1
|
Case NT, Gurr SJ, Fisher MC, Blehert DS, Boone C, Casadevall A, Chowdhary A, Cuomo CA, Currie CR, Denning DW, Ene IV, Fritz-Laylin LK, Gerstein AC, Gow NAR, Gusa A, Iliev ID, James TY, Jin H, Kahmann R, Klein BS, Kronstad JW, Ost KS, Peay KG, Shapiro RS, Sheppard DC, Shlezinger N, Stajich JE, Stukenbrock EH, Taylor JW, Wright GD, Cowen LE, Heitman J, Segre JA. Fungal impacts on Earth's ecosystems. Nature 2025; 638:49-57. [PMID: 39910383 PMCID: PMC11970531 DOI: 10.1038/s41586-024-08419-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/18/2024] [Indexed: 02/07/2025]
Abstract
Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.
Collapse
Affiliation(s)
- Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah J Gurr
- Biosciences, University of Exeter, Exeter, UK
- University of Utrecht, Utrecht, The Netherlands
| | - Matthew C Fisher
- MRC Center for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - David S Blehert
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Christina A Cuomo
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Cameron R Currie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Iuliana V Ene
- Fungal Heterogeneity Group, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Aleeza C Gerstein
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Asiya Gusa
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bruce S Klein
- Departments of Pediatrics, Medicine and Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Kabir G Peay
- Departments of Biology and Earth System Science, Stanford University, Stanford, CA, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Donald C Sheppard
- Departments of Medicine and Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Neta Shlezinger
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Eva H Stukenbrock
- Christian Albrecht University of Kiel and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gerard D Wright
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Jimenez IA, Stempinski PR, Dragotakes Q, Greengo SD, Sanchez Ramirez L, Casadevall A. The buoyancy of cryptococcal cells and its implications for transport and persistence of Cryptococcus in aqueous environments. mSphere 2024; 9:e0084824. [PMID: 39601568 DOI: 10.1128/msphere.00848-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Cryptococcus is a genus of saprophytic fungi with global distribution. Two species complexes, Cryptococcus neoformans and Cryptococcus gattii, pose health risks to humans and animals. Cryptococcal infections result from inhalation of aerosolized spores and/or desiccated yeasts from terrestrial reservoirs such as soil and trees. More recently, C. gattii has been implicated in infections in marine mammals, suggesting that inhalation of cells from the air-water interface is also an important, yet understudied, mode of respiratory exposure. Based on historical records and epidemiological factors, water transport has been hypothesized to play a role in the spread of C. gattii from tropical to temperate environments. However, the dynamics of fungal persistence and transport in water have not been fully studied. The size of the cryptococcal capsule was previously shown to reduce cell density and increase buoyancy. Here, we demonstrate that cell buoyancy is also impacted by the salinity of the solution in which cells are suspended, with the formation of a halocline significantly slowing the rate of settling and resulting in persistence of C. neoformans within 1 cm of the water surface for over 60 min and C. gattii for 4-6 h. During the culture of three strains of C. gattii in yeast peptone dextrose media, we also identified aggregates of extracellular polysaccharide with complex structures, which we hypothesize from rafts that entrap cells and augment buoyancy. These findings illustrate new mechanisms by which cryptococcal cells may persist in aquatic environments, with important implications for aqueous transport and pathogen exposure. IMPORTANCE Cryptococcosis is a major fungal disease leading to morbidity and mortality worldwide. Cryptococcus neoformans is a major fungal species of public health concern, causing opportunistic systemic infections in immunocompromised patients. Cryptococcus gattii was traditionally a pathogenic fungus confined primarily to tropical regions, but in the 1990s, it emerged in the temperate climates of British Columbia, Canada and the Pacific Northwest of the United States. Outbreaks in these areas also led to the first host record of cryptococcosis in free-ranging cetaceans. C. gattii is particularly concerning as an emerging fungal pathogen due to its capacity to cause clinical disease in immunocompetent patients, its recent spread to a new ecological niche, and its higher resistance to antifungal therapies. Our research defines fungal characteristics that influence the transport of cryptococci through water and persistence of fungal cells near the water surface, improving our understanding of potential mechanisms for cryptococcal environmental transport.
