1
|
Hernández-Flores A, Elías-Díaz D, Cubillo-Cervantes B, Ibarra-Cerdeña CN, Morán D, Arnal A, Chaves A. Fighting Strategies Against Chagas' Disease: A Review. Pathogens 2025; 14:183. [PMID: 40005558 PMCID: PMC11858460 DOI: 10.3390/pathogens14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a significant public health challenge, particularly in Latin America, where it is one of the most neglected diseases and is primarily transmitted by triatomine insects. The disease exhibits complexity due to its diverse transmission routes, including vectorial and non-vectorial mechanisms such as blood transfusions and congenital transmission. Effective monitoring and control strategies are critical to mitigating its impact. This review focuses on current monitoring and control efforts, emphasizing the importance of enhanced surveillance systems, improved risk assessments, and integrated vector control programs. Surveillance plays a pivotal role in early detection and timely intervention, particularly in endemic regions, while vector control remains central to reducing transmission. Moreover, the development of novel diagnostic tools, treatments, and vaccines is a crucial step in advancing control efforts. This review also highlights the involvement of local governments, international organizations, and civil society in executing these strategies, stressing the need for sustained political commitment to ensure the success of public health programs. By addressing key challenges in monitoring, control, and prevention, this review aims to provide insights and recommendations to further global efforts in reducing the burden of Chagas disease.
Collapse
Affiliation(s)
- Andrea Hernández-Flores
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
| | - Debora Elías-Díaz
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Bernadeth Cubillo-Cervantes
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Carlos N. Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Mérida, Merida 97205, Mexico;
| | - David Morán
- Unidad de Ecología y Epidemiología, Programa Arbovirus y Zoonoses, Centro para Estudios de Salud, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
- International Joint Laboratory IRD/UNAM ELDORADO, Merida 97205, Mexico
| | - Andrea Chaves
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT, Conare, San José 1174-1200, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica
| |
Collapse
|
2
|
Moo-Millan JI, Tu W, de Jesús Montalvo-Balam T, Ibarra-López MP, Hernández-Betancourt S, Jesús May-Concha I, Ibarra-Cerdeña CN, Barnabé C, Dumonteil E, Waleckx E. Presence of Trypanosoma cruzi TcI and Trypanosoma dionisii in sylvatic bats from Yucatan, Mexico. Trans R Soc Trop Med Hyg 2024; 118:659-665. [PMID: 38695180 DOI: 10.1093/trstmh/trae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Chagas disease is caused by Trypanosoma cruzi, whose genetic structure is divided into six discrete typing units (DTUs) known as TcI-TcVI. In the Yucatan Peninsula, Mexico, information regarding the DTUs circulating in wild mammals is scarce, while this is important knowledge for our understanding of T. cruzi transmission dynamics. METHODS In the current study, we sampled wild mammals in a sylvatic site of the Yucatan Peninsula and assessed their infection with T. cruzi by PCR. Then, for infected mammals, we amplified and sequenced nuclear and mitochondrial T. cruzi genetic markers for DTU identification. RESULTS In total, we captured 99 mammals belonging to the orders Chiroptera, Rodentia and Didelphimorphia. The prevalence of infection with T. cruzi was 9% (9/99; 95% CI [5, 16]), and we identified TcI in a Jamaican fruit bat, Artibeus jamaicensis. Moreover, we fortuitously identified Trypanosoma dionisii in another Jamaican fruit bat and detected an unidentified Trypanosoma species in a third specimen. While the latter discoveries were not expected because we used primers designed for T. cruzi, this study is the first to report the identification of T. dionisii in a bat from Yucatan, Mexico, adding to a recent first report of T. dionisii in bats from Veracruz, and first report of this Trypanosoma species in Mexico. CONCLUSION Further research is needed to enhance our knowledge of T. cruzi DTUs and Trypanosoma diversity circulating in wildlife in Southeastern Mexico.
Collapse
Affiliation(s)
- Joel Israel Moo-Millan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
| | - Weihong Tu
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St., 70112, New Orleans, Louisiana, USA
| | - Teresa de Jesús Montalvo-Balam
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
| | - Martha Pilar Ibarra-López
- Departamento de Ecología Humana, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Unidad Mérida, Antigua Carretera a Progreso Km 6, C.P. 97310, Mérida, Yucatán, México
| | - Silvia Hernández-Betancourt
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, C.P. 97100, Mérida, Yucatán, México
| | - Irving Jesús May-Concha
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
| | - Carlos Napoleón Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Unidad Mérida, Antigua Carretera a Progreso Km 6, C.P. 97310, Mérida, Yucatán, México
| | - Christian Barnabé
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Campus international de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St., 70112, New Orleans, Louisiana, USA
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Calle 43 #613 x 96, Col. Inalámbrica, C.P. 97225, Mérida, Yucatán, México
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Campus international de Baillarguet, 34398 Montpellier Cedex 5, France
- ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C., Sur 21 no 810, Colonia Benito Juárez, C.P. 94390, Orizaba, Veracruz, México
| |
Collapse
|
3
|
Forsyth C, Agudelo Higuita NI, Hamer SA, Ibarra-Cerdeña CN, Valdez-Tah A, Stigler Granados P, Hamer GL, Vingiello M, Beatty NL. Climate change and Trypanosoma cruzi transmission in North and central America. THE LANCET. MICROBE 2024; 5:100946. [PMID: 39284331 DOI: 10.1016/j.lanmic.2024.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 10/14/2024]
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. Transmission of T cruzi by triatomine vectors is dependent on diverse environmental and socioeconomic factors. Climate change, which is disrupting patterns of human habitation and land use, can affect the epidemiology of Chagas disease by influencing the distribution of vector and host species. We conducted a review using triatomine distribution as a proxy for T cruzi transmission in North America (Canada, Mexico, and the USA) and central America (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama) and investigated the association of T cruzi transmission with climate change, identifying 12 relevant studies. Most studies (n=9) modelled the effect of the scenario of climate change on the distribution of relevant vector species and found that global warming could sometimes favour and sometimes hinder triatomine distribution. There is a need for more research in parasite biology and social sciences to further understand how climate change and socioeconomic factors can affect the epidemiology of this neglected tropical disease.
