1
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
2
|
Lavrado NC, Salles GF, Cardoso CRL, de França PHC, Melo MFDGG, Leite NC, Villela-Nogueira CA. Impact of PNPLA3 and TM6SF2 polymorphisms on the prognosis of patients with MASLD and type 2 diabetes mellitus. Liver Int 2024; 44:1042-1050. [PMID: 38293718 DOI: 10.1111/liv.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND/AIMS Longitudinal studies assessing the impact of genetic polymorphisms on outcomes in patients with Type 2 Diabetes Mellitus (T2DM) and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) are scarce. This study aimed to evaluate the effect of PNPLA3 and TM6SF2 risk alleles on hepatic and extrahepatic outcomes in T2DM-MASLD individuals. METHODS Patients' polymorphisms were analysed as follows: PNPLA3 CC, CG and GG; TM6SF2 CC and CT + TT; combined comparing no mutant allele, one allele G or T or ≥2 alleles G or T. Hierarchical models were built to assess associations between polymorphisms and outcomes, independently of confounding factors. Multivariate logistic regression was used for cirrhosis and its complications and extrahepatic cancer, and Cox regression for cardiovascular events (CVEs) and all-cause mortality. RESULTS In total, 407 T2DM-MASLD patients (62.1 ± 10.5 years, 67.6% women) were followed for 11 (6-13) years. Having at least one G or T allele independently increased the risk of cirrhosis in the separate analysis of PNPLA3 and TM6SF2. Combined polymorphism analysis demonstrated an even higher risk of cirrhosis if two or more risk alleles were present (OR 18.48; 95% CI 6.15-55.58; p < .001). Regarding cirrhosis complications, the risk was higher in PNPLA3 GG and TM6SF2 CT + TT, also with an even higher risk when two or more risk alleles were present in the combined evaluation (OR 27.20; 95% CI 5.26-140.62; p < .001). There were no associations with CVEs or mortality outcomes. CONCLUSION In T2DM, PNPLA3 and TM6SF2 polymorphisms, individually and additively, impact MASLD severity, with an increased risk of cirrhosis and its complications.
Collapse
Affiliation(s)
- Natália Coelho Lavrado
- Internal Medicine Post Graduate Program, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gil Fernando Salles
- Department of Internal Medicine, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Nathalie Carvalho Leite
- Division of Hepatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Hassan A, Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Bangay G, Al-Sawahli MM, Fouad MK, Zoair MA, Abdalrhman TI, Elebeedy D, Ibrahim IA, Mohamed AF, Abd El Maksoud AI. Synergistic Differential DNA Demethylation Activity of Danshensu ( Salvia miltiorrhiza) Associated with Different Probiotics in Nonalcoholic Fatty Liver Disease. Biomedicines 2024; 12:279. [PMID: 38397881 PMCID: PMC10886676 DOI: 10.3390/biomedicines12020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major hepatic disorder occurring in non-alcohol-drinking individuals. Salvianic acid A or Danshensu (DSS, 3-(3, 4-dihydroxyphenyl)-(2R)-lactic acid), derived from the root of Danshen (Salvia miltiorrhiza), has demonstrated heart and liver protective properties. In this work, we investigated the antioxidant activity and hepatoprotective activity of Danshensu alone and in combination with different agents, such as probiotic bacteria (Lactobacillus casei and Lactobacillus acidophilus), against several assays. The inhibition mechanism of the methylation gene biomarkers, such as DNMT-1, MS, STAT-3, and TET-1, against DSS was evaluated by molecular docking and RT-PCR techniques. The physicochemical and pharmacokinetic ADMET properties of DSS were determined by SwissADME and pkCSM. The results indicated that all lipid blood test profiles, including cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), were reduced after the oral administration of Danshensu combined with probiotics (L. casei and L. acidophilus) that demonstrated good, efficient free radical scavenging activity, measured using anti-oxidant assays. ADMET and drug-likeness properties certify that the DSS could be utilized as a feasible drug since DSS showed satisfactory physicochemical and pharmacokinetic ADMET properties.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Patrícia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas), Ctra. Madrid-Barcelona km. 33,600, 28805 Alcalá de Henares, Madrid, España
| | - Majid Mohammed Al-Sawahli
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt
| | - Marina K. Fouad
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Mohammad A. Zoair
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Tamer I. Abdalrhman
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Dalia Elebeedy
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt;
| | - Aly F. Mohamed
- Holding Company for Vaccine and Sera Production (VACSERA), Giza 22311, Egypt;
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
4
|
Acharya P, Roshan A. Lean NAFLD: Do We Need to Lean-in Deeper to Manage it Better? J Clin Exp Hepatol 2024; 14:101262. [PMID: 38076357 PMCID: PMC10709275 DOI: 10.1016/j.jceh.2023.07.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 01/05/2025] Open
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | - Aditya Roshan
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
5
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
6
|
Samarasinghe SM, Hewage AS, Siriwardana RC, Tennekoon KH, Niriella MA, De Silva S. Genetic and metabolic aspects of non-alcoholic fatty liver disease (NAFLD) pathogenicity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:53. [DOI: 10.1186/s43042-023-00433-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease showing a rising prevalence globally. Genetic predisposition plays a key role in the development and progression of the disease pathogenicity.