Collapse
Affiliation(s)
- Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Piotr R Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Seth D Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lia Sanchez Ramirez
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Jimenez IA, Stempinski PR, Dragotakes Q, Greengo SD, Ramirez LS, Casadevall A. The buoyancy of cryptococcal cells and its implications for transport and persistence of Cryptococcus in aqueous environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595024. [PMID: 38826196 PMCID: PMC11142132 DOI: 10.1101/2024.05.20.595024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cryptococcus is a genus of saprophytic fungi with global distribution. Two species complexes, C. neoformans and C. gattii, pose health risks to humans and animals. Cryptococcal infections result from inhalation of aerosolized spores and/or desiccated yeasts from terrestrial reservoirs such as soil, trees, and avian guano. More recently, C. gattii has been implicated in infections in marine mammals, suggesting that inhalation of liquid droplets or aerosols from the air-water interface is also an important, yet understudied, mode of respiratory exposure. Water transport has also been suggested to play a role in the spread of C. gattii from tropical to temperate environments. However, the dynamics of fungal survival, persistence, and transport via water have not been fully studied. The size of the cryptococcal capsule was previously shown to reduce cell density and increase buoyancy. Here, we demonstrate that cell buoyancy is also impacted by the salinity of the media in which cells are suspended, with formation of a halocline interface significantly slowing the rate of settling of cryptococcal cells through water, resulting in persistence of C. neoformans within 1 cm of the air-water interface for over 60 min and C. gattii for 4-6 h. Our data also showed that during culture in yeast peptone dextrose media (YPD), polysaccharide accumulating in the supernatant formed a raft that augmented buoyancy and further slowed settling of cryptococcal cells. These findings illustrate new mechanisms by which cryptococcal cells may persist in aquatic environments, with important implications for aqueous transport and pathogen exposure.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Piotr R. Stempinski
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Seth D. Greengo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lia Sanchez Ramirez
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pace CN, Haulena M, Drumm HE, Akhurst L, Raverty SA. CAUSES AND TRENDS OF HARBOR SEAL (PHOCA VITULINA) MORTALITY ALONG THE BRITISH COLUMBIA COAST, CANADA, 2012-2020. J Wildl Dis 2023; 59:629-639. [PMID: 37540148 DOI: 10.7589/jwd-d-22-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 08/05/2023]
Abstract
A retrospective study was conducted to categorize and describe the causes of mortality in harbor seals (Phoca vitulina) along the British Columbia coast that presented to the Vancouver Aquarium Marine Mammal Rescue Centre (MMR) for rehabilitation from 2012 to 2020. Medical records for 1,279 predominantly perinatal live-stranded harbor seals recovered in this region were reviewed. Approximately 20.0% (256 individuals; 137 males, 118 females, 1 unknown) of these animals died while at MMR. Infectious disease was the most common cause of death, accounting for 60.5% of mortality across all age classes. This was followed by nonanthropogenic trauma (7.1%), metabolic illness (5.4%), nutritional deficiency (5.0%), parasitic illness (5.0%), congenital disorders (2.5%), and human-associated trauma (0.4%). Pups were the most common age class (87.4%) amongst mortalities and predominantly died of an infectious process (62.5%). Phocid herpesvirus-1 infection was identified in 18.9% of the mortalities, with the highest prevalence occurring in 2019 (30.8%). Fungal disease was detected in six seals: three cases of pulmonary mycosis due to Cryptococcus gattii and three cases consistent with mucormycosis. In six cases, mortality was attributed to congenital disorders. Two of these cases involved axial skeletal malformities that are not currently described in the literature. This is the first study to describe the causes of mortality in harbor seals undergoing rehabilitation in British Columbia.