Collapse
Affiliation(s)
- Colin Forsyth
- Drugs for Neglected Diseases Initiative, New York, NY, USA
| | - Nelson Ivan Agudelo Higuita
- Department of Medicine, Section of Infectious Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida, Mérida, Mexico
| | - Alba Valdez-Tah
- Consejo Nacional de Humanidades, Ciencias y Tecnologías - Escuela Nacional de Estudios Superiores Mérida, UNAM, Mérida, Mexico
| | | | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Michael Vingiello
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Norman L Beatty
- Department of Medicine, Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Martinez Ibarra JA, Martinez BO, Rodas Martinez AZ, Flores RA, Garcia CIM, Franco ER, Villalobos G, Martinez Hernandez F. Trypanosoma cruzi in Wild and Synanthropic Mammals in Two Regions of Mexico: A Fieldwork and Genetic Discrete Typing Unit Review. Vector Borne Zoonotic Dis 2024; 24:499-509. [PMID: 38836751 DOI: 10.1089/vbz.2023.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Background: Marsupials and rodents are the most important wild and synanthropic hosts of Trypanosoma cruzi due to the high frequency of infection, maintenance of diverse genetic populations of the parasite, and their close proximity to interact with both transmission cycles, sylvatic and peridomestic. Our aim was to identify the discrete typing units (DTU) of T. cruzi from different wild and synanthropic hosts in two regions of Mexico and to carry out a review of historical data focusing on current knowledge on the diversity and T. cruzi DTUs of host species. Materials and Methods: One hundred fifteen samples were obtained from two areas in Tabasco and Nayarit state. The presence of T. cruzi was evaluated by PCR. Results: The 12.6% (12/95) of samples from Tabasco and 65% (13/20) from Nayarit were found to be positive for parasite DNA. All the sequences analyzed were grouped in T. cruzi DTU I; low nucleotide diversity was observed in Tabasco (π = 0.00566, and ϴ = 0.00632), while high genetic diversity was observed in Nayarit sequences, up to 8.63 (π) to 11.10 (ϴ) times greater than Tabasco sequences. Genetic flow and migration between Tabasco, and Nayarit were scarce (FST = 0.37329 and Nm = 0.42), and genetic exchange was observed only between nearby areas. The bibliographic review of hosts in Mexico, together with our data, shows a heterogeneous T. cruzi prevalence in Chiroptera and domestic animals. For Atelidae and Canids, prevalence is generally below 25%. However, a high prevalence, greater than 25% and up to 100%, was recorded in Didelphimorphia, and Rodentia. Few studies in regions of Mexico have been described as infected with the parasite; in these, the genetic group with the highest prevalence is the DTU I. Conclusion: Marsupials and rodents are important reservoirs of T. cruzi; DTU I was frequently reported; however, recent genetic and reservoir studies have demonstrated the presence of greater diversity of genetic groups.