Main body
This paper summarizes genetic associations based on their influence on several metabolic aspects such as lipid metabolism, glucose metabolism, hepatic iron accumulation and cholesterol metabolism toward the NAFLD pathogenicity. Furthermore, we present variations in some epigenetic characters and the microRNA profile with regard to NAFLD.
Conclusion
As reported in many studies, the PNPLA3 rs738409 variant seems to be significantly associated with NAFLD susceptibility. Other gene variants like TM6SF2 rs58542926, MBOAT7 rs641738 and GCKR variants also appear to be more prevalent among NAFLD patients. We believe these genetic variants may provide insights into new trends in developing noninvasive biomarkers and identify their suitability in clinical practice in the future.
Graphical abstract
Collapse
|
7
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
8
|
Lin X, Liu X, Triba MN, Bouchemal N, Liu Z, Walker DI, Palama T, Le Moyec L, Ziol M, Helmy N, Vons C, Xu G, Prip-Buus C, Savarin P. Plasma Metabolomic and Lipidomic Profiling of Metabolic Dysfunction-Associated Fatty Liver Disease in Humans Using an Untargeted Multiplatform Approach. Metabolites 2022; 12:1081. [PMID: 36355164 PMCID: PMC9693407 DOI: 10.3390/metabo12111081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 08/29/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disorder that is implicated in dysregulations in multiple biological pathways, orchestrated by interactions between genetic predisposition, metabolic syndromes and environmental factors. The limited knowledge of its pathogenesis is one of the bottlenecks in the development of prognostic and therapeutic options for MAFLD. Moreover, the extent to which metabolic pathways are altered due to ongoing hepatic steatosis, inflammation and fibrosis and subsequent liver damage remains unclear. To uncover potential MAFLD pathogenesis in humans, we employed an untargeted nuclear magnetic resonance (NMR) spectroscopy- and high-resolution mass spectrometry (HRMS)-based multiplatform approach combined with a computational multiblock omics framework to characterize the plasma metabolomes and lipidomes of obese patients without (n = 19) or with liver biopsy confirmed MAFLD (n = 63). Metabolite features associated with MAFLD were identified using a metabolome-wide association study pipeline that tested for the relationships between feature responses and MAFLD. A metabolic pathway enrichment analysis revealed 16 pathways associated with MAFLD and highlighted pathway changes, including amino acid metabolism, bile acid metabolism, carnitine shuttle, fatty acid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and steroid metabolism. These results suggested that there were alterations in energy metabolism, specifically amino acid and lipid metabolism, and pointed to the pathways being implicated in alerted liver function, mitochondrial dysfunctions and immune system disorders, which have previously been linked to MAFLD in human and animal studies. Together, this study revealed specific metabolic alterations associated with MAFLD and supported the idea that MAFLD is fundamentally a metabolism-related disorder, thereby providing new perspectives for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiangping Lin
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mohamed N. Triba
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Nadia Bouchemal
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Zhicheng Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tony Palama
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Laurence Le Moyec
- Université d’Evry Val d’Essonne—Université Paris-Saclay, 91000 Evry, France
- Muséum National d’Histoire Naturelle, Unité MCAM, UMR 7245, CNRS, 75005 Paris, France
| | - Marianne Ziol
- Department of Pathology, University Hospital Jean Verdier, Assistance Publique-Hôpitaux de Paris, 93140 Paris, France
| | - Nada Helmy
- Department of Digestive and Metabolic Surgery, Jean Verdier Hospital, Paris XIII University—University Hospitals of Paris Seine Saint-Denis, 93140 Paris, France
| | - Corinne Vons
- Department of Digestive and Metabolic Surgery, Jean Verdier Hospital, Paris XIII University—University Hospitals of Paris Seine Saint-Denis, 93140 Paris, France
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Carina Prip-Buus
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014 Paris, France
| | - Philippe Savarin
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| |
Collapse
|
9
|