Collapse
Affiliation(s)
- Courtney N Pace
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Hannah E Drumm
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Lindsaye Akhurst
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Stephen A Raverty
- Animal Health Center British Columbia Ministry of Agriculture, 1767 Angus Campbell Rd., Abbotsford, British Columbia V3G 2M3, Canada
| |
Collapse
|
5
|
Duignan P. Aquatic Mammals. PATHOLOGY AND EPIDEMIOLOGY OF AQUATIC ANIMAL DISEASES FOR PRACTITIONERS 2023:214-350. [DOI: 10.1002/9781119839729.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
RETROSPECTIVE REVIEW OF NEUROLOGIC DISEASE IN STRANDED ATLANTIC HARBOR SEALS ( PHOCA VITULINA CONCOLOR) ALONG THE NEW ENGLAND COAST. J Zoo Wildl Med 2023; 53:705-713. [PMID: 36640072 DOI: 10.1638/2021-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Harbor seals (Phoca vitulina) are a common species admitted to marine mammal rehabilitation facilities. As important indicators of marine ecosystem health, monitoring trends of disease in harbor seal populations is critical. However, few studies have evaluated neurologic disease in this species. The general objective of this study was to retrospectively review and delineate neurologic disease in free-ranging Atlantic harbor seals (P. vitulina concolor) that stranded along the New England (United States) coast and entered a rehabilitation facility between 2006 and 2019. Any Atlantic harbor seal that stranded live along the New England coast during the study period and was diagnosed with neurologic disease on either antemortem or postmortem evaluation was included; medical records and pathologic reports were reviewed. From 211 records, 24 animals met the inclusion criteria. Prevalence of neurologic disease was 11% in the study population and six major categories of neurologic disease were identified including: inflammatory (54%), idiopathic (33%), trauma (4%), congenital (4%), and degenerative (4%). Of the seals diagnosed with neurologic disease, 13 (54%) seals died during rehabilitation, 10 (42%) seals were euthanized, and 1 (4%) seal survived to release. Unique cases seen included a seal with Dandy-Walker-like malformation and another seal with histopathologic findings compatible with neuroaxonal dystrophy, a degenerative process that has not been previously reported in marine mammals. This study contributes to the overall knowledge of the health of free-ranging Atlantic harbor seals and may aid clinicians in characterizing neurologic conditions that may be present in seals undergoing rehabilitation.
Collapse
|
7
|
Pang KL, Hassett BT, Shaumi A, Guo SY, Sakayaroj J, Chiang MWL, Yang CH, Jones EG. Pathogenic fungi of marine animals: A taxonomic perspective. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Teman SJ, Gaydos JK, Norman SA, Huggins JL, Lambourn DM, Calambokidis J, Ford JKB, Hanson MB, Haulena M, Zabek E, Cottrell P, Hoang L, Morshed M, Garner MM, Raverty S. Epizootiology of a Cryptococcus gattii outbreak in porpoises and dolphins from the Salish Sea. DISEASES OF AQUATIC ORGANISMS 2021; 146:129-143. [PMID: 34672263 DOI: 10.3354/dao03630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryptococcus gattii is a fungal pathogen that primarily affects the respiratory and nervous systems of humans and other animals. C. gattii emerged in temperate North America in 1999 as a multispecies outbreak of cryptococcosis in British Columbia (Canada) and Washington State and Oregon (USA), affecting humans, domestic animals, and wildlife. Here we describe the C. gattii epizootic in odontocetes. Cases of C. gattii were identified in 42 odontocetes in Washington and British Columbia between 1997 and 2016. Species affected included harbor porpoises Phocoena phocoena (n = 26), Dall's porpoises Phocoenoides dalli (n = 14), and Pacific white-sided dolphins Lagenorhynchus obliquidens (n = 2). The probable index case was identified in an adult male Dall's porpoise in 1997, 2 yr prior to the initial terrestrial outbreak. The spatiotemporal extent of the C. gattii epizootic was defined, and cases in odontocetes were found to be clustered around terrestrial C. gattii hotspots. Case-control analyses with stranded, uninfected odontocetes revealed that risk factors for infection were species (Dall's porpoises), age class (adult animals), and season (winter). This study suggests that mycoses are an emerging source of mortality for odontocetes, and that outbreaks may be associated with anthropogenic environmental disturbance.
