this paper, a review of the relevant literature from recent years was conducted to identify the key cell types involved after peripheral nerve injury. These included Schwann cells, macrophages, neutrophils, endothelial cells, and fibroblasts. The review was conducted in depth. This paper analyses the phenotypic changes of these cells after injury, the relevant factors affecting these changes, and how they coordinate with neurons and other cell types. In addition, it explores the potential mechanisms that mediate the behaviour of these cells. Understanding the interactions between these cells and their mutual regulation with neurons is of great significance for the discovery of new neuroregenerative treatments and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Limao Wu
- School of Clinical Medicine, Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Jinglan He
- Affiliated Hospital of Hebei University of Engineering, No. 80, Jianshe Street, Fuxing District, Handan City, Hebei Province 056003, China
| | - Na Shen
- Department of Science and Education, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Song Chen
- Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China
| |
Collapse
|
2
|
Trumbull K, Fetten S, Arnold N, Marahrens V, Montgomery D, Myers O, Twiss JL, Larsen J. Targeted Polymersomes Enable Enhanced Delivery to Peripheral Nerves Post-Injury. Bioconjug Chem 2025; 36:823-837. [PMID: 40068147 DOI: 10.1021/acs.bioconjchem.5c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The gold standard therapy for peripheral nerve injuries involves surgical repair, which is invasive and leads to major variations in therapeutic outcomes. Because of this, smaller injuries often go untreated. However, alternative, noninvasive routes of administration are currently unviable due to the presence of the blood-nerve barrier (BNB), which prevents passage of small molecules from the blood into the endoneurium and the nerve. This paper demonstrates that ligands on the surface of nanoparticles, called polymersomes, can enable delivery to the nerve through noninvasive intramuscular injections. Polymersomes made from polyethylene glycol (PEG)-b-polylactic acid (PLA) were conjugated with either apolipoprotein E (ApoE) or rabies virus glycoprotein-based peptide RVG29 (RVG) and loaded with near-infrared dye, AlexaFluor647. ApoE was used to target receptors upregulated in post-injury inflammation, while RVG targets neural-specific receptors. Untagged, ApoE-tagged, and RVG-tagged polymersomes were injected at 100 mM either intranerve (IN) or intramuscular (IM) into Sprague-Dawley rats post sciatic nerve injury. The addition of the ApoE and RVG tags enabled increased AlexaFluor647 fluorescence in the injury site at 1 h post IN injection compared to the untagged polymersome control. However, only the RVG-tagged polymersomes increased the AlexaFluor647 fluorescence after IM injection. Ex vivo analysis of sciatic nerves demonstrated that ApoE-tagged polymersomes enabled the greatest retention of AlexaFluor647 regardless of the injection route. This led us to conclude that using ApoE to target inflammation enabled the greatest retention of polymersome-delivered payloads while using RVG to target neural cells more specifically enabled the penetration of polymersome-delivered payloads. Observations were confirmed by calculating the area under the curve pharmacokinetic parameters and the use of a two-compartment pharmacokinetic model.
Collapse
Affiliation(s)
- Kayleigh Trumbull
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sophia Fetten
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Noah Arnold
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Vanessa Marahrens
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Dru Montgomery
- Department of Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Olivia Myers
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Jiang M, Ding Z, Huang Y, Jiang T, Xia Y, Gu D, Gu X, Bai H, Yao D. TGF-β1 Improves Nerve Regeneration and Functional Recovery After Sciatic Nerve Injury by Alleviating Inflammation. Biomedicines 2025; 13:872. [PMID: 40299436 PMCID: PMC12024759 DOI: 10.3390/biomedicines13040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Peripheral nerves have a certain regenerative ability, but their repair and regeneration after injury is a complex process, usually involving a large number of genes and proteins. In a previous study, we analyzed the gene expression profile in rats after sciatic nerve injury and found significant changes in transforming growth factor-beta 1 (TGF-β1) expression, suggesting that TGF-β1 may be involved in the process of nerve regeneration after injury. Methods: In this study, we first detected the time-course expression and localization of TGF-β1 in dorsal root ganglion (DRG) tissues in a rat sciatic nerve transection model via RT-qPCR. Secondly, we investigated the bioactive roles of TGF-β1 in primary cultured DRG neuron cells through a CCK8 assay, TUNEL assay, and immunofluorescence staining. Thirdly, we explored the neuroprotective roles of TGF-β1 in an in vivo model of sciatic nerve regeneration through morphological observation, behavioral, and electrophysiological tests, and a molecular biological measure. Results: We found that TGF-β1 expression was increased after injury and mainly located in the cytoplasm and nuclei of neuron cells in the DRG. TGF-β1 may regulate the viability, apoptosis, and neurite outgrowth of primary DRG neuron cells. In our in vivo model of sciatic nerve regeneration, TGF-β1 improved nerve regeneration and neuronal function recovery after sciatic nerve injury, alleviated the inflammatory response, and relieved neuropathic pain via the TGF-β1/smad2 pathway. Conclusions: This study provides an experimental and theoretical basis for using TGF-β1 as a neuroprotective agent after peripheral nerve injury in clinical practice in the future.