Collapse
Affiliation(s)
| | - Brizia Oria Martinez
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Mexico City, Mexico
| | | | - Rafael Avila Flores
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | | | - Emilio Rendon Franco
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Guiehdani Villalobos
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Fernando Martinez Hernandez
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Mexico City, Mexico
| |
Collapse
|
5
|
Sánchez-Soto MF, Gaona O, Vigueras-Galván AL, Suzán G, Falcón LI, Vázquez-Domínguez E. Prevalence and transmission of the most relevant zoonotic and vector-borne pathogens in the Yucatan peninsula: A review. PLoS Negl Trop Dis 2024; 18:e0012286. [PMID: 38959260 PMCID: PMC11251636 DOI: 10.1371/journal.pntd.0012286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/16/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Habitat modification and land use changes impact ecological interactions and alter the relationships between humans and nature. Mexico has experienced significant landscape modifications at the local and regional scales, with negative effects on forest cover and biological biodiversity, especially in the Yucatan peninsula in southeastern Mexico. Given the close relationship between landscape modification and the transmission of zoonotic and vector-borne diseases, it is essential to develop criteria for identifying priority zoonoses in the south of the country. METHODOLOGY/PRINCIPAL FINDINGS We reviewed 165 published studies on zoonotic and vector-borne diseases in the region (2015-2024). We identified the most frequent vectors, reservoirs, and hosts, the most prevalent infections, and the factors associated with transmission risk and the anthropogenic landscape modification in urban, rural, ecotone, and sylvatic habitats. The most relevant pathogens of zoonotic risk included Trypanosoma cruzi, arboviruses, Leishmania, Rickettsia, Leptospira, and Toxoplasma gondii. Trypanosoma cruzi was the vector-borne agent with the largest number of infected vertebrate species across habitats, while Leishmania and arboviruses were the ones that affected the greatest number of people. Dogs, cats, backyard animals, and their hematophagous ectoparasites are the most likely species maintaining the transmission cycles in human settlements, while rodents, opossums, bats, and other synanthropic animals facilitate connection and transmission cycles between forested habitats with human-modified landscapes. Pathogens displayed different prevalences between the landscapes, T. cruzi, arbovirus, and Leptospira infections were the most prevalent in urban and rural settlements, whereas Leishmania and Rickettsia had similar prevalence across habitats, likely due to the diversity and abundance of the infected vectors involved. The prevalence of T. gondii and Leptospira spp. may reflect poor hygiene conditions. Additionally, results suggest that prevalence of zoonotic and vector-borne diseases is higher in deforested areas and agricultural aggregates, and in sites with precarious health and infrastructure services. CONCLUSIONS Some hosts, vectors, and transmission trends of zoonotic and vector-borne diseases in the YP are well known but others remain poorly recognized. It is imperative to reinforce practices aimed at increasing the knowledge, monitoring, prevention, and control of these diseases at the regional level. We also emphasize the need to perform studies on a larger spatio-temporal scale under the socio-ecosystem perspective, to better elucidate the interactions between pathogens, hosts, vectors, environment, and sociocultural and economic aspects in this and many other tropical regions.
Collapse
Affiliation(s)
- Ma. Fernanda Sánchez-Soto
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Yucatán, México
| | - Osiris Gaona
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Yucatán, México
| | - Ana Laura Vigueras-Galván
- Laboratorio de Virología, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- International Joint Laboratory Ecosystem, biological diversity, habitat modifications, and risk of emerging pathogens and diseases in Mexico (ELDORADO), UNAM-IRD, Mérida, México
| | - Gerardo Suzán
- International Joint Laboratory Ecosystem, biological diversity, habitat modifications, and risk of emerging pathogens and diseases in Mexico (ELDORADO), UNAM-IRD, Mérida, México
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luisa I. Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Yucatán, México
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Doherty S, Saltré F, Llewelyn J, Strona G, Williams SE, Bradshaw CJA. Estimating co-extinction threats in terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5122-5138. [PMID: 37386726 DOI: 10.1111/gcb.16836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/27/2023] [Indexed: 07/01/2023]
Abstract
The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.
Collapse
Affiliation(s)
- Seamus Doherty
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Frédérik Saltré
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - John Llewelyn
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Giovanni Strona
- European Commission, Joint Research Centre, Ispra, Italy
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
AlGabbani Q. Nanotechnology: A promising strategy for the control of parasitic infections. Exp Parasitol 2023:108548. [PMID: 37196702 DOI: 10.1016/j.exppara.2023.108548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Annually 3.5 billion people are affected by the parasitic infections that results around 200,000 deaths per annum. Major diseases occur due to the neglected tropical parasites. Variety of methods have been used to treat the parasitic infections but now these methods have become ineffective due to the development of resistance in the parasites and some other side effects of traditional treatment methods. Previous methods include use of chemotherapeutic agents and ethnobotanicals for the treatment of parasites. Parasites have developed resistance against the chemotherapeutic agents. A major problem related to Ethnobotanicals is the unequal availability of drug at the target site which is responsible for the low efficacy of drug. Nanotechnology technology involves the manipulation of matter on a nanoscale level and has the potential to enhance the efficacy and safety of existing drugs, develop new treatments, and improve diagnostic methods for parasitic infections. Nanoparticles can be designed to selectively target parasites while minimizing toxicity to the host, and they can also be used to improve drug delivery and increase drug stability. Some important nanotechnology-based tools for parasitic control include nanoparticle-based drug delivery, nanoparticle diagnostics, nanoparticle vaccines, nanoparticle insecticides. Nanotechnology has the potential to revolutionize the field of parasitic control by providing new methods for detection, prevention and treatment of parasitic infections. This review discusses the current state of nanotechnology-based approaches for controlling parasitic infections and highlights their potential to revolutionize the field of parasitology.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
8
|
Disentangling the contributions of biotic and abiotic predictors in the niche and the species distribution model of Trypanosoma cruzi, etiological agent of Chagas disease. Acta Trop 2023; 238:106757. [PMID: 36402171 DOI: 10.1016/j.actatropica.2022.106757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The potential benefits of incorporating biotic, as well as abiotic, predictors in niche and species distribution models (SDMs), as well as how to achieve this, is still debated, with their interpretability and explanatory potential being particularly questioned. It is therefore important to stress test modelling methodologies that include biotic factors against use cases where there is ample knowledge of the potential biotic component of the niche. Relatively well studied and important vector-borne diseases offer just such an opportunity, where knowledge of the agents involved in the transmission cycle -vectors and hosts- can serve to calibrate and test the niche model and corresponding SDM. Here, we study the contributions of biotic -14 vectors, 459 potential hosts- and abiotic -258 climatic categories- predictors to the explanatory and predictive features of the niche and corresponding SDM for the etiological agent of Chagas disease, Trypanosoma cruzi, in Mexico. Using an established spatial data mining technique, we generate biotic, abiotic and biotic+abiotic niche and SDM models. We test our models by comparing predictions of the most important probable hosts of Chagas disease with a previously published list of confirmed hosts. We quantify, compare, and contrast the individual and total contributions of predictors to the niche and distribution of Chagas disease in Mexico. We assess the relative predictive potential of these variables to model performance, showing that models that include relevant biotic niche variables lead to more predictive, more ecologically realistic SDMs. Our research illustrates a useful general procedure for identifying and ranking potential biotic interactions and for assessing the relative importance of biotic and abiotic predictors. We conclude that the inclusion of both abiotic and biotic predictors in SDMs not only provides more predictive and accurate models but also models that are more understandable and explainable from an ecological niche perspective.