Riazi K, Swain MG, Congly SE, Kaplan GG, Shaheen AA. Race and Ethnicity in Non-Alcoholic Fatty Liver Disease (NAFLD): A Narrative Review. Nutrients 2022; 14:4556. [PMID: 36364818 PMCID: PMC9658200 DOI: 10.3390/nu14214556] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant public health concern worldwide with a complex etiology attributed to behavioural, environmental, and genetic causes. The worldwide prevalence of NAFLD is estimated to be 32.4% and constantly rising. Global data, however, indicate considerable heterogeneity among studies for both NAFLD prevalence and incidence. Identifying variables that affect the estimated epidemiological measures is essential to all stakeholders, including patients, researchers, healthcare providers, and policymakers. Besides helping with the research on disease etiology, it helps to identify individuals at risk of the disease, which in turn will outline the focus of the preventive measures and help to fittingly tailor individualized treatments, targeted prevention, screening, or treatment programs. Several studies suggest differences in the prevalence and severity of NAFLD by race or ethnicity, which may be linked to differences in lifestyle, diet, metabolic comorbidity profile, and genetic background, among others. Race/ethnicity research is essential as it can provide valuable information regarding biological and genetic differences among people with similar cultural, dietary, and geographical backgrounds. In this review, we examined the existing literature on race/ethnicity differences in susceptibility to NAFLD and discussed the contributing variables to such differences, including diet and physical activity, the comorbidity profile, and genetic susceptibility. We also reviewed the limitations of race/ethnicity studies in NAFLD.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mark G. Swain
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Stephen E. Congly
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Gilaad G. Kaplan
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Abdel-Aziz Shaheen
- Department of Medicine, Division of Gastroenterology and Hepatology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
10
|
Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50:101122. [PMID: 33220492 PMCID: PMC8324683 DOI: 10.1016/j.molmet.2020.101122] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) comprises hepatic alterations with increased lipid accumulation (steatosis) without or with inflammation (nonalcoholic steatohepatitis, NASH) and/or fibrosis in the absence of other causes of liver disease. NAFLD is developing as a burgeoning health challenge, mainly due to the worldwide obesity and diabetes epidemics. SCOPE OF REVIEW This review summarizes the knowledge on the pathogenesis underlying NAFLD by focusing on studies in humans and on hypercaloric nutrition, including effects of saturated fat and fructose, as well as adipose tissue dysfunction, leading to hepatic lipotoxicity, abnormal mitochondrial function, and oxidative stress, and highlights intestinal dysbiosis. These mechanisms are discussed in the context of current treatments targeting metabolic pathways and the results of related clinical trials. MAJOR CONCLUSIONS Recent studies have provided evidence that certain conditions, for example, the severe insulin-resistant diabetes (SIRD) subgroup (cluster) and the presence of an increasing number of gene variants, seem to predispose for excessive risk of NAFLD and its accelerated progression. Recent clinical trials have been frequently unsuccessful in halting or preventing NAFLD progression, perhaps partly due to including unselected cohorts in later stages of NAFLD. On the basis of this literature review, this study proposed screening in individuals with the highest genetic or acquired risk of disease progression, for example, the SIRD subgroup, and developing treatment concepts targeting the earliest pathophysiolgical alterations, namely, adipocyte dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
11
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
HbA1c may contribute to the development of non-alcoholic fatty liver disease even at normal-range levels. Biosci Rep 2021; 40:221879. [PMID: 31940026 PMCID: PMC6997109 DOI: 10.1042/bsr20193996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Previous clinical studies highlighted nonalcoholic fatty liver disease (NAFLD) as a hepatic facet of metabolic syndrome, which progresses toward Type 2 diabetes along with an elevation of HbA1c in the blood. Longitudinal observations were performed in a cohort of 2811 participants with no liver disease at inception. The rate of the conversion into NAFLD was 15.7% (440/2811), with a steady increase in prevalence observed in sub-cohorts with increasing HbA1c levels. Moreover, regression analysis indicated that HbA1c levels serve as the risk factors for NAFLD after multiple adjustments (odds ratio: 1.58, P-value < 0.004). When HbA1c-related molecular networks were investigated using natural language programming algorithms, multiple genetic/small molecular (SM) pathways were highlighted as connectors between the HbA1c levels and the development of NAFLD, including ones for nitric oxide, hypoxia and receptor for advanced glycation end products (RAGE). Our results suggest that increased levels of HbA1c may contribute to the progression of NAFLD either directly, by stimulating RAGE or indirectly, through the promotion of hypoxia and suppression of the release of NO. Further studies are needed to test the impact of HbA1c on the development of the chronic liver disease.