Collapse
Affiliation(s)
- Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Yuxiao Huang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Taoran Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Yiming Xia
- Medical School of Nantong University, Nantong 226001, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Xi Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong 226019, China; (M.J.)
| |
Collapse
|
4
|
Hakim S, Jain A, Adamson SS, Petrova V, Indajang J, Kim HW, Kawaguchi R, Wang Q, Duran ES, Nelson D, Greene CA, Rasmussen J, Woolf CJ. Macrophages protect against sensory axon loss in peripheral neuropathy. Nature 2025; 640:212-220. [PMID: 39939762 PMCID: PMC11964918 DOI: 10.1038/s41586-024-08535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
Peripheral neuropathy is a common complication of type 2 diabetes, which is strongly associated with obesity1, causing sensory loss and, in some patients, neuropathic pain2,3. Although the onset and progression of diabetic peripheral neuropathy is linked with dyslipidaemia and hyperglycaemia4, the contribution of inflammation to peripheral neuropathy pathogenesis has not been investigated. Here we used a high-fat, high-fructose diet (HFHFD), which induces obesity and prediabetic metabolic changes, to study the onset of peripheral neuropathy. Mice fed the HFHFD developed persistent heat hypoalgesia after 3 months, but a reduction in epidermal skin nerve fibre density manifested only at 6 months. Using single-cell sequencing, we found that CCR2+ macrophages infiltrate the sciatic nerves of HFHFD-fed mice well before axonal degeneration is detectable. These infiltrating macrophages share gene expression similarities with nerve-crush-induced macrophages5 and express neurodegeneration-associated microglial marker genes6, although there is no axon loss or demyelination. Inhibiting the macrophage recruitment by genetically or pharmacologically blocking CCR2 signalling resulted in more severe heat hypoalgesia and accelerated skin denervation, as did deletion of Lgals3, a gene expressed in recruited macrophages. Recruitment of macrophages into the peripheral nerves of obese prediabetic mice is, therefore, neuroprotective, delaying terminal sensory axon degeneration by means of galectin 3. Potentiating and sustaining early neuroprotective immune responses in patients could slow or prevent peripheral neuropathy.
Collapse
Affiliation(s)
- Sara Hakim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Stuart S Adamson
- Department of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Veselina Petrova
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan Indajang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Hyoung Woo Kim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Elif S Duran
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Drew Nelson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Caitlin A Greene
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jenae Rasmussen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Herbosa CG, Perez R, Jaeger A, Dy CJ, Brogan DM. Inhibition of SARM1 Reduces Neuropathic Pain in a Spared Nerve Injury Rodent Model. Muscle Nerve 2025; 71:670-679. [PMID: 39936361 DOI: 10.1002/mus.28367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION/AIMS The function of the sterile alpha and toll/interleukin receptor motif-containing protein 1 (SARM1) in neuropathic pain development has not yet been established. This protein has a central role in regulating axon degeneration and its depletion delays this process. This study aims to demonstrate the effects of SARM1 deletion on the development of neuropathic pain. METHODS Thirty-two wild-type (WT) or SARM1 knockout (KO) rats underwent spared nerve injury (SNI) or sham surgery. Mechanical allodynia was assessed by electronic Von Frey and cold hyperalgesia by the acetone test. Nociception was evaluated at the baseline, Day-1, Day-2, Week-1, Week-2, Week-3, and Week-4 time points. Nerve sections were examined by immunohistochemistry (IHC). RESULTS WT Injury rats were more sensitive to pain than WT Sham at all postoperative time points, validating the pain model. Injured SARM1 KO rats only demonstrated a difference in mechanical or cold nociception from KO Sham at Week 3. Injured KO rats demonstrated a clear trend of decreased sensitivity compared to WT Injury nociception, reaching significance at Week 4 (p = 0.044). Injured KO rats showed attenuated sensitivity to cold allodynia relative to WT at Week 2 (p = 0.019). IHC revealed decreased macrophages in spared sural nerves of injured KO animals at 2 and 4 weeks, and the proximal portion of tibial/peroneal nerves at Week 2. DISCUSSION This study demonstrates that SARM1 KO rats are less sensitive to mechanical and cold nociception than WT rats in an SNI model with decreased inflammatory response. Given these results, inhibition of SARM1 should be further investigated in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Christopher G Herbosa
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ronald Perez
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexandra Jaeger
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher J Dy
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Xia Y, Cai M, Zhou Y, Yao Y, Jiang M, Gu D, Yao D. Immune Cell Biology in Peripheral Nervous System Injury. Neurorehabil Neural Repair 2025; 39:230-240. [PMID: 39744962 DOI: 10.1177/15459683241304325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells. OBJECTIVES This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS. RESULTS During peripheral nerve injury, macrophages infiltrate the site under the induction of various cytokines, primarily accumulating at the dorsal root ganglia (DRG) and the nerve distal to the injury site, with only a small number detected at the nerve proximal to the injury site. The phenotype of macrophages during injury remains controversial, but recent single-cell sequencing analyses may provide new insights. In peripheral nervous system injury, macrophages participate in Wallerian degeneration as well as in the reconstruction of nerve bridges and angiogenesis during axonal regeneration. Neutrophils appear early in the injury process and are primarily present at the injury site and the distal segment. After peripheral nervous system injury, immature neutrophils from the peripheral blood play a major role. Although lymphocytes constitute only a small fraction compared to macrophages and neutrophils after peripheral nervous system injury, they still play important roles, including Treg cells, B cells, and NK cells. A large number of immune cells accumulate at the injury site, contributing not only to Wallerian degeneration but also to axonal regeneration. CONCLUSION In conclusion, this paper summarizes current knowledge regarding the mechanisms of immune cell infiltration after PNS injury, providing new insights for future research on the role of immune cells in peripheral nerve injury.