Collapse
|
9
|
Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y, Alouffi A. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life (Basel) 2022; 12:life12050750. [PMID: 35629416 PMCID: PMC9145985 DOI: 10.3390/life12050750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Protozoa, helminths and ectoparasites are the major groups of parasites distributed worldwide. Currently, these parasites are treated with chemotherapeutic antiprotozoal drugs, anti-helminthic and anti-ectoparasitic agents, but, with the passage of time, resistance to these drugs has developed due to overuse. In this scenario, nanoparticles are proving to be a major breakthrough in the treatment and control of parasitic diseases. In the last decade, there has been enormous development in the field of nanomedicine for parasitic control. Gold and silver nanoparticles have shown promising results in the treatments of various types of parasitic infections. These nanoparticles are synthesized through the use of various conventional and molecular technologies and have shown great efficacy. They work in different ways, that include damaging the parasite membrane, DNA (Deoxyribonucleic acid) disruption, protein synthesis inhibition and free-radical formation. These agents are effective against intracellular parasites as well. Other nanoparticles, such as iron, nickel, zinc and platinum, have also shown good results in the treatment and control of parasitic infections. It is hoped that this research subject will become the future of modern drug development. This review summarizes the methods that are used to synthesize nanoparticles and their possible mechanisms of action against parasites.
Collapse
Affiliation(s)
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Zaheer Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Ankara University, Ankara 06100, Turkey;
| | - Tauseef ur Rehman
- Department of Parasitology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (T.u.R.); (A.A.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture Multan, Multan 60650, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Arar Northern Border University, Arar 73211, Saudi Arabia;
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62217, Saudi Arabia;
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
- Correspondence: (T.u.R.); (A.A.)
| |
Collapse
|
10
|
Achilles GR, Kautzmann RP, Chagas HDF, Pereira-Silva JW, Almeida JF, Fonseca FR, da Silva MNF, Pessoa FAC, Nava AFD, Ríos-Velásquez CM. Presence of trypanosomatids, with emphasis on Leishmania, in Rodentia and Didelphimorphia mammals of a rural settlement in the central Amazon region. Mem Inst Oswaldo Cruz 2021; 116:e200427. [PMID: 34259735 PMCID: PMC8279123 DOI: 10.1590/0074-02760200427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Trypanosomatids are widespread and cause diseases - such as trypanosomiasis, sleeping sickness, Chagas disease, and cutaneous and visceral leishmaniasis - in animals and humans. These diseases occur in both rural and urban regions due to unplanned growth and deforestation. Thus, wild and synanthropic reservoir hosts living in residential areas are risk factors. OBJECTIVE We aimed to evaluate the diversity of small mammals (rodents and marsupials), and the occurrence of trypanosomatids, especially Leishmania, in the rural settlement of Presidente Figueiredo, Amazonas. METHODS Animals were collected using Sherman, Tomahawk, and Pitfall traps along 16 trails in four landscapes: continuous forest, forest with planting, planting, and peridomiciliar. Leishmania sp. was detected in liver samples by polymerase chain reaction targeting kDNA. FINDINGS Diversity was higher in forests with planting and lower around residences. In total, 135 mammals (81 rodents and 54 marsupials covering 14 genera) were captured. Rodents presented infection rates (IR) of 74% and marsupials of 48%. Rodents in domicile landscapes presented a higher IR (92.9%), while marsupials showed a higher IR in forests (53.3%). MAIN CONCLUSIONS The results suggest high prevalence of trypanosomatids across 12 mammalian genera possibly involved as reservoir hosts in the enzootic transmission of leishmaniasis in the Amazon’s rural, peridomiciliar landscape.
