1
|
Longo C, Pierri C, Trani R, Mercurio M, Nonnis Marzano C, Corriero G, Aguilo-Arce J, Sini V, Massari F, Zambonin C, Vona D, Cotugno P, Ragni R, Masini S, Giangrande A, D'Onghia G, Ferriol P. Toward a green strategy of sponge mariculture and bioactive compounds recovery. Sci Rep 2025; 15:5999. [PMID: 39966515 PMCID: PMC11836350 DOI: 10.1038/s41598-025-90192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Sponges are benthic filter-feeder invertebrates capable to produce a variety of high value bioactive compounds. Nevertheless, exploitation of sponges as bio-factories requires scalable and sustainable strategies to supply sponge biomass without threatening wild natural populations and to minimize the consumption of toxic organic solvents in metabolites extraction and purification procedures. Sponges farming in integrated facilities nearby fish mariculture cages represents a highly efficient strategy combining the production of sponge biomass with bioremediation. Here we report the results of the in situ rearing of the keratose sponge Sarcotragus spinosulus developed within three years in an innovative Integrated Multi-Trophic Aquaculture system in the Gulf of Taranto (Southern Italy, Mediterranean Sea), capable to supply large-scale sponge biomass with a minimal impact on wild populations. Moreover, we demonstrate the proof of concept that it is possible to produce polyprenyl hydroquinones, selected as well-known bioactive model metabolites, in good yields, high purity degree and low organic solvent consumption, by means of an innovative protocol based on the combination of supercritical carbon dioxide fluid extraction and gel permeation chromatography. Such a combination of eco-friendly techniques paves the way to eco-sustainable supply of bioactive compounds from marine organisms highly profitable in terms of working times, costs, solvents, and energy saving.
Collapse
Affiliation(s)
- Caterina Longo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Cataldo Pierri
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Roberta Trani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Maria Mercurio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Carlotta Nonnis Marzano
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Giuseppe Corriero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Joseba Aguilo-Arce
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Valeria Sini
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Federica Massari
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Carlo Zambonin
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Danilo Vona
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pietro Cotugno
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - Roberta Ragni
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - Serena Masini
- ECOPAN SRL, Viale Virgilio, 142, 74121, Taranto, Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce, 73100, Monteroni, Lecce, Italy
| | - Gianfranco D'Onghia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, University of Balearic Islands, Car. de Valldemossa, km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
2
|
Turon M, Ford M, Maldonado M, Sitjà C, Riesgo A, Díez-Vives C. Microbiome changes through the ontogeny of the marine sponge Crambe crambe. ENVIRONMENTAL MICROBIOME 2024; 19:15. [PMID: 38468324 DOI: 10.1186/s40793-024-00556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood. Here, we investigated the microbiome composition of a common, low-microbial-abundance, Atlantic-Mediterranean sponge, Crambe crambe, throughout its ontogeny, including adult individuals, brooded larvae, lecithotrophic free-swimming larvae, newly settled juveniles still lacking osculum, and juveniles with a functional osculum for filter feeding. RESULTS Using 16S rRNA gene analysis, we detected distinct microbiome compositions in each ontogenetic stage, with variations in composition, relative abundance, and diversity of microbial species. However, a particular dominant symbiont, Candidatus Beroebacter blanensis, previously described as the main symbiont of C. crambe, consistently occurred throughout all stages, an omnipresence that suggests vertical transmission from parents to offspring. This symbiont fluctuated in relative abundance across developmental stages, with pronounced prevalence in lecithotrophic stages. A major shift in microbial composition occurred as new settlers completed osculum formation and acquired filter-feeding capacity. Candidatus Beroebacter blanensis decreased significatively at this point. Microbial diversity peaked in filter-feeding stages, contrasting with the lower diversity of lecithotrophic stages. Furthermore, individual specific transmission patterns were detected, with greater microbial similarity between larvae and their respective parents compared to non-parental conspecifics. CONCLUSIONS These findings suggest a putative vertical transmission of the dominant symbiont, which could provide some metabolic advantage to non-filtering developmental stages of C. crambe. The increase in microbiome diversity with the onset of filter-feeding stages likely reflects enhanced interaction with environmental microbes, facilitating horizontal transmission. Conversely, lower microbiome diversity in lecithotrophic stages, prior to filter feeding, suggests incomplete symbiont transfer or potential symbiont digestion. This research provides novel information on the dynamics of the microbiome through sponge ontogeny, on the strategies for symbiont acquisition at each ontogenetic stage, and on the potential importance of symbionts during larval development.
Collapse
Affiliation(s)
- Marta Turon
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Madeline Ford
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Manuel Maldonado
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), c/Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Cèlia Sitjà
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), c/Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Cristina Díez-Vives
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
- Department of Systems Biology, Centro Nacional de Biotecnología, c/Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
4
|
Restoration of Marine Sponges—What Can We Learn from over a Century of Experimental Cultivation? WATER 2022. [DOI: 10.3390/w14071055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Marine sponges are the driver of many critical biological processes throughout various ecosystems. But anthropogenic and environmental pressures are rapidly compromising the diversity and abundance of Porifera worldwide. In our study, we reviewed the main experiences made on their cultivation to provide a roadmap of the best methodologies that could be applied to restore coastal sponge populations. We synthesized the results of experimental trials between 1950 and today to facilitate information on promising methods and materials. We detected a strong geographical imbalance between different ecoregions, as well as a shift of scientific effort from the investigation of “bath sponge” mariculture towards the rearing of bioactive compounds from sponges. Although sponge cultivation is arguably highly species-dependent, we further found that skeletal consistency in combination with taxonomy may be used to decide on appropriate techniques for future restoration initiatives.
Collapse
|
5
|
Manconi R, Cubeddu T, Pronzato R, Sanna MA, Nieddu G, Gaino E, Stocchino GA. Collagenic architecture and morphotraits in a marine basal metazoan as a model for bioinspired applied research. J Morphol 2022; 283:585-604. [PMID: 35119713 PMCID: PMC9306819 DOI: 10.1002/jmor.21460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
In some Porifera (Demospongiae: Keratosa), prototypes of the connective system are almost exclusively based on collagenic networks. We studied the topographic distribution, spatial layout, microtraits, and/or morphogenesis of these collagenic structures in Ircinia retidermata (Dictyoceratida: Irciniidae). Analyses were carried out on a clonal strain from sustainable experimental mariculture by using light and scanning electron microscopy. Histology revealed new insights on the widely diversified and complex hierarchical assemblage of collagenic structures. Key evolutionary novelties in the organization of sponge connective system were found out. The aquiferous canals are shaped as corrugate‐like pipelines conferring plasticity to the water circulation system. Compact clusters of elongated cells are putatively involved in a nutrient transferring system. Knob‐ended filaments are characterized by a banding pattern and micro‐components. Ectosome and outer endosome districts are the active fibrogenetic areas, where exogenous material constitutes an axial condensation nucleus for the ensuing morphogenesis. The new data can be useful to understand not only the evolutionary novelties occurring in the target taxon but also the morpho‐functional significance of its adaptive collagenic anatomical traits. In addition, data may give insights on both marine collagen sustainable applied researches along with evolutionary and phylogenetic analyses, thus highlighting sponges as a key renewable source for inspired biomaterials. Therefore, we also promote bioresources sustainable exploitation with the aim to provide new donors of marine collagen, thereby supporting conservation of wild populations/species.
Collapse
Affiliation(s)
- Renata Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Marina A Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Elda Gaino
- Viale Canepa 15/10, 16153 Sestri Ponente, Italy
| | | |
Collapse
|
6
|
Song Y, Qu Y, Cao X, Zhang W, Zhang F, Linhardt RJ, Yang Q. Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp. In Vitro Cell Dev Biol Anim 2021; 57:539-549. [PMID: 33948851 DOI: 10.1007/s11626-021-00578-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 01/27/2023]
Abstract
Sponges are among the most primitive multicellular organisms and well-known as a major source of marine natural products. Cultivation of sponge cells has long been an attractive topic due to the prominent evolutionary and cytological significance of sponges and as a potential approach to supply sponge-derived compounds. Sponge cell culture is carried out through culturing organized cell aggregates called 'primmorphs.' Most research culturing sponge cells has used unfractionated cells to develop primmorphs. In the current study, a tropical marine sponge Axinella sp., which contains the bioactive alkaloids, debromohymenialdisine (DBH), and hymenialdisine (HD), was used to obtain fractionated cells and the corresponding primmorphs. These alkaloids, DBH and HD, reportedly show pharmacological activities for treating osteoarthritis and Alzheimer's disease. Three different cell fractions were obtained, including enriched spherulous cells, large mesohyl cells, and small epithelial cells. These cell fractions were cultivated separately, forming aggregates that later developed into different kinds of primmorphs. The three kinds of primmorphs obtained were compared as regards to appearance, morphogenesis, and cellular composition. Additionally, the amount of alkaloid in the primmorphs-culture system was examined over a 30-d culturing period. During the culturing of enriched spherulous cells and developed primmorphs, the total amount of alkaloid declined notably. In addition, the speculation of alkaloid secretion and some phenomena that occurred during cell culturing are discussed.
Collapse
Affiliation(s)
- Yuefan Song
- College of Food Science and Engineering, Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian, China.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Yi Qu
- Dalian Environmental Monitoring Center, Dalian, China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Stocchino GA, Cubeddu T, Pronzato R, Sanna MA, Manconi R. Sponges architecture by colour: new insights into the fibres morphogenesis, skeletal spatial layout and morpho-anatomical traits of a marine horny sponge species (Porifera). THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1862316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- G. A. Stocchino
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - T. Cubeddu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - R. Pronzato
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, Genova, Italy
| | - M. A. Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - R. Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| |
Collapse
|