Collapse
Affiliation(s)
- Yiming Xia
- Medical School of Nantong University, Nantong, Jiangsu, P.R. China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yiyue Zhou
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yi Yao
- School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Dengbing Yao
- Medical School of Nantong University, Nantong, Jiangsu, P.R. China
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
7
|
Sachar R, Lee TY, DiAntonio A, Dy CJ, Wever J, Milbrandt J, Brogan DM. SARM1 Inhibition Maintains Axonal Integrity After Rat Sciatic Nerve Transection and Repair. J Hand Surg Am 2025:S0363-5023(24)00617-8. [PMID: 39895440 DOI: 10.1016/j.jhsa.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
PURPOSE Sterile alpha and TlR motif containing-1 (SARM1) protein has been demonstrated to play a critical role in the initiation of Wallerian degeneration after nerve injury. The goal of this study was to assess whether blockade of SARM1 activity inhibits Wallerian degeneration following nerve transection, potentially promoting more rapid recovery of axonal function. METHODS An adeno-associated virus plasmid encoded with a dominant-negative SARM1 protein fused with green fluorescent protein to impair SARM1 function, was injected into 24 juvenile rats to create a SARM1 dominant-negative (SARM1-DN) phenotype. Twenty-four control rats were injected with a control plasmid expressing only green fluorescent protein. Three weeks after transfection, the rats underwent unilateral sciatic nerve transection and repair. Walking track analysis and nonsurvival surgeries were performed at 2 days, 2 weeks, or 6 weeks to assess muscle strength and compound nerve action potential. Histomorphologic and electrodiagnostic studies were evaluated with mixed-effect analysis. RESULTS Histomorphologic analysis showed maintenance of axons in the SARM1-DN animals at 2 weeks, with significantly improved compound nerve action potential amplitude. Muscle testing demonstrated greater gastrocnemius strength in SARM1 DN muscles at 2 days and 2 weeks compared to controls, although this was not maintained at 6 weeks. CONCLUSION Inhibition of SARM1 resulted in early increases in number and myelination of axons and action potential after sciatic nerve transection and repair in SARM1-DN rats. CLINICAL RELEVANCE SARM1 inhibition may offer the potential to delay Wallerian degeneration following nerve transection and enable earlier functional recovery of motor strength. .
Collapse
Affiliation(s)
- Ryan Sachar
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - Tony Y Lee
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - Aaron DiAntonio
- Department of Genetics, Washington University in St. Louis, St. Louis, MO
| | - Christopher J Dy
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - Jason Wever
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - Jeff Milbrandt
- Department of Genetics, Washington University in St. Louis, St. Louis, MO
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
8
|
Govindappa PK, Ellur G, Hegarty JP, Gupta A, Rahul VG, Elfar JC. Erythropoietin decreases apoptosis and promotes Schwann cell repair and phagocytosis following nerve crush injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634402. [PMID: 39896684 PMCID: PMC11785138 DOI: 10.1101/2025.01.22.634402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
After peripheral nerve trauma, insufficient clearance of phagocytic debris significantly hinders nerve regeneration. Without sufficient myelin debris clearance, Schwann cells (SCs) undergo increased apoptosis, impairing functional recovery. There is no treatment for peripheral nerve crush injury (PNCI). Erythropoietin (EPO) is an FDA-approved drug for anemia, which may help in the treatment of PNCI by transdifferentiating resident SCs into repair SCs (rSCs) and enhancing phagocytosis to facilitate the removal of cellular debris. For the first time, we conducted bulk RNA sequencing on mice with calibrated sciatic nerve crush injuries (SNCIs) on days 3, 5, and 7 post-SNCI to uncover transcriptomic changes with and without EPO treatment. We found EPO altered several biological pathways and associated genes, particularly those involved in cell apoptosis, differentiation, proliferation, phagocytosis, myelination, and neurogenesis. We validated the effects of EPO on SNCI on early (days 3/5) and intermediate (day 7) post-SNCI, and found EPO treatment reduced apoptosis (TUNEL), and enhanced SC repair (c-Jun and p75-NTR), proliferation (Ki67), and the phagocytosis of myelin debris by rSCs at crush injury sites. This improvement corresponded with an enhanced sciatic functional index (SFI). We also confirmed these findings in-vitro. EPO significantly enhanced SC repair during early de-differentiation, marked by high c-Jun and p75-NTR protein levels, and later re-differentiation with high EGR2 and low c-Jun and p75-NTR levels. These changes occurred under lipopolysaccharide (LPS) stress at 24 and 72h, respectively, compared to LPS treatment alone. Under LPS stress, EPO also significantly increased rSCs proliferation and phagocytosis of myelin or dead SCs. In conclusion, our findings support EPO may enhance the function of rSCs in debris clearance as a basis for its possible use in treating nerve trauma.