Collapse
|
13
|
Docherty M, Regnier SA, Capkun G, Balp MM, Ye Q, Janssens N, Tietz A, Löffler J, Cai J, Pedrosa MC, Schattenberg JM. Development of a novel machine learning model to predict presence of nonalcoholic steatohepatitis. J Am Med Inform Assoc 2021; 28:1235-1241. [PMID: 33684933 PMCID: PMC8200272 DOI: 10.1093/jamia/ocab003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Objective To develop a computer model to predict patients with nonalcoholic steatohepatitis (NASH) using machine learning (ML). Materials and Methods This retrospective study utilized two databases: a) the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) nonalcoholic fatty liver disease (NAFLD) adult database (2004-2009), and b) the Optum® de-identified Electronic Health Record dataset (2007-2018), a real-world dataset representative of common electronic health records in the United States. We developed an ML model to predict NASH, using confirmed NASH and non-NASH based on liver histology results in the NIDDK dataset to train the model. Results Models were trained and tested on NIDDK NAFLD data (704 patients) and the best-performing models evaluated on Optum data (~3,000,000 patients). An eXtreme Gradient Boosting model (XGBoost) consisting of 14 features exhibited high performance as measured by area under the curve (0.82), sensitivity (81%), and precision (81%) in predicting NASH. Slightly reduced performance was observed with an abbreviated feature set of 5 variables (0.79, 80%, 80%, respectively). The full model demonstrated good performance (AUC 0.76) to predict NASH in Optum data. Discussion The proposed model, named NASHmap, is the first ML model developed with confirmed NASH and non-NASH cases as determined through liver biopsy and validated on a large, real-world patient dataset. Both the 14 and 5-feature versions exhibit high performance. Conclusion The NASHmap model is a convenient and high performing tool that could be used to identify patients likely to have NASH in clinical settings, allowing better patient management and optimal allocation of clinical resources.
Collapse
Affiliation(s)
| | | | | | | | - Qin Ye
- ZS, Princeton, New Jersey, USA
| | | | | | | | | | | | - Jörn M Schattenberg
- Metabolic Liver Research Program. I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
14
|
Lahelma M, Luukkonen PK, Qadri S, Ahlholm N, Lallukka-Brück S, Porthan K, Juuti A, Sammalkorpi H, Penttilä AK, Arola J, Orho-Melander M, Yki-Järvinen H. Assessment of Lifestyle Factors Helps to Identify Liver Fibrosis Due to Non-Alcoholic Fatty Liver Disease in Obesity. Nutrients 2021; 13:nu13010169. [PMID: 33429859 PMCID: PMC7827136 DOI: 10.3390/nu13010169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Only some individuals with obesity develop liver fibrosis due to non-alcoholic fatty liver disease (NAFLD-fibrosis). We determined whether detailed assessment of lifestyle factors in addition to physical, biochemical and genetic factors helps in identification of these patients. A total of 100 patients with obesity (mean BMI 40.0 ± 0.6 kg/m2) referred for bariatric surgery at the Helsinki University Hospital underwent a liver biopsy to evaluate liver histology. Physical activity was determined by accelerometer recordings and by the Modifiable Activity Questionnaire, diet by the FINRISK Food Frequency Questionnaire, and other lifestyle factors, such as sleep patterns and smoking, by face-to-face interviews. Physical and biochemical parameters and genetic risk score (GRS based on variants in PNPLA3, TM6SF2, MBOAT7 and HSD17B13) were measured. Of all participants 49% had NAFLD-fibrosis. Independent predictors of NAFLD-fibrosis were low moderate-to-vigorous physical activity, high red meat intake, low carbohydrate intake, smoking, HbA1c, triglycerides and GRS. A model including these factors (areas under the receiver operating characteristics curve (AUROC) 0.90 (95% CI 0.84–0.96)) identified NAFLD-fibrosis significantly more accurately than a model including all but lifestyle factors (AUROC 0.82 (95% CI 0.73–0.91)) or models including lifestyle, physical and biochemical, or genetic factors alone. Assessment of lifestyle parameters in addition to physical, biochemical and genetic factors helps to identify obese patients with NAFLD-fibrosis.
Collapse
Affiliation(s)
- Mari Lahelma
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Panu K. Luukkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8056, USA
| | - Sami Qadri
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Noora Ahlholm
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Susanna Lallukka-Brück
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Kimmo Porthan
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Anne Juuti
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, 00290 Helsinki, Finland; (A.J.); (H.S.); (A.K.P.)
| | - Henna Sammalkorpi
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, 00290 Helsinki, Finland; (A.J.); (H.S.); (A.K.P.)
| | - Anne K. Penttilä
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, 00290 Helsinki, Finland; (A.J.); (H.S.); (A.K.P.)
| | - Johanna Arola
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland;
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, 20502 Malmö, Sweden;
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; (M.L.); (P.K.L.); (S.Q.); (N.A.); (S.L.-B.); (K.P.)
- Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Correspondence:
| |
Collapse
|
15
|
Borén J, Adiels M, Björnson E, Matikainen N, Söderlund S, Rämö J, Ståhlman M, Ripatti P, Ripatti S, Palotie A, Mancina RM, Hakkarainen A, Romeo S, Packard CJ, Taskinen MR. Effects of TM6SF2 E167K on hepatic lipid and very low-density lipoprotein metabolism in humans. JCI Insight 2020; 5:144079. [PMID: 33170809 PMCID: PMC7819740 DOI: 10.1172/jci.insight.144079] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Joel Rämö
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pietari Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.,Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Antti Hakkarainen
- Helsinki and Uusimaa Hospital District Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Finland
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Khalifa O, Errafii K, Al-Akl NS, Arredouani A. Noncoding RNAs in Nonalcoholic Fatty Liver Disease: Potential Diagnosis and Prognosis Biomarkers. DISEASE MARKERS 2020; 2020:8822859. [PMID: 33133304 PMCID: PMC7593715 DOI: 10.1155/2020/8822859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide in part due to the concomitant obesity pandemic and insulin resistance (IR). It is increasingly becoming evident that NAFLD is a disease affecting numerous extrahepatic vital organs and regulatory pathways. The molecular mechanisms underlying the nonalcoholic steatosis formation are poorly understood, and little information is available on the pathways that are responsible for the progressive hepatocellular damage that follows lipid accumulation. Recently, much research has focused on the identification of the epigenetic modifications that contribute to NAFLD pathogenesis. Noncoding RNAs (ncRNAs) are one of such epigenetic factors that could be implicated in the NAFLD development and progression. In this review, we summarize the current knowledge of the genetic and epigenetic factors potentially underlying the disease. Particular emphasis will be put on the contribution of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) to the pathophysiology of NAFLD as well as their potential use as therapeutic targets or as markers for the prediction and the progression of the disease.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Nayla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
17
|
Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Med 2020; 17:e1003149. [PMID: 32559194 PMCID: PMC7304567 DOI: 10.1371/journal.pmed.1003149] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION ClinicalTrials.gov NCT03814915.
Collapse
|
18
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver diseases and can progress to advanced fibrosis and end-stage liver disease. Thus, intensive research has been performed to develop noninvasive methods for the diagnosis of nonalcoholic steatohepatitis (NASH) and fibrosis. Currently, no single noninvasive tool covers all of the stages of pathologies and conditions of NAFLD, and the cost and feasibility of known techniques are also important issues. Blood biomarkers for NAFLD may be useful to select subjects who need ultrasonography (US) screening for NAFLD, and noninvasive tools for assessing fibrosis may be helpful to exclude the probability of significant fibrosis and to predict advanced fibrosis, thus guiding the decision of whether to perform liver biopsy in patients with NAFLD. Among various methods, magnetic resonance-based methods have been shown to perform better than other methods in assessing steatosis as well as in detecting hepatic fibrosis. Many genetic markers are associated with the development and progression of NAFLD. Further well-designed studies are needed to determine which biomarker panels, imaging studies, genetic marker panels, or combinations thereof perform well for diagnosing NAFLD, differentiating NASH and fibrosis, and following-up NAFLD, respectively.
Collapse
Affiliation(s)
- Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
19
|
Lee BW, Lee YH, Park CY, Rhee EJ, Lee WY, Kim NH, Choi KM, Park KG, Choi YK, Cha BS, Lee DH. Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus: A Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association. Diabetes Metab J 2020; 44:382-401. [PMID: 32431115 PMCID: PMC7332334 DOI: 10.4093/dmj.2020.0010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
This clinical practice position statement, a product of the Fatty Liver Research Group of the Korean Diabetes Association, proposes recommendations for the diagnosis, progression and/or severity assessment, management, and follow-up of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). Patients with both T2DM and NAFLD have an increased risk of non-alcoholic steatohepatitis (NASH) and fibrosis and a higher risk of cardiovascular diseases and diabetic complications compared to those without NAFLD. With regards to the evaluation of patients with T2DM and NAFLD, ultrasonography-based stepwise approaches using noninvasive biomarker models such as fibrosis-4 or the NAFLD fibrosis score as well as imaging studies such as vibration-controlled transient elastography with controlled attenuation parameter or magnetic resonance imaging-proton density fat fraction are recommended. After the diagnosis of NAFLD, the stage of fibrosis needs to be assessed appropriately. For management, weight reduction achieved by lifestyle modification has proven beneficial and is recommended in combination with antidiabetic agent(s). Evidence that some antidiabetic agents improve NAFLD/NASH with fibrosis in patients with T2DM is emerging. However, there are currently no definite pharmacologic treatments for NAFLD in patients with T2DM. For specific cases, bariatric surgery may be an option if indicated.