Collapse
Affiliation(s)
- Sarah J Teman
- The SeaDoc Society, Karen C. Drayer Wildlife Health Center - Orcas Island Office, UC Davis School of Veterinary Medicine, Eastsound, WA 98245, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Danesi P, Falcaro C, Schmertmann LJ, de Miranda LHM, Krockenberger M, Malik R. Cryptococcus in Wildlife and Free-Living Mammals. J Fungi (Basel) 2021; 7:jof7010029. [PMID: 33419125 PMCID: PMC7825559 DOI: 10.3390/jof7010029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Cryptococcosis is typically a sporadic disease that affects a broad range of animal species globally. Disease is a consequence of infection with members of the Cryptococcus neoformans or Cryptococcus gattii species complexes. Although cryptococcosis in many domestic animals has been relatively well-characterized, free-living wildlife animal species are often neglected in the literature outside of occasional case reports. This review summarizes the clinical presentation, pathological findings and potential underlying causes of cryptococcosis in various other animals, including terrestrial wildlife species and marine mammals. The evaluation of the available literature supports the hypothesis that anatomy (particularly of the respiratory tract), behavior and environmental exposures of animals play vital roles in the outcome of host–pathogen–environment interactions resulting in different clinical scenarios. Key examples range from koalas, which exhibit primarily C. gattii species complex disease presumably due to their behavior and environmental exposure to eucalypts, to cetaceans, which show predominantly pulmonary lesions due to their unique respiratory anatomy. Understanding the factors at play in each clinical scenario is a powerful investigative tool, as wildlife species may act as disease sentinels.
Collapse
Affiliation(s)
- Patrizia Danesi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padua, Italy;
- Correspondence:
| | - Christian Falcaro
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Padua, Italy;
| | - Laura J. Schmertmann
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Luisa Helena Monteiro de Miranda
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Mark Krockenberger
- Veterinary Pathology Diagnostic Services, Sydney School of Veterinary Science, The University of Sydney, Sydney 2006, Australia; (L.J.S.); (L.H.M.d.M.); (M.K.)
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney 2006, Australia;
| |
Collapse
|
10
|
Engelthaler DM, Casadevall A. On the Emergence of Cryptococcus gattii in the Pacific Northwest: Ballast Tanks, Tsunamis, and Black Swans. mBio 2019; 10:e02193-19. [PMID: 31575770 PMCID: PMC6775458 DOI: 10.1128/mbio.02193-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The appearance of Cryptococcus gattii in the North American Pacific Northwest (PNW) in 1999 was an unexpected and is still an unexplained event. Recent phylogenomic analyses strongly suggest that this pathogenic fungus arrived in the PNW approximately 7 to 9 decades ago. In this paper, we theorize that the ancestors of the PNW C. gattii clones arrived in the area by shipborne transport, possibly in contaminated ballast, and established themselves in coastal waters early in the 20th century. In 1964, a tsunami flooded local coastal regions, transporting C. gattii to land. The occurrence of cryptococcosis in animals and humans 3 decades later suggests that adaptation to local environs took time, possibly requiring an increase in virulence and further dispersal. Tsunamis as a mechanism for the seeding of land with pathogenic waterborne microbes may have important implications for our understanding of how infectious diseases emerge in certain regions. This hypothesis suggests experimental work for its validation or refutation.
Collapse
|
11
|
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest. mSphere 2018; 3:mSphere00499-17. [PMID: 29359190 PMCID: PMC5770541 DOI: 10.1128/msphere.00499-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events. The emergence of Cryptococcus gattii, previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10−8, 1.59 × 10−8, and 2.70 × 10−8, respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10−9), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species’ slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events.
Collapse
|
12
|
Ecoepidemiology of Cryptococcus gattii in Developing Countries. J Fungi (Basel) 2017; 3:jof3040062. [PMID: 29371578 PMCID: PMC5753164 DOI: 10.3390/jof3040062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cryptococcosis is a systemic infection caused by species of the encapsulated yeast Cryptococcus. The disease may occur in immunocompromised and immunocompetent hosts and is acquired by the inhalation of infectious propagules present in the environment. Cryptococcus is distributed in a plethora of ecological niches, such as soil, pigeon droppings, and tree hollows, and each year new reservoirs are discovered, which helps researchers to better understand the epidemiology of the disease. In this review, we describe the ecoepidemiology of the C. gattii species complex focusing on clinical cases and ecological reservoirs in developing countries from different continents. We also discuss some important aspects related to the antifungal susceptibility of different species within the C. gattii species complex and bring new insights on the revised Cryptococcus taxonomy.
Collapse
|