Collapse
Affiliation(s)
- Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - John P. Hegarty
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Akash Gupta
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - V. G. Rahul
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - John C. Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett‐Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 PMCID: PMC11660526 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Seongsik Won
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Armstrong
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron J. Cooper
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amulya Suresh
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachell Rivera
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - John M. Denu
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Judith A. Simcox
- Howard Hughes Medical Institute, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John Svaren
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
10
|
Balog BM, Niemi JP, Disabato T, Hashim F, Zigmond RE. CXCR2 mediated trafficking of neutrophils and neutrophil extracellular traps are required for myelin clearance after a peripheral nerve injury. Exp Neurol 2024; 382:114985. [PMID: 39368532 PMCID: PMC11526632 DOI: 10.1016/j.expneurol.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Neutrophils are a vital part of the innate immune system. Many of their functions eliminate bacteria & viruses, like neutrophil extracellular traps (NETs), which trap bacteria, enhancing macrophage phagocytosis. It was surprising when it was demonstrated that neutrophils are a part of Wallerian degeneration, a process that is essential for nerve regeneration after a nerve injury. It is not known what signals attract neutrophils into the nerve and how they aid Wallerian degeneration. Neutrophils accumulate in the distal nerve within one day after an injury and are found in the nerve from one to three days. We demonstrate that CXCR2 mediates the trafficking of neutrophils into the distal nerve, and without CXCR2 Wallerian degeneration, as indicated by luxol fast blue staining, was reduced seven days after a sciatic nerve crush or transection injury. NETs were detected in the distal nerve after a sciatic nerve transection. NET formation has been shown to require protein arginine deiminase 4 (PAD4), which citrullinates histone 3. Inhibiting PAD4 reduced NET formation significantly in the distal nerve at two days and myelin clearance at seven days indicating that NETs aid myelin clearance. These results demonstrate another function for NETs other than clearing pathogens. Neutrophils have been detected after injuries to the central nervous system and diseases in humans and animal models. Our results demonstrate neutrophils aid myelin clearance, suggesting a role for their presence in central nervous system injuries and diseases.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Thomas Disabato
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Faye Hashim
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
11
|
Li Y, Li Y, Wang G, Li Y, Zhuo N. Effect and mechanism of Tetramethylpyrazine in repair of sciatic nerve injury in rats. BMC Neurosci 2024; 25:71. [PMID: 39538151 PMCID: PMC11562523 DOI: 10.1186/s12868-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Observing the effects of Tetramethylpyrazine (TMP) on the expression of Collagen IV and Laminin in neurovascular basement membrane and the apoptosis of vascular endothelial cells, and to study the mechanism of TMP in the treatment of sciatic nerve injury. RESULTS Compared with the NS group, the TMP group had a significant increase in the sciatic nerve function index (P < 0.01).The miss times in TMP group was significantly lower than that in NS group (P < 0.01). The HE staining results of the TMP group showed irregular arrangement of some neuronal axons and Schwann cells, and more edema and rupture of cells. The proliferation of glial cells and inflammatory cells was significantly increased in TMP group. The results of immunohistochemistry showed that the expression of type IV collagen and laminin in the TMP group group was distributed around the blood vessels, vascular endothelial cells, basal membrane and glial cells after SNI. The expression of type IV collagen and laminin in TMP group increased significantly(P < 0.05). Immunofluorescence showed that compared with NS group, the apoptosis rate of TMP group was significantly decreased (P < 0.01). Flow cytometry results showed that compared with the NS group, the number of CECs in the TMP group was significantly decreased (P < 0.01). CONCLUSIONS TMP can effectively improve the sciatic nerve functional index (SFI) of Sprague Dawley (SD) rats, enhance the proliferation of sciatic nerve vascular endothelial cells, reduce apoptosis, promote the expression of Collagen IV and Laminin in sciatic nerve microvascular basal membrane components, thereby promoting angiogenesis and improving lower limb function in rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646099, China
| | - Yujie Li
- The Southwest Medical University, Luzhou, 646600, China
| | - Guan Wang
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646099, China
| | - Yao Li
- The Southwest Medical University, Luzhou, 646600, China
| | - Naiqiang Zhuo
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646099, China.
| |
Collapse
|
12
|
Zhao L, Jiang C, Yu B, Zhu J, Sun Y, Yi S. Single-cell profiling of cellular changes in the somatic peripheral nerves following nerve injury. Front Pharmacol 2024; 15:1448253. [PMID: 39415832 PMCID: PMC11479879 DOI: 10.3389/fphar.2024.1448253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Injury to the peripheral nervous system disconnects targets to the central nervous system, disrupts signal transmission, and results in functional disability. Although surgical and therapeutic treatments improve nerve regeneration, it is generally hard to achieve fully functional recovery after severe peripheral nerve injury. A better understanding of pathological changes after peripheral nerve injury helps the development of promising treatments for nerve regeneration. Single-cell analyses of the peripheral nervous system under physiological and injury conditions define the diversity of cells in peripheral nerves and reveal cell-specific injury responses. Herein, we review recent findings on the single-cell transcriptome status in the dorsal root ganglia and peripheral nerves following peripheral nerve injury, identify the cell heterogeneity of peripheral nerves, and delineate changes in injured peripheral nerves, especially molecular changes in neurons, glial cells, and immune cells. Cell-cell interactions in peripheral nerves are also characterized based on ligand-receptor pairs from coordinated gene expressions. The understanding of cellular changes following peripheral nerve injury at a single-cell resolution offers a comprehensive and insightful view for the peripheral nerve repair process, provides an important basis for the exploration of the key regulators of neuronal growth and microenvironment reconstruction, and benefits the development of novel therapeutic drugs for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedic, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
13
|
Constantin AM, Boşca AB, Crivii CB, Crintea A, Sufleţel RT, Alexandru BC, Şovrea AS. The intriguing perineurial cells - an updated overview of their origin, structure, functions and implication in pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:567-574. [PMID: 39957017 PMCID: PMC11924920 DOI: 10.47162/rjme.65.4.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The paper overviews the uniquely intricate and distinct perineurium that envelops nerve fibers in bundles. It consists of perineurial cells (PCs), connective tissue, and blood vessels. The perineurium creates a microenvironment for efficient signal transmission, protects and maintains neuronal structure and function, and facilitates neuronal repair. PCs are a unique type of myofibroblasts essential for maintaining nerve homeostasis. They act as an effective blood-nerve barrier (BNB), protecting against toxins, infections, and mechanical trauma. Despite their crucial function, the origin, ultrastructure, molecular structure, and functional roles of PCs remain a mystery, making them a fascinating area of study.