Collapse
Affiliation(s)
- Genevere Reis Achilles
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Rafael Pinto Kautzmann
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Zoologia, Manaus, AM, Brasil
| | - Haile Dean Figueiredo Chagas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Jordam William Pereira-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Jéssica Feijó Almeida
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Condições de Vida e Situações de Saúde na Amazônia, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Fernanda Rodrigues Fonseca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | | | - Felipe Arley Costa Pessoa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Alessandra Ferreira Dales Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| | - Claudia María Ríos-Velásquez
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, AM, Brasil
| |
Collapse
|
11
|
Chaves A, Piche-Ovares M, Ibarra-Cerdeña CN, Corrales-Aguilar E, Suzán G, Moreira-Soto A, Gutiérrez-Espeleta GA. Serosurvey of Nonhuman Primates in Costa Rica at the Human-Wildlife Interface Reveals High Exposure to Flaviviruses. INSECTS 2021; 12:insects12060554. [PMID: 34203687 PMCID: PMC8232092 DOI: 10.3390/insects12060554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The presence of flavivirus-specific antibodies in neotropical non-human primates (NPs) (i.e., dengue virus) is well known. However, it is unclear if dengue virus or other flaviviruses could be maintained in sylvatic cycles. We detected the presence of antibodies against dengue virus (DENV-1, DENV-2), Saint Louis encephalitis virus (SLEV), West Nile virus (WNV), and several undetermined flaviviruses in NPs in Costa Rica. Our work suggests continuous exposure of NPs to several flaviviruses in Costa Rica. These findings open the question of whether bidirectional transmission between humans and non-human primates can occur due to human encroachment into NP habitats, the movement of NP into urban settings, or bridging vectors. Abstract Arthropod-borne viruses belonging to the flavivirus genus possess an enormous relevance in public health. Neotropical non-human primates (NPs) have been proposed to be susceptible to flavivirus infections due to their arboreal and diurnal habits, their genetic similarity to humans, and their relative closeness to humans. However, the only known flavivirus in the American continent maintained by sylvatic cycles involving NPs is yellow fever virus (YFV), and NPs’ role as potential hosts of other flaviviruses is still unknown. Here, we examined flavivirus exposure in 86 serum samples including 83.7% samples from free-range and 16.3% from captive NPs living in flavivirus-endemic regions of Costa Rica. Serum samples were opportunistically collected throughout Costa Rica in 2000–2015. We used a highly specific micro-plaque reduction neutralization test (micro-PRNT) to determine the presence of antibodies against YFV, dengue virus 1–4 (DENV), Zika virus, West Nile virus (WNV), and Saint Louis encephalitis virus (SLEV). We found evidence of seropositive NPs with homotypic reactivity to SLEV 11.6% (10/86), DENV 10.5% (9/86), and WNV 2.3% (2/86). Heterotypic reactivity was determined in 3.5% (3/86) of individuals against DENV, 1.2% (1/86) against SLEV, and 1.2% (1/86) against WNV. We found that 13.9% (12/86) of NPs were positive for an undetermined flavivirus species. No antibodies against DENV-3, DENV-4, YFV, or ZIKV were found. This work provides compelling serological evidence of flavivirus exposure in Costa Rican NPs, in particular to DENV, SLEV, and WNV. The range of years of sampling and the region from where positives were detected coincide with those in which peaks of DENV in human populations were registered, suggesting bidirectional exposure due to human–wildlife contact or bridging vectors. Our work suggests the continuous exposure of wildlife populations to various flaviviruses of public health importance and underscores the necessity of further surveillance of flaviviruses at the human–wildlife interface in Central America.
Collapse
Affiliation(s)
- Andrea Chaves
- School of Biology, University of Costa Rica, San José 11501-2060, Costa Rica;
- Department of Ethology, Wildlife and Laboratory Animals, School of Veterinary and Zootechnics, National Autonomous University of Mexico, Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico;
- Correspondence:
| | - Martha Piche-Ovares
- Virology-CIET (Center of Research in Tropical Diseases), University of Costa Rica, San José 2060-1000, Costa Rica; (M.P.-O.); (E.C.-A.); (A.M.-S.)
| | | | - Eugenia Corrales-Aguilar
- Virology-CIET (Center of Research in Tropical Diseases), University of Costa Rica, San José 2060-1000, Costa Rica; (M.P.-O.); (E.C.-A.); (A.M.-S.)