Collapse
Affiliation(s)
- Byung Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Keun Gyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yeon Kyung Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Bong Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Dae Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
20
|
Ezaz G, Trivedi HD, Connelly MA, Filozof C, Howard K, L.Parrish M, Kim M, Herman MA, Nasser I, Afdhal NH, Jiang ZG, Lai M. Differential Associations of Circulating MicroRNAs With Pathogenic Factors in NAFLD. Hepatol Commun 2020; 4:670-680. [PMID: 32363318 PMCID: PMC7193128 DOI: 10.1002/hep4.1501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous disease driven by genetic and environmental factors. MicroRNAs (miRNAs) serve as pleiotropic post-transcriptional regulators of cellular pathways. Although several miRNAs have been associated with NAFLD and fibrosis, there are limited studies in humans examining their differential association with pathogenic factors or histological features of NAFLD. We examined the differential relationships of five of the best-described circulating microRNAs (miR-34a, miR-122, miR-191, miR-192, and miR-200a) with histological features and pathogenic factors of NAFLD. A cross-sectional study was conducted to examine the relationship between relative levels of circulating microRNAs standardized by z-scores and histological features of NAFLD, common NAFLD genetic polymorphisms, and insulin resistance measured by the enhanced lipoprotein insulin resistance index in 132 subjects with biopsy-proven NAFLD. We found that miR-34a, miR-122, miR-192, miR-200a, but not miR-191, strongly correlate with fibrosis in NAFLD by increases of 0.20 to 0.40 SD (P < 0.005) with each stage of fibrosis. In multivariate analysis, miR-34a, miR-122, and miR-192 levels are independently associated with hepatic steatosis and fibrosis, but not lobular inflammation or ballooning degeneration, whereas miR-200a is only associated with fibrosis. Among the four miRNAs, miR-34a, miR-122, and miR-192 are associated with pathogenic factors of NAFLD, including insulin resistance measured by eLP-IR, patatin-like phospholipase domain containing 3 I148M, and transmembrane 6 superfamily 2 (TM6SF2) E167K polymorphisms. In contrast, miR-200a is only associated with the TM6SF2 E167K variant. Finally, miR-34a has the strongest predictive value for various stages of fibrosis, with C-statistic approximates-combined predictive score for miRNAs. Conclusion: miR-34a, miR-122, miR-192, and miR-200a demonstrate strong associations with NAFLD severity by histology, but differential associations with pathogenic factors.
Collapse
Affiliation(s)
- Ghideon Ezaz
- Division of HepatologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Hirsh D. Trivedi
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | | | | | | | | | - Misung Kim
- Division of EndocrinologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Mark A. Herman
- Division of EndocrinologyDuke University Medical CenterDurhamNC
| | - Imad Nasser
- Department of PathologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Nezam H. Afdhal
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Z. Gordon Jiang
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Michelle Lai
- Division of Gastroenterology & HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| |
Collapse
|
21
|
Gao H, Liu S, Zhao Z, Yu X, Liu Q, Xin Y, Xuan S. Association of GCKR Gene Polymorphisms with the Risk of Nonalcoholic Fatty Liver Disease and Coronary Artery Disease in a Chinese Northern Han Population. J Clin Transl Hepatol 2019; 7:297-303. [PMID: 31915598 PMCID: PMC6943214 DOI: 10.14218/jcth.2019.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/07/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Aims: Accumulated studies have evaluated the effects of glucokinase regulatory protein (GCKR) gene polymorphisms on the risk of nonalcoholic fatty liver disease (NAFLD) and coronary artery disease (CAD), but the association of GCKR polymorphisms with the risk of NAFLD and CAD in the Chinese Han population have remained unclear. The aim of this study was to investigate the association between GCKR gene polymorphisms (rs780094 and rs1260326) and the risk of NAFLD and CAD in NAFLD patients in a Chinese Northern Han population. Methods: GCKR rs780094 and rs1260326 gene polymorphisms were genotyped by polymerase chain reaction sequencing for B-type ultrasonography-proven NAFLD patients with (n = 82) or without (n = 142) CAD, and in healthy controls (n = 152). Serum lipid profiles' levels were determined using biochemical methods. Statistical analyses were conducted using SPSS 22.0 statistical software. Results: As the results showed, significant differences in the serum lipid profiles existed between each group. No significant differences were observed in the distributions of genotypes and alleles of GCKR rs780094 and rs1260326 in each group. The GCKR rs780094 T and rs1260326 T allele carriers possessed decreased body mass index value, and serum fasting plasma glucose and TG levels in the overall subjects, respectively. In addition, the GCKR rs780094 T allele carriers possessed decreased serum fasting plasma glucose level in the controls and NAFLD + CAD patients. Conclusions: GCKR rs780094 and rs1260326 polymorphisms were found to be not associated with the risk of NAFLD nor of CAD in NAFLD patients in this Chinese Northern Han population. GCKR rs780094 T and rs1260326 T alleles could affect the body mass index value and serum fasting plasma glucose and triglyceride levels.