Collapse
Affiliation(s)
- Anne Marie Constantin
- Discipline of Histology, Department of Morpho-functional Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | |
Collapse
|
14
|
Yoo K, Jo YW, Yoo T, Hann SH, Park I, Kim YE, Kim YL, Rhee J, Song IW, Kim JH, Baek D, Kong YY. Muscle-resident mesenchymal progenitors sense and repair peripheral nerve injury via the GDNF-BDNF axis. eLife 2024; 13:RP97662. [PMID: 39324575 PMCID: PMC11426970 DOI: 10.7554/elife.97662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs' response to peripheral nerve injury.
Collapse
Affiliation(s)
- Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Takwon Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - In-Wook Song
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Liu G, Liang J, Li W, Jiang S, Song M, Xu S, Du Q, Wang L, Wang X, Liu X, Tang L, Yang Z, Zhou M, Meng H, Zhang L, Yang Y, Zhang B. The protective effect of erythropoietin and its novel derived peptides in peripheral nerve injury. Int Immunopharmacol 2024; 138:112452. [PMID: 38943972 DOI: 10.1016/j.intimp.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
16
|
Jiang H, Liu M, Deng Y, Zhang C, Dai L, Zhu B, Ou Y, Zhu Y, Hu C, Yang L, Li J, Bai Y, Yang D. Identification of prostate cancer bone metastasis related genes and potential therapy targets by bioinformatics and in vitro experiments. J Cell Mol Med 2024; 28:e18511. [PMID: 39098992 PMCID: PMC11298316 DOI: 10.1111/jcmm.18511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The aetiology of bone metastasis in prostate cancer (PCa) remains unclear. This study aims to identify hub genes involved in this process. We utilized machine learning, GO, KEGG, GSEA, Single-cell analysis, ROC methods to identify hub genes for bone metastasis in PCa using the TCGA and GEO databases. Potential drugs targeting these genes were identified. We validated these results using 16 specimens from patients with PCa and analysed the relationship between the hub genes and clinical features. The impact of APOC1 on PCa was assessed through in vitro experiments. Seven hub genes with AUC values of 0.727-0.926 were identified. APOC1, CFH, NUSAP1 and LGALS1 were highly expressed in bone metastasis tissues, while NR4A2, ADRB2 and ZNF331 exhibited an opposite trend. Immunohistochemistry further confirmed these results. The oxidative phosphorylation pathway was significantly enriched by the identified genes. Aflatoxin B1, benzo(a)pyrene, cyclosporine were identified as potential drugs. APOC1 expression was correlated with clinical features of PCa metastasis. Silencing APOC1 significantly inhibited PCa cell proliferation, clonality, and migration in vitro. This study identified 7 hub genes that potentially facilitate bone metastasis in PCa through mitochondrial metabolic reprogramming. APOC1 emerged as a promising therapeutic target and prognostic marker for PCa with bone metastasis.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yingfei Deng
- Pathology‐DepartmentThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chongjian Zhang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Longguo Dai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Bingyu Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yitian Ou
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yong Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chen Hu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Libo Yang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Jun Li
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yu Bai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Delin Yang
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
17
|
Kong L, Gao X, Yao X, Xie H, Kang Q, Sun W, You Z, Qian Y, Fan C. Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair. Nat Commun 2024; 15:6428. [PMID: 39079956 PMCID: PMC11289102 DOI: 10.1038/s41467-024-49980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Complicated peripheral nerve injuries or defects, especially at branching sites, remain a prominent clinical challenge after the application of different treatment strategies. Current nerve grafts fail to match the expected shape and size for delicate and precise branched nerve repair on a case-by-case basis, and there is a lack of geometrical and microscale regenerative navigation. In this study, we develop a sugar painting-inspired individualized multilevel epi-/peri-/endoneurium-mimetic device (SpinMed) to customize natural cues, featuring a selectively protective outer sheath and an instructive core, to support rapid vascular reconstruction and consequent efficient neurite extension along the defect area. The biomimetic perineurium dictates host-guest crosslinking in which new vessels secrete multimerin 1 binding to the fibroin filler surface as an anchor, contributing to the biological endoneurium that promotes Schwann cell homing and remyelination. SpinMed implantation into rat sciatic nerve defects yields a satisfactory outcome in terms of structural reconstruction, with sensory and locomotive function restoration. We further customize SpinMed grafts based on anatomy and digital imaging, achieving rapid repair of the nerve trunk and branches superior to that achieved by autografts and decellularized grafts in a specific beagle nerve defect model, with reliable biosafety. Overall, this intelligent art-inspired biomimetic design offers a facile way to customize sophisticated high-performance nerve grafts and holds great potential for application in translational regenerative medicine.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co.Ltd., 310003, Hangzhou, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China.