| | - Gerardo Suzán
- Department of Ethology, Wildlife and Laboratory Animals, School of Veterinary and Zootechnics, National Autonomous University of Mexico, Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico;
| | - Andres Moreira-Soto
- Virology-CIET (Center of Research in Tropical Diseases), University of Costa Rica, San José 2060-1000, Costa Rica; (M.P.-O.); (E.C.-A.); (A.M.-S.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10098 Berlin, Germany
| | | |
Collapse
|
12
|
Measuring spatial co-occurrences of species potentially involved in Leishmania transmission cycles through a predictive and fieldwork approach. Sci Rep 2021; 11:6789. [PMID: 33762622 PMCID: PMC7990927 DOI: 10.1038/s41598-021-85763-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
The Leishmaniases are a group of neglected tropical diseases caused by different species of the protozoan parasite Leishmania, transmitted to its mammalian hosts by the bites of several species of female Phlebotominae sand flies. Many factors have contributed to shifts in the disease distribution and eco epidemiological outcomes, resulting in the emergence of Cutaneous Leishmaniasis outbreaks and the incrimination of vectors in unreported regions. New research development is vital for establishing the new paradigms of the present transmission cycles, hoping to facilitate new control strategies to reduce parasite transmission. Hereafter, this work aims to model and infer the current transmission cycles of Cutaneous Leishmaniasis in Colombia defined by vector and mammal species distributed and interacting in the different regions and validate them by performing sand fly and mammal collections. Vector-host co-occurrences were computed considering five ecoregions of the Colombian territory defined by the World Wide Fund for Nature (WWF) and downloaded from The Nature Conservancy TNC Maps website. Four validation sites were selected based on Cutaneous Leishmaniasis prevalence reports. Sand flies and mammals captured in the field were processed, and species were defined using conventional taxonomic guidelines. Detection of infection by Leishmania was performed to identify transmission cycles in the selected areas. This study uses predictive models based on available information from international gazetteers and fieldwork to confirm sand fly and mammalian species' sustaining Leishmania transmission cycles. Our results show an uneven distribution of mammal samples in Colombia, possibly due to sampling bias, since only two departments contributed 50% of the available samples. Bats were the vertebrates with the highest score values, suggesting substantial spatial overlap with sand flies than the rest of the vertebrates evaluated. Fieldwork allowed identifying three circulating Leishmania species, isolated from three sand fly species. In the Montane Forest ecosystem, one small marsupial, Gracilinanus marica, was found infected with Leishmania panamensis, constituting the first record of this species infected with Leishmania. In the same locality, an infected sand fly, Pintomyia pia, was found. The overall results could support the understanding of the current transmission cycles of Leishmaniasis in Colombia.
Collapse
|
13
|
Moo-Llanes DA, Montes de Oca-Aguilar AC, Rodríguez-Rojas JJ. Pattern of climate connectivity and equivalent niche of Triatominae species of the Phyllosoma complex. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:440-451. [PMID: 32697402 DOI: 10.1111/mve.12461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The Phyllosoma complex is a Triatominae (Hemiptera: Reduviidae) group of medical importance involved in Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) transmission. Most of the members of this group are endemic and sympatric species with distribution in Mexico and the southern U.S.A. We employed MaxEnt to construct ecological niche models of nine species of Triatominae to test three hypothesis: (a) whether species with a broad climatic niche breadth occupy a broader geographical range than species with a narrow climatic breadth, (b) whether species with broad distribution present high degree of climatic fragmentation/isolation, which was tested through landscape metrics; and (c) whether the species share the same climatic niche space (niche conservatism) considered through an equivalence test implemented in ENMtools. Overall, our results suggest that the geographical distribution of this complex is influenced mainly by temperature seasonality where all suitable areas are places of current and potential transmission of T. cruzi. Niche breadth in the Phyllosoma complex is associated with the geographical distribution range, and the geographical range affects the climatic connectivity. We found no strong evidence of niche climatic divergence in members of this complex. We discuss the epidemiological implications of these results.
Collapse
Affiliation(s)
- D A Moo-Llanes
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), 19 Poniente, Tapachula, Chiapas, 30700, Mexico
| | | | - J J Rodríguez-Rojas
- Universidad Autónoma de Nuevo León (UANL), Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Unidad de Patógenos Emergentes y Vectores, Monterrey, Nuevo León, 64460, Mexico
| |
Collapse
|
14
|
Villalobos G, Nava-Bolaños A, De Fuentes-Vicente JA, Téllez-Rendón JL, Huerta H, Martínez-Hernández F, Rocha-Ortega M, Gutiérrez-Cabrera AE, Ibarra-Cerdeña CN, Córdoba-Aguilar A. A reduction in ecological niche for Trypanosoma cruzi-infected triatomine bugs. Parasit Vectors 2019; 12:240. [PMID: 31097007 PMCID: PMC6524312 DOI: 10.1186/s13071-019-3489-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/06/2019] [Indexed: 01/20/2023] Open
Abstract
Background Theory predicts that parasites can affect and thus drive their hosts’ niche. Testing this prediction is key, especially for vector-borne diseases including Chagas disease. Here, we examined the niche use of seven triatomine species that occur in Mexico, based on whether they are infected or not with Trypanosoma cruzi, the vectors and causative parasites of Chagas disease, respectively. Presence data for seven species of triatomines (Triatoma barberi, T. dimidiata, T. longipennis, T. mazzottii, T. pallidipennis, T. phyllosoma and T. picturata) were used and divided into populations infected and not infected by T. cruzi. Species distribution models were generated with Maxent 3.3.3k. Using distribution models, niche analysis tests of amplitude and distance to centroids were carried out for infected vs non-infected populations within species. Results Infected populations of bugs of six out of the seven triatomine species showed a reduced ecological space compared to non-infected populations. In all but one case (T. pallidipennis), the niche used by infected populations was close to the niche centroid of its insect host. Conclusions Trypanosoma cruzi may have selected for a restricted niche amplitude in triatomines, although we are unaware of the underlying reasons. Possibly the fact that T. cruzi infection bears a fitness cost for triatomines is what narrows the niche breadth of the insects. Our results imply that Chagas control programmes should consider whether bugs are infected in models of triatomine distribution. Electronic supplementary material The online version of this article (10.1186/s13071-019-3489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guiehdani Villalobos
- Hospital General "Dr. Manuel Gea González", Secretaría de Salud, Mexico City, Mexico.,Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Angela Nava-Bolaños
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José A De Fuentes-Vicente
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Juan Luis Téllez-Rendón
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | - Herón Huerta
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | | | - Maya Rocha-Ortega
- Hospital General "Dr. Manuel Gea González", Secretaría de Salud, Mexico City, Mexico
| | - Ana E Gutiérrez-Cabrera
- CONACyT-Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Unidad Mérida, 97310, Mérida, Yucatán, Mexico
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
15
|
Moo-Llanes DA, Pech-May A, Ibarra-Cerdeña CN, Rebollar-Téllez EA, Ramsey JM. Inferring distributional shifts of epidemiologically important North and Central American sandflies from Pleistocene to future scenarios. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:31-43. [PMID: 30039583 DOI: 10.1111/mve.12326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Nine sandfly species (Diptera: Psychodidae) are suspected or proven vectors of Leishmania spp. in the North and Central America region. The ecological niches for these nine species were modelled in three time periods and the overlaps for all time periods of the geographic predictions (G space), and of ecological dimensions using pairwise comparisons of equivalent niches (E space), were calculated. Two Nearctic, six Neotropical and one species in both bioregions occupied a reduced number of distribution areas. The ecological niche projections for most sandfly species other than Lutzomyia shannoni and Lutzomyia ovallesi have not expanded significantly since the Pleistocene. Only three species increase significantly to 2050, whereas all others remain stable. Lutzomyia longipalpis shared a similar ecological niche with more species than any other, although both L. longipalpis and Lutzomyia olmeca olmeca had conserved distributions over time. Climate change, at both regional and local levels, will play a significant role in the temporal and spatial distributions of sandfly species.
Collapse
Affiliation(s)
- D A Moo-Llanes
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Federal District, Mexico
| | - A Pech-May
- Instituto Nacional de Medicina Tropical, Ministerio de Salud de la Nación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Iguazú, Misiones, Argentina
| | - C N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida, Mérida, Yucatán, Mexico
| | - E A Rebollar-Téllez
- Facultad de Ciencias Biológicas, Zoología de Invertebrados, Universidad Autónoma de Nuevo León, San Nicolás de los Garzas, Nuevo León, Mexico
| | - J M Ramsey
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| |
Collapse
|
16
|
Genetic variation and phylogeography of the Triatoma dimidiata complex evidence a potential center of origin and recent divergence of haplogroups having differential Trypanosoma cruzi and DTU infections. PLoS Negl Trop Dis 2019; 13:e0007044. [PMID: 30689662 PMCID: PMC6366694 DOI: 10.1371/journal.pntd.0007044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/07/2019] [Accepted: 12/02/2018] [Indexed: 11/19/2022] Open
Abstract
The population genetics of Triatoma dimidiata haplogroups was analyzed at landscape and sub-regional scales in Chiapas and regional level across the Mexican Neotropics, and phylogeography of the complex was re-analyzed across its complete geographic range. Two contiguous fragments of the ND4 gene were analyzed due to bias from differential haplogroup specificity using a previously designed sequence. At both landscape (anthropic modification gradient) and regional (demographic, fragmentation, biogeographic, climate) scales, lowest T. dimidiata genetic diversity occurs where there is greatest historical anthropic modification, and where T. cruzi infection prevalence is significantly highest. Trypanosoma cruzi prevalence was significantly higher than expected in haplogroups 1 and 3, while lower than expected in haplogroup 2. There was also a significant difference of DTUI and DTUVI infection frequencies in both haplogroups 1 and 3, while no difference of either in haplogroup 2. All haplogroups from the Mexican Neotropics had moderate to high haplotype diversity, while greatest genetic differentiation was between haplogroups 1 and 3 (above FST = 0.868, p < 0.0001). Divergence of the complex from the MRCA was estimated between 0.97 MYA (95% HPD interval = 0.55–1.53 MYA) and 0.85 MYA (95% HPD interval = 0.42–1.5 MYA) for ND4A and both concatenated fragments, respectively, with primary divergence from the MRCA of haplogroups 2 and 3. Effective population size for Mexican haplogroups 1 and 2 increased between 0.02 and 0.03 MYA. This study supports previous ecological niche evidence for the complex´s origin surrounding the Tehuantepec Isthmus, and provides evidence for recent divergence of three primary dimidiata haplogroups, with differential T. cruzi infection frequency and DTU specificity, important components of vector capacity. Triatoma dimidiata is one of the broadest distributed triatomine species´ complexes transmitting Trypanosoma cruzi. In Mexico, three haplogroups of the T. dimidiata complex have been reported and all are primary vectors of Chagas disease south of the Tehuantepec Isthmus. Given their epidemiological importance, the question arises whether haplogroups have similar genetic diversity in domestic/modified landscapes, as well as infection characteristics and parasite DTU associations, key components of vector capacity. The aim of the present study was to analyze Triatoma dimidiata population genetics across landscapes, sub-regional, regional, and global Neotropical realm scales, using two contiguous fragments of the ND4 gene. Our results support previous evidence for the complex´s origin surrounding the Tehuantepec Isthmus, and provides evidence for recent divergence of three principal dimidiata haplogroups and significant secondary divergence within each. Differential T. cruzi prevalence and Discrete Typing Unit (DTU) specificity for individual haplogroups provide evidence for potential differential vector capacity within the complex in Mexico.
Collapse
|
17
|
May-Concha IJ, Cruz-López LC, Rojas JC, Ramsey JM. "Sweeter than a rose", at least to Triatoma phyllosoma complex males (Triatominae: Reduviidae). Parasit Vectors 2018; 11:95. [PMID: 29454375 PMCID: PMC5816367 DOI: 10.1186/s13071-018-2677-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Triatoma phyllosoma complex of Trypanosoma cruzi vectors (Triatominae: Reduviidae) is distributed in both Neotropical and Nearctic bioregions of Mexico. METHODS Volatile organic compounds emitted by disturbed Triatoma longipennis, Triatoma pallidipennis and Triatoma phyllosoma, and from their Brindley's and metasternal glands, were identified using solid-phase microextraction coupled with gas chromatography-mass spectrometry. RESULTS Disturbed bugs and the metasternal glands from T. phyllosoma released or had significantly fewer compounds than T. longipennis and T. pallidipennis. Isobutyric acid was the most abundant compound secreted by disturbed bugs of the three species, while Brindley's glands of all species produced another four compounds: propanoic acid, isobutyric acid, pentyl butanoate, and 2-methyl hexanoic acid. Two novel compounds, both rose oxide isomers, were produced in MGs and released only by disturbed females of all three species, making this the first report in Triatominae of these monoterpenes. The principal compound in MGs of both sexes of T. longipennis and T. phyllosoma was 3-methyl-2-hexanone, while cis-rose oxide was the principal compound in T. pallidipennis females. The major components in male effluvia of T. pallidipennis were 2-decanol and 3-methyl-2-hexanone. CONCLUSION Discriminant analysis of volatile organic compounds was significant, separating the three species and was consistent with morphological and genetic evidence for species distinctions within the complex.
Collapse
Affiliation(s)
- Irving J. May-Concha
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública (CRISP-INSP), Tapachula, Chiapas Mexico
- Laboratorio de Investigación en Triatominos, Centro de Referencia de Vectores, Ministerio de Salud de la Nación (CeReVe), Hospital Colonia, Pabellón Rawson calle s, /n Córdoba, Argentina
| | - Leopoldo C. Cruz-López
- Grupo de Ecología y Manejo de Artrópodos, El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas Mexico
| | - Julio C. Rojas
- Grupo de Ecología y Manejo de Artrópodos, El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas Mexico
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública (CRISP-INSP), Tapachula, Chiapas Mexico
| |
Collapse
|
18
|
|
19
|
Georgieva AY, Gordon ER, Weirauch C. Sylvatic host associations of Triatominae and implications for Chagas disease reservoirs: a review and new host records based on archival specimens. PeerJ 2017; 5:e3826. [PMID: 28948106 PMCID: PMC5609523 DOI: 10.7717/peerj.3826] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The 152 extant species of kissing bug include important vectors of the debilitating, chronic, and often fatal Chagas disease, which affects several million people mainly in Central and South America. An understanding of the natural hosts of this speciose group of blood-feeding insects has and will continue to aid ongoing efforts to impede the spread of Chagas disease. However, information on kissing bug biology is piecemeal and scattered, developed using methods with varying levels of accuracy over more than 100 years. Existing host records are heavily biased towards well-studied primary vector species and are derived from primarily three different types of observations, associational, immunological or DNA-based, with varying reliability. METHODS We gather a comprehensive and unparalleled number of sources reporting host associations via rigorous targeted searches of publication databases to review all known natural, or sylvatic, host records including information on how each record was collected. We integrate this information with novel host records obtained via attempted amplification and sequencing of a ∼160 base pair (bp) region of the vertebrate 12S mitochondrial gene from the gastrointestinal tract of 64 archival specimens of Triatominae representing 19 species collected primarily in sylvatic habitats throughout the southern United States and Central and South America during the past 10 years. We show the utility of this method for uncovering novel and under-studied groups of Triatominae hosts, as well as detecting the presence of the Chagas disease pathogen via Polymerase Chain Reaction (PCR) of a ∼400 bp sequence of the trypanosome 18S gene. RESULTS New host associations for several groups of arboreal mammals were determined including sloths, New World monkeys, coatis, arboreal porcupines and, for the first time as a host of any Triatominae, tayras. A thorough review of previously documented sylvatic hosts, organized by triatomine species and the type of observation (associational, antibody-based, or DNA-based), is presented in a phylogenetic context and highlights large gaps in our knowledge of Triatominae biology. CONCLUSION The application of DNA-based methods of host identification towards additional species of Triatominae, including rarely collected species that may require use of archival specimens, is the most efficient and promising way to resolve recognized shortfalls.
Collapse
Affiliation(s)
- Anna Y. Georgieva
- Department of Entomology, University of California, Riverside, CA, United States of America
| | - Eric R.L. Gordon
- Department of Entomology, University of California, Riverside, CA, United States of America
| | - Christiane Weirauch
- Department of Entomology, University of California, Riverside, CA, United States of America
| |
Collapse
|