Collapse
Affiliation(s)
- Hui Gao
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shousheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong, China
| | - Zhenzhen Zhao
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong, China
| | - Xinjuan Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Qun Liu
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong, China
- Correspondence to: Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail:
| | - Shiying Xuan
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong, China
- Correspondence to: Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail:
| |
Collapse
|
22
|
Rein-Fischboeck L, Haberl EM, Pohl R, Feder S, Liebisch G, Krautbauer S, Buechler C. Variations in hepatic lipid species of age-matched male mice fed a methionine-choline-deficient diet and housed in different animal facilities. Lipids Health Dis 2019; 18:172. [PMID: 31521175 PMCID: PMC6745065 DOI: 10.1186/s12944-019-1114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a common disease and feeding mice a methionine-choline-deficient (MCD) diet is a frequently used model to study its pathophysiology. Genetic and environmental factors influence NASH development and liver lipid content, which was studied herein using C57BL/6 J mice bred in two different animal facilities. Methods Age-matched male C57BL/6 J mice bred in two different animal facilities (later on referred to as WT1 and WT2) at the University Hospital of Regensburg were fed identical MCD or control chows for 2 weeks. Hepatic gene and protein expression and lipid composition were determined. Results NASH was associated with increased hepatic triglycerides, which were actually higher in WT1 than WT2 liver in both dietary groups. Cholesterol contributes to hepatic injury but was only elevated in WT2 NASH liver. Ceramides account for insulin resistance and cell death, and ceramide species d18:1/16:0 and d18:1/18:0 were higher in the NASH liver of both groups. Saturated sphingomyelins only declined in WT1 NASH liver. Lysophosphatidylcholine concentrations were quite normal in NASH and only one of the 12 altered phosphatidylcholine species declined in NASH liver of both groups. Very few phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol species were comparably regulated in NASH liver of both animal groups. Seven of these lipid species declined and two increased in NASH. Notably, hepatic mRNA expression of proinflammatory (F4/80, CD68, IL-6, TNF and chemerin) and profibrotic genes (TGF beta and alpha SMA) was comparable in WT1 and WT2 mice. Conclusions Mice housed and bred in different animal facilities had comparable disease severity of NASH whereas liver lipids varied among the groups. Thus, there was no specific lipid signature for NASH in the MCD model. Electronic supplementary material The online version of this article (10.1186/s12944-019-1114-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany.
| |
Collapse
|
23
|
Samji NS, Verma R, Satapathy SK. Magnitude of Nonalcoholic Fatty Liver Disease: Western Perspective. J Clin Exp Hepatol 2019; 9:497-505. [PMID: 31516266 PMCID: PMC6728535 DOI: 10.1016/j.jceh.2019.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is continuing to rise worldwide, and it is estimated that this disquieting trend will continue for another 10-15 years before prevalence begins to decrease. NAFLD is the hepatic manifestation of metabolic syndrome. As obesity, diabetes, and other lifestyle-related diseases continue to rise, the spectrum of NAFLD, e.g., nonalcoholic steatohepatitis, liver fibrosis, liver cirrhosis, liver-related morbidity, and mortality, will increase in parallel. Its widespread prevalence and associated economic burden have drawn significant attention, and a multitude of pharmaceutical companies are participating in active research trying to find a "cure". Unfortunately, as of now, no targeted treatment exists to treat this condition, and therefore, emphasis has been on its prevention. The current review focuses on the epidemiology, clinical characteristics, risk factors, and clinical outcomes of NAFLD in Western countries. It is important to understand the magnitude of NAFLD and its risk factors in Western countries where the prevalence of NAFLD has now reached epidemic proportions to identify the best strategy to prevent and possibly control this epidemic.
Collapse
Affiliation(s)
- Naga S. Samji
- Tenova Cleveland Hospital, 2305 Chambliss Ave NW, Cleveland, TN, 37311, USA
| | - Rajanshu Verma
- Tenova Cleveland Hospital, 2305 Chambliss Ave NW, Cleveland, TN, 37311, USA
- Division of Transplant Surgery, Department of Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN, 38139, USA
| | - Sanjaya K. Satapathy
- Division of Hepatology and Sandra Atlas Bass Center for Liver Diseases, Northwell Health, Manhasset, NY, 11030, USA
| |
Collapse
|
24
|
Liu Q, Xue F, Meng J, Liu SS, Chen LZ, Gao H, Geng N, Jin WW, Xin YN, Xuan SY. TRIB1 rs17321515 and rs2954029 gene polymorphisms increase the risk of non-alcoholic fatty liver disease in Chinese Han population. Lipids Health Dis 2019; 18:61. [PMID: 30851741 PMCID: PMC6408849 DOI: 10.1186/s12944-019-1001-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of the lipid homeostasis is an independent risk factor for non-alcoholic fatty liver disease (NAFLD). Some studies had demonstrated that TRIB1 gene polymorphisms affect the plasma lipids metabolism, but no related data was available for TRIB1 gene polymorphisms in the lipids metabolism in Chinses Han population. The present study was conducted to investigate the association between TRIB1 gene polymorphisms (rs17321515 and rs2954029) and the risk of NAFLD in Chinese Han population and their effects on serum lipid profiles. PATIENTS AND METHODS TRIB1 rs17321515 and rs2954029 gene polymorphisms were genotyped using the polymerase chain reaction (PCR) in B-type ultrasonography-proven NAFLD patients (n = 146) and healthy controls (n = 175). Serum lipid profiles were determined using biochemical methods. Statistical analyses were performed using SPSS 22.0 statistical software. RESULTS The allele distributions of TRIB1 rs17321515 A and rs2954029 A were significant different between the NAFLD patients and healthy controls (P = 0.026, P = 0.045, respectively). The genotype distribution of TRIB1 rs17321515 was significant different between NAFLD patients and healthy controls (P = 0.038). The TRIB1 rs17321515 GA + AA genotype and TRIB1 rs2954029 TA + AA genotype markedly increase the NAFLD risk (OR = 1.885; 95%CI: 1.157-3.070; OR = 1.627; 95%CI: 1.011-2.619, respectively), after adjusted for age, gender, and body mass index, the NAFLD risk still significant (OR = 2.240; 95%CI: 1.196-4.197; OR = 2.050; 95%CI: 1.110-3.786, respectively). In addition, TRIB1 rs17321515 A and rs2954029 A carriers possess the higher lipid profiles in the included subjects. CONCLUSIONS TRIB1 rs17321515 and rs2954029 were significant associated with the risk of NAFLD in Chinese Han population. The rs17321515 A and rs2954029 A allele increases the serum lipid profiles in Chinese Han population.
Collapse
Affiliation(s)
- Qun Liu
- Medical College of Qingdao University, Qingdao, 266071, China.,Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Feng Xue
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Jing Meng
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Shou-Sheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266071, China.,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China
| | - Li-Zhen Chen
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Hui Gao
- Medical College of Qingdao University, Qingdao, 266071, China.,Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China
| | - Ning Geng
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Wen-Wen Jin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Yong-Ning Xin
- Medical College of Qingdao University, Qingdao, 266071, China. .,Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| | - Shi-Ying Xuan
- Medical College of Qingdao University, Qingdao, 266071, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
25
|
Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? Curr Opin Clin Nutr Metab Care 2019; 22:103-110. [PMID: 30601174 PMCID: PMC6355343 DOI: 10.1097/mco.0000000000000539] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide. The incidence of NAFLD parallels the prevalence of obesity. Moreover, NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). As such, NAFLD has become a major public health concern. We discuss recent clinical trials and meta-analyses evaluating the efficacy of C20-22 ω3 polyunsaturated fatty acids (PUFA) to attenuate preexisting NAFLD in adults and children. RECENT FINDINGS Humans with NAFLD and NASH; and preclinical mouse models of NASH, have a high abundance of hepatic saturated (SFA) and monounsaturated (MUFA) fat, but a low abundance of hepatic C20-22 ω3 PUFA. This change in hepatic fat type and abundance is associated with hepatic lipotoxicity, inflammation, oxidative stress and fibrosis. Recent meta-analyses and clinical trials evaluated the capacity of C20-22 ω3 PUFA dietary supplementation to improve health outcomes in adults and children with preexisting NAFLD. Diets supplemented with docosahexaenoic acid (DHA, 22 : 6,ω3) alone or with eicosapentaenoic acid (EPA, 20 : 5,ω3) are tolerated and effective at lowering liver fat in NAFLD patients. However, outcomes are mixed with respect to C20-22 ω3 PUFA attenuation of more severe NAFLD markers, such as hepatic injury, inflammation and fibrosis. SUMMARY These studies suggest that dietary supplementation with C20-22 ω3 PUFA should be considered as a viable and effective option to lower liver fat in obese adults and children with NAFLD.
Collapse
Affiliation(s)
| | - Donald B. Jump
- Address correspondence to: Donald B. Jump, Ph.D., School of Biological and Population Health Sciences, 107A Milam Hall, Oregon State University, Corvallis, OR 97331-5109, Phone: 541-737-4007; FAX: 541-737-6914,
| |
Collapse
|