| |
Collapse
|
18
|
Fu XQ, Zhan WR, Tian WY, Zeng PM, Luo ZG. Comparative transcriptomic profiling reveals a role for Olig1 in promoting axon regeneration. Cell Rep 2024; 43:114514. [PMID: 39002126 DOI: 10.1016/j.celrep.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
The regenerative potential of injured axons displays considerable heterogeneity. However, the molecular mechanisms underlying the heterogeneity have not been fully elucidated. Here, we establish a method that can separate spinal motor neurons (spMNs) with low and high regenerative capacities and identify a set of transcripts revealing differential expression between two groups of neurons. Interestingly, oligodendrocyte transcription factor 1 (Olig1), which regulates the differentiation of various neuronal progenitors, exhibits recurrent expression in spMNs with enhanced regenerative capabilities. Furthermore, overexpression of Olig1 (Olig1 OE) facilitates axonal regeneration in various models, and down-regulation or deletion of Olig1 exhibits an opposite effect. By analyzing the overlapped differentially expressed genes after expressing individual Olig factor and functional validation, we find that the role of Olig1 is at least partially through the neurite extension factor 1 (Nrsn1). We therefore identify Olig1 as an intrinsic factor that promotes regenerative capacity of injured axons.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Wen-Rong Zhan
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
19
|
Frostadottir D, Welinder C, Perez R, Dahlin LB. Quantitative mass spectrometry analysis of the injured proximal and distal human digital nerve ends. Front Mol Neurosci 2024; 17:1425780. [PMID: 39015129 PMCID: PMC11250671 DOI: 10.3389/fnmol.2024.1425780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Proteomic analysis of injured human peripheral nerves, particularly focusing on events occurring in the proximal and distal nerve ends, remains relatively underexplored. This study aimed to investigate the molecular patterns underlying a digital nerve injury, focusing on differences in protein expression between the proximal and distal nerve ends. Methods A total of 26 human injured digital nerve samples (24 men; 2 women; median age 47 [30-66] years), harvested during primary nerve repair within 48 h post-injury from proximal and distal nerve ends, were analyzed using mass spectrometry. Results A total of 3,914 proteins were identified, with 127 proteins showing significant differences in abundance between the proximal and the distal nerve ends. The downregulation of proteins in the distal nerve end was associated with synaptic transmission, autophagy, neurotransmitter regulation, cell adhesion and migration. Conversely, proteins upregulated in the distal nerve end were implicated in cellular stress response, neuromuscular junction stability and muscle contraction, neuronal excitability and neurotransmitter release, synaptic vesicle recycling and axon guidance and angiogenesis. Discussion Investigation of proteins, with functional annotations analysis, in proximal and the distal ends of human injured digital nerves, revealed dynamic cellular responses aimed at promoting tissue degeneration and restoration, while suppressing non-essential processes.
Collapse
Affiliation(s)
- Drifa Frostadottir
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Charlotte Welinder
- Faculty of Medicine, Department of Clinical Sciences, Mass Spectrometry, Lund University, Lund, Sweden
| | - Raquel Perez
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Unit for Social Epidemiology, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Huang J, Li J, Li S, Yang X, Huo N, Chen Q, Wang W, Yang N, Wang Y, Zhou N. Netrin-1-engineered endothelial cell exosomes induce the formation of pre-regenerative niche to accelerate peripheral nerve repair. SCIENCE ADVANCES 2024; 10:eadm8454. [PMID: 38941462 PMCID: PMC11212737 DOI: 10.1126/sciadv.adm8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The formation of vascular niche is pivotal during the early stage of peripheral nerve regeneration. Nevertheless, the mechanisms of vascular niche in the regulation of peripheral nerve repair remain unclear. Netrin-1 (NTN1) was found up-regulated in nerve stump after peripheral nerve injury (PNI). Herein, we demonstrated that NTN1-high endothelial cells (NTN1+ECs) were the critical component of vascular niche, fostering angiogenesis, axon regeneration, and repair-related phenotypes. We also found that NTN1+EC-derived exosomes (NTN1 EC-EXO) were involved in the formation of vascular niche as a critical role. Multi-omics analysis further verified that NTN1 EC-EXO carried a low-level expression of let7a-5p and activated key pathways associated with niche formation including focal adhesion, axon guidance, phosphatidylinositol 3-kinase-AKT, and mammalian target of rapamycin signaling pathway. Together, our study suggested that the construction of a pre-regenerative niche induced by NTN1 EC-EXO could establish a beneficial microenvironment for nerve repair and facilitate functional recovery after PNI.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Senrui Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Nianci Huo
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Ningning Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Orthopedics Center, Jilin University, Changchun 130021, China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
21
|
Gu D, Xia Y, Ding Z, Qian J, Gu X, Bai H, Jiang M, Yao D. Inflammation in the Peripheral Nervous System after Injury. Biomedicines 2024; 12:1256. [PMID: 38927464 PMCID: PMC11201765 DOI: 10.3390/biomedicines12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve injury is a common condition that occurs as a result of trauma, iatrogenic injury, or long-lasting stimulation. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) has a strong capacity for self-repair and regeneration. Peripheral nerve injury results in the degeneration of distal axons and myelin sheaths. Macrophages and Schwann cells (SCs) can phagocytose damaged cells. Wallerian degeneration (WD) makes the whole axon structure degenerate, creating a favorable regenerative environment for new axons. After nerve injury, macrophages, neutrophils and other cells are mobilized and recruited to the injury site to phagocytose necrotic cells and myelin debris. Pro-inflammatory and anti-inflammatory factors involved in the inflammatory response provide a favorable microenvironment for peripheral nerve regeneration and regulate the effects of inflammation on the body through relevant signaling pathways. Previously, inflammation was thought to be detrimental to the body, but further research has shown that appropriate inflammation promotes nerve regeneration, axon regeneration, and myelin formation. On the contrary, excessive inflammation can cause nerve tissue damage and pathological changes, and even lead to neurological diseases. Therefore, after nerve injury, various cells in the body interact with cytokines and chemokines to promote peripheral nerve repair and regeneration by inhibiting the negative effects of inflammation and harnessing the positive effects of inflammation in specific ways and at specific times. Understanding the interaction between neuroinflammation and nerve regeneration provides several therapeutic ideas to improve the inflammatory microenvironment and promote nerve regeneration.
Collapse
Affiliation(s)
- Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Yiming Xia
- Medical School, Nantong University, Nantong 226001, China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Xi Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| |
Collapse
|
22
|
Hazer Rosberg DB, Stenberg L, Mahlapuu M, Dahlin LB. PXL01 alters macrophage response with no effect on axonal outgrowth or Schwann cell response after nerve repair in rats. Regen Med 2024; 19:327-343. [PMID: 38957920 PMCID: PMC11346556 DOI: 10.1080/17460751.2024.2361515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.Materials & methods: PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.Results: Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.Conclusion: PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.
Collapse
Affiliation(s)
- Derya Burcu Hazer Rosberg
- Department of Translational Medicine – Hand Surgery, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, MalmöSE-20502, Sweden
| | - Lena Stenberg
- Department of Translational Medicine – Hand Surgery, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Margit Mahlapuu
- Department of Chemistry & Molecular Biology, Göteborg University , SE-40530, Göteborg, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Skåne University Hospital, SE-20502, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, MalmöSE-20502, Sweden
- Department of Biomedical & Clinical Sciences, Linköping University, LinköpingSE-58183, Sweden
| |
Collapse
|
23
|
Talsma AD, Niemi JP, Zigmond RE. Neither injury induced macrophages within the nerve, nor the environment created by Wallerian degeneration is necessary for enhanced in vivo axon regeneration after peripheral nerve injury. J Neuroinflammation 2024; 21:134. [PMID: 38802868 PMCID: PMC11131297 DOI: 10.1186/s12974-024-03132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.
Collapse
Affiliation(s)
- Aaron D Talsma
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA.
| |
Collapse
|
24
|
Schmitd LB, Hafner H, Ward A, Asghari Adib E, Biscola NP, Kohen R, Patel M, Williamson RE, Desai E, Bennett J, Saxman G, Athaiya M, Wilborn D, Shumpert J, Zhao XF, Kawaguchi R, Geschwind DH, Hoke A, Shrager P, Collins CA, Havton LA, Kalinski AL, Giger RJ. Sarm1 is not necessary for activation of neuron-intrinsic growth programs yet required for the Schwann cell repair response and peripheral nerve regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583374. [PMID: 38496662 PMCID: PMC10942360 DOI: 10.1101/2024.03.04.583374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that Sarm1 is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve, Sarm1 is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In Sarm1-/- mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of Sarm1-/- distal nerve tissue was demonstrated by grafting of Sarm1-/- nerve into WT recipients. SC lineage tracing in injured WT and Sarm1-/- mice revealed morphological differences. In the Sarm1-/- distal nerve, the appearance of p75NTR+, c-Jun+ SCs is significantly delayed. Ex vivo, p75NTR and c-Jun upregulation in Sarm1-/- nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that Sarm1 is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Ayobami Ward
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Manav Patel
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Emily Desai
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Grace Saxman
- Department of Biology, Ball State University, Muncie IN, USA
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - David Wilborn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jaisha Shumpert
- Department of Biology, Ball State University, Muncie IN, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leif A. Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx, NY, USA
| | - Ashley L. Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Biology, Ball State University, Muncie IN, USA
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
25
|
Passino R, Finneran MC, Hafner H, Feng Q, Huffman LD, Zhao XF, Johnson CN, Kawaguchi R, Oses-Prieto JA, Burlingame AL, Geschwind DH, Benowitz LI, Giger RJ. Neutrophil-inflicted vasculature damage suppresses immune-mediated optic nerve regeneration. Cell Rep 2024; 43:113931. [PMID: 38492223 DOI: 10.1016/j.celrep.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate β-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to β-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.
Collapse
Affiliation(s)
- Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qian Feng
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juan A Oses-Prieto
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA
| | - Daniel H Geschwind
- Departments of Psychiatry and Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Larry I Benowitz
- Departments of Neurosurgery and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital, Boston MA 02115, USA; Departmant of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Huang Y, Wu L, Zhao Y, Guo J, Li R, Ma S, Ying Z. Schwann cell promotes macrophage recruitment through IL-17B/IL-17RB pathway in injured peripheral nerves. Cell Rep 2024; 43:113753. [PMID: 38341853 DOI: 10.1016/j.celrep.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
Macrophage recruitment to the injured nerve initiates a cascade of events, including myelin debris clearance and nerve trophic factor secretion, which contribute to proper nerve tissue repair. However, the mechanism of macrophage recruitment is still unclear. Here, by comparing wild-type with Mlkl-/- and Sarm1-/- mice, two mouse strains with impaired myelin debris clearance after peripheral nerve injury, we identify interleukin-17B (IL-17B) as a key regulator of macrophage recruitment. Schwann-cell-secreted IL-17B acts in an autocrine manner and binds to IL-17 receptor B to promote macrophage recruitment, and global or Schwann-cell-specific IL-17B deletion reduces macrophage infiltration, myelin clearance, and axon regeneration. We also show that the IL-17B signaling pathway is defective in the injured central nerves. These results reveal an important role for Schwann cell autocrine signaling during Wallerian degeneration and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.
Collapse
Affiliation(s)
- Yanju Huang
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liwen Wu
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yueshan Zhao
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia Guo
- National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Ruoyi Li
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Suchen Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengxin Ying
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Chinese Institute for Brain Research, Beijing, No. 26 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.
| |
Collapse
|
27
|
Hakim S, Jain A, Petrova V, Indajang J, Kawaguchi R, Wang Q, Duran ES, Nelson D, Adamson SS, Greene C, Woolf CJ. Macrophages protect against sensory axon degeneration in diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577801. [PMID: 38352324 PMCID: PMC10862767 DOI: 10.1101/2024.01.30.577801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, causing sensory loss and debilitating neuropathic pain 1,2 . Although the onset and progression of DPN have been linked with dyslipidemia and hyperglycemia 3 , the contribution of inflammation in the pathogenesis of DPN has not been investigated. Here, we use a High Fat High Fructose Diet (HFHFD) to model DPN and the diabetic metabolic syndrome in mice. Diabetic mice develop persistent heat hypoalgesia after three months, but a reduction in epidermal skin innervation only manifests at 6 months. Using single-cell sequencing, we find that CCR2+ macrophages infiltrate the sciatic nerves of diabetic mice well before axonal degeneration is detectable. We show that these infiltrating macrophages share gene expression similarities with nerve crush-induced macrophages 4 and express neurodegeneration-associated microglia marker genes 5 although there is no axon loss or demyelination. Inhibiting this macrophage recruitment in diabetic mice by genetically or pharmacologically blocking CCR2 signaling results in a more severe heat hypoalgesia and accelerated skin denervation. These findings reveal a novel neuroprotective recruitment of macrophages into peripheral nerves of diabetic mice that delays the onset of terminal axonal degeneration, thereby reducing sensory loss. Potentiating and sustaining this early neuroprotective immune response in patients represents, therefore, a potential means to reduce or prevent DPN.
Collapse
|
28
|
Bhat GP, Maurizio A, Motta A, Podini P, Diprima S, Malpighi C, Brambilla I, Martins L, Badaloni A, Boselli D, Bianchi F, Pellegatta M, Genua M, Ostuni R, Del Carro U, Taveggia C, de Pretis S, Quattrini A, Bonanomi D. Structured wound angiogenesis instructs mesenchymal barrier compartments in the regenerating nerve. Neuron 2024; 112:209-229.e11. [PMID: 37972594 DOI: 10.1016/j.neuron.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.
Collapse
Affiliation(s)
- Ganesh Parameshwar Bhat
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Santo Diprima
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Malpighi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Ilaria Brambilla
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Luis Martins
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Badaloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Daniela Boselli
- FRACTAL-Flow cytometry Resource Advanced Cytometry Technical Applications Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marta Pellegatta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
29
|
Helbing DL, Kirkpatrick JM, Reuter M, Bischoff J, Stockdale A, Carlstedt A, Cirri E, Bauer R, Morrison H. Proteomic analysis of peripheral nerve myelin during murine aging. Front Cell Neurosci 2023; 17:1214003. [PMID: 37964793 PMCID: PMC10642449 DOI: 10.3389/fncel.2023.1214003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is central to maintaining physiological peripheral nerve function and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. Recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during aging have not been investigated. Here we show that the proteomes of myelin fractions isolated from young and old nerves show only subtle changes. In particular, we found that the three most abundant peripheral myelin proteins (MPZ, MBP, and PRX) do not change in old myelin fractions. We also show a tendency for high-abundance myelin proteins other than these three to be downregulated, with only a small number of ribosome-related proteins significantly downregulated and extracellular matrix proteins such as collagens upregulated. In addition, we illustrate that the peripheral nerve myelin proteome reported in this study is suitable for assessing myelin degradation and renewal during peripheral nerve degeneration and regeneration. Our results suggest that the peripheral nerve myelin proteome is relatively stable and undergoes only subtle changes in composition during mouse aging. We proffer the resultant dataset as a resource and starting point for future studies aimed at investigating peripheral nerve myelin during aging. Said datasets are available in the PRIDE archive under the identifier PXD040719 (aging myelin proteome) and PXD041026 (sciatic nerve injury proteome).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Julia Bischoff
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Amy Stockdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
30
|
Baruch EN, Nagarajan P, Gleber-Netto FO, Rao X, Xie T, Akhter S, Adewale A, Shajedul I, Mattson BJ, Ferrarotto R, Wong MK, Davies MA, Jindal S, Basu S, Harwood C, Leigh I, Ajami N, Futreal A, Castillo M, Gunaratne P, Goepfert RP, Khushalani N, Wang J, Watowich S, Calin GA, Migden MR, Vermeer P, D’Silva N, Yaniv D, Burks JK, Gomez J, Dougherty PM, Tsai KY, Allison JP, Sharma P, Wargo J, Myers JN, Gross ND, Amit M. Inflammation induced by tumor-associated nerves promotes resistance to anti-PD-1 therapy in cancer patients and is targetable by interleukin-6 blockade. RESEARCH SQUARE 2023:rs.3.rs-3161761. [PMID: 37503252 PMCID: PMC10371163 DOI: 10.21203/rs.3.rs-3161761/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.
Collapse
Affiliation(s)
- Erez N. Baruch
- Division of Cancer Medicine, Hematology and Oncology Fellowship program, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Frederico O. Gleber-Netto
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shamima Akhter
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adebayo Adewale
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Islam Shajedul
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi J Mattson
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Head and Neck Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael K. Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Catherine Harwood
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Irene Leigh
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Nadim Ajami
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX, USA
| | - Ryan P. Goepfert
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Watowich
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R. Migden
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Nisha D’Silva
- Department of Dentistry & Pathology, the University of Michigan, Ann Arbor, MI, USA
| | - Dan Yaniv
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier Gomez
- Department of Leukemia, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Y. Tsai
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | - James P Allison
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil D. Gross
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
31
|
Kim HW, Wang S, Davies AJ, Oh SB. The therapeutic potential of natural killer cells in neuropathic pain. Trends Neurosci 2023:S0166-2236(23)00133-9. [PMID: 37385878 DOI: 10.1016/j.tins.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shuaiwei Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Warner WS, Stubben C, Yeoh S, Light AR, Mahan MA. Next-generation RNA sequencing elucidates transcriptomic signatures of pathophysiologic nerve regeneration. Sci Rep 2023; 13:8856. [PMID: 37258605 PMCID: PMC10232541 DOI: 10.1038/s41598-023-35606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.
Collapse
Affiliation(s)
- Wesley S Warner
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA
| | - Christopher Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA.
| |
Collapse
|