1
|
Branda F, Yon DK, Albanese M, Binetti E, Giovanetti M, Ciccozzi A, Ciccozzi M, Scarpa F, Ceccarelli G. Equine Influenza: Epidemiology, Pathogenesis, and Strategies for Prevention and Control. Viruses 2025; 17:302. [PMID: 40143233 PMCID: PMC11946173 DOI: 10.3390/v17030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Equine influenza (EI) is a highly contagious respiratory disease caused by the equine influenza virus (EIV), posing a significant threat to equine populations worldwide. EIV exhibits considerable antigenic variability due to its segmented genome, complicating long-term disease control efforts. Although infections are rarely fatal, EIV's high transmissibility results in widespread outbreaks, leading to substantial morbidity and considerable economic impacts on veterinary care, quarantine, and equestrian activities. The H3N8 subtype has undergone significant antigenic evolution, resulting in the emergence of distinct lineages, including Eurasian and American, with the Florida sublineage being particularly prevalent. Continuous genetic surveillance and regular updates to vaccine formulations are necessary to address antigenic drift and maintain vaccination efficacy. Additionally, rare cross-species transmissions have raised concerns regarding the zoonotic potential of EIV. This review provides a comprehensive overview of the epidemiology, pathogenesis, and prevention of EI, emphasizing vaccination strategies and addressing the socio-economic consequences of the disease in regions where the equine industry is vital.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea;
- Department of Regulatory Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pediatrics, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mattia Albanese
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Erica Binetti
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Climate Amplified Diseases and Epidemics (CLIMADE), Belo Horizonte 30190-002, MG, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (F.S.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (F.S.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (M.A.); (E.B.)
- Azienda Ospedaliero Universitaria Umberto I, 00185 Rome, Italy
- Migrant and Global Health Research Organization—Mi-Hero, 00185 Rome, Italy
| |
Collapse
|
2
|
Trovão NS, Khan SM, Lemey P, Nelson MI, Cherry JL. Comparative evolution of influenza A virus H1 and H3 head and stalk domains across host species. mBio 2024; 15:e0264923. [PMID: 38078770 PMCID: PMC10886446 DOI: 10.1128/mbio.02649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE For decades, researchers have studied the rapid evolution of influenza A viruses for vaccine design and as a useful model system for the study of host/parasite evolution. By performing an exhaustive analysis of hemagglutinin protein (HA) sequences from 49 lineages independently evolving in birds, swine, canines, equines, and humans over the last century, our work uncovers surprising features of HA evolution. In particular, the canine H3 stalk, unlike human H3 and H1 stalk domains, is not evolving slowly, suggesting that evolution in the stalk domain is not universally constrained across all host species. Therefore, a broader multi-host perspective on HA evolution may be useful during the evaluation and design of stalk-targeted vaccine candidates.
Collapse
Affiliation(s)
- Nidia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sairah M Khan
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Cherry
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Lim SI, Kim MJ, Kim MJ, Lee SK, Yang HS, Kwon M, Lim EH, Ouh IO, Kim EJ, Hyun BH, Lee YH. Assessment of Equine Influenza Virus Status in the Republic of Korea from 2020 to 2022. Viruses 2023; 15:2135. [PMID: 37896912 PMCID: PMC10612032 DOI: 10.3390/v15102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Equine influenza virus (EIV) causes acute respiratory disease in horses and belongs to the influenza A virus family Orthomyxoviridae, genus Orthomyxovirus. This virus may have severe financial implications for the horse industry owing to its highly contagious nature and rapid transmission. In the Republic of Korea, vaccination against EIV has been practiced with the active involvement of the Korea Racing Authority since 1974. In this study, we monitored the viral RNA for EIV using PCR, as well as the antibody levels against 'A/equine/South Africa/4/03 (H3N8, clade 1)', from 2020 to 2022. EIV was not detected using RT-PCR. The seropositivity rates detected using a hemagglutination inhibition assay were 90.3% in 2020, 96.7% in 2021, and 91.8% in 2022. The geometric mean of antibody titer (GMT) was 83.4 in 2020, 135.7 in 2021, and 95.6 in 2022. Yearlings and two-year-olds in training exhibited lower positive rates (59.1% in 2020, 38.9% in 2021, and 44.1% in 2022) than the average. These younger horses may require more attention for vaccination and vaccine responses against EIV. Continuous surveillance of EIV should be performed to monitor the prevalence and spread of this disease.
Collapse
Affiliation(s)
- Seong-In Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - Min Ji Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - Min-Ji Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - Sang-Kyu Lee
- Veterinary Center, Korea Racing Authority, Gwacheon 13822, Republic of Korea;
| | - Hyoung-Seok Yang
- Animal Health Diagnosis Division, Jeju Self-Governing Provincial Veterinary Research Institute, Jeju 63344, Republic of Korea;
| | - MiJung Kwon
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - Eui Hyeon Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - In-Ohk Ouh
- Division of Vaccine Development Coordination, National Institute of Infectious Disease, Cheongju 28160, Republic of Korea;
| | - Eun-Jung Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| | - Yoon-Hee Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (S.-I.L.); (M.J.K.); (M.-J.K.); (M.K.); (E.H.L.); (E.-J.K.); (B.-H.H.)
| |
Collapse
|
4
|
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023; 15:980. [PMID: 37112960 PMCID: PMC10145017 DOI: 10.3390/v15040980] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.
Collapse
Affiliation(s)
- Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
6
|
Skarlupka AL, Ross TM. Inherent Serum Inhibition of Influenza Virus Neuraminidases. Front Vet Sci 2021; 8:677693. [PMID: 34409085 PMCID: PMC8365353 DOI: 10.3389/fvets.2021.677693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Influenza virus vaccines have been designed for human and veterinary medicine. The development for broadly protective influenza virus vaccines has propelled the vaccine field to investigate and include neuraminidase (NA) components into new vaccine formulations. The antibody-mediated protection induced by NA vaccines is quantified by inhibition of sialic acid cleavage. Non-immune inhibitors against influenza viruses naturally occur in varying proportions in sera from different species. In this brief report, the inherent ability of raw animal sera to inhibit a panel of influenza virus NA was determined. Raw sera from the same species inhibited more than 50% of influenza viruses tested from four different subtypes, but the breadth of inhibiting NA activity depended on the source of sera. Furthermore, different influenza viruses were inhibited by different sources of sera. Overall, additional studies are needed to ensure that scientific methods are consistent across studies in order to compare NA inhibition results. Through future investigation into the differences between sera from different animal species and how they influence NA inhibition assays, there can be effective development of a broadly protective influenza virus vaccines for veterinary and human use.
Collapse
Affiliation(s)
- Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States,Department of Infectious Diseases, University of Georgia, Athens, GA, United States,*Correspondence: Ted M. Ross
| |
Collapse
|
7
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
8
|
Choi IJ, Na W, Kang A, Ahn MH, Yeom M, Kim HO, Lim JW, Choi SO, Baek SK, Song D, Park JH. Patchless administration of canine influenza vaccine on dog's ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur J Pharm Biopharm 2020; 153:150-157. [PMID: 32544527 PMCID: PMC7293535 DOI: 10.1016/j.ejpb.2020.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
Microneedles provide the advantages of convenience and compliance by avoiding the pain and fear of needles that animals often experience. Insertion-responsive microneedles (IRMN) were used for administration to a hairy dog without removing the dog's hair. Canine H3N2 vaccine was administered with IRMN attached to the dog's ears ex vivo and the conventional microneedle system (MN) was administered for 15 min to compare puncture performance and delivery efficiency. The vaccine was also administered to compare antibody formation using IRMN with the use of intramuscular injection. The veterinarian observed the behavior of the dog during the course of the administration and compared the response to IRMN with that of intramuscular administration. The tips of IRMN were separated from the base and delivered into the hairy skin successfully. Puncture performance of IRMN were the same as that of coated microneedles (95%), but delivery efficiency of IRMN were 95% compared to less than 1% for coated microneedles. The H3N2 vaccine inoculated into the dog's ears showed the same antibody formation as the intramuscular injection. The dog appeared to be more comfortable with IRMN administration compared to syringe administration. IRMN are the first microneedle system to deliver a canine vaccine successfully into a hairy dog without removal of the dog's hair. The use of IRMN can provide both convenience and compliance for both the dog and the owner.
Collapse
Affiliation(s)
- In-Jeong Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Aram Kang
- College of Pharmacy, Korea University, Sejongro 2511, Sejong 30019, Republic of Korea
| | - Myun-Hwan Ahn
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejongro 2511, Sejong 30019, Republic of Korea
| | - Hyung-Ouk Kim
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University Yonsei-ro 50, Seoul 03722, Republic of Korea
| | - Seong-O Choi
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam, #605, Building B14 Sagimakgol-ro, 45beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do 13209, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejongro 2511, Sejong 30019, Republic of Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Sujeong-gu, Seongnam-si Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
9
|
Nimmanapalli R, Gupta V. Vaccines the tugboat for prevention-based animal production. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149732 DOI: 10.1016/b978-0-12-816352-8.00020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world population is growing at a faster rate day-by-day and the demands for animal products are also increasing to meet the food security worldwide. For sustained production of animals products, healthy livestock and poultry farming are the major concerns as animals are susceptible to various infectious agents viz. bacteria, virus, and parasites leading to huge economical losses in the form of livestock’s morbidity and mortality. Besides, zoonotic nature of some infectious pathogens of animals is also raising concern for human safety. Vaccination of animals against various diseases present in different geographical regions is a best known strategy for prevention of different disease outbreaks both in organized and unorganized livestock and poultry sectors. Vaccines had played a major role in eradication of different dreaded diseases of livestock sectors globally. In this article we have discussed different vaccine types, various vaccine strategies used for the development of more efficacious and safe vaccines and commercially available vaccines for livestock and poultry.
Collapse
|
10
|
Kim HH, Yang DK, Seo BH, Cho IS. Serosurvey of rabies virus, canine distemper virus, parvovirus, and influenza virus in military working dogs in Korea. J Vet Med Sci 2018. [PMID: 30068896 DOI: 10.1292/jvms.18–0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rabies virus (RABV), canine distemper virus (CDV), canine parvovirus type-2 (CPV-2), and canine influenza A virus (CIV) are important contagious pathogens in canine populations. To assess post-vaccination immunity against RABV, CDV and CPV-2, and serological evidence of exposure to influenza A virus in military working dogs (MWDs) in Korea, we tested blood samples of 78 MWDs by fluorescent antibody virus neutralization (FAVN) for RABV, and by commercially available enzyme-linked immunosorbent assay (ELISA) for CDV, CPV-2, and CIV. Korean MWDs had high antibody-positive rates against RABV (97.4%, ≥0.5 IU/ml), CDV (94.8%), and CPV (100%). All dogs tested seronegative (0/78; 0%) for influenza A virus. Two 1-year-old dogs stationed in known rabies outbreak areas (Gangwon and Gyeonggi) exhibited VNA titers below the protective level (0.06 and 0.29 IU/ml, respectively). The breed and sex of MWDs were not significantly associated with antibody titers for RABV, CDV, or CPV; however, age was significantly associated with CPV antibody titers, while region of residence was associated with CDV antibody titer. Taken together, the data presented here provide important insights necessary for post-vaccination management and control of infectious diseases in MWDs.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Dong-Kun Yang
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bo-Hyun Seo
- Military Working Dog Training Center, Chuncheon, Gangwon-do, 24408, Republic of Korea
| | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
11
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
12
|
Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J Control Release 2018; 286:460-466. [DOI: 10.1016/j.jconrel.2018.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/22/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
13
|
Kim HH, Yang DK, Seo BH, Cho IS. Serosurvey of rabies virus, canine distemper virus, parvovirus, and influenza virus in military working dogs in Korea. J Vet Med Sci 2018; 80:1424-1430. [PMID: 30068896 PMCID: PMC6160881 DOI: 10.1292/jvms.18-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rabies virus (RABV), canine distemper virus (CDV), canine parvovirus type-2 (CPV-2), and canine influenza A virus (CIV) are important contagious pathogens in canine populations. To assess
post-vaccination immunity against RABV, CDV and CPV-2, and serological evidence of exposure to influenza A virus in military working dogs (MWDs) in Korea, we tested blood samples of 78 MWDs
by fluorescent antibody virus neutralization (FAVN) for RABV, and by commercially available enzyme-linked immunosorbent assay (ELISA) for CDV, CPV-2, and CIV. Korean MWDs had high
antibody-positive rates against RABV (97.4%, ≥0.5 IU/ml), CDV (94.8%), and CPV (100%). All dogs tested seronegative (0/78; 0%) for influenza A virus. Two 1-year-old dogs
stationed in known rabies outbreak areas (Gangwon and Gyeonggi) exhibited VNA titers below the protective level (0.06 and 0.29 IU/ml, respectively). The breed and sex of
MWDs were not significantly associated with antibody titers for RABV, CDV, or CPV; however, age was significantly associated with CPV antibody titers, while region of residence was
associated with CDV antibody titer. Taken together, the data presented here provide important insights necessary for post-vaccination management and control of infectious diseases in
MWDs.
Collapse
Affiliation(s)
- Ha-Hyun Kim
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Dong-Kun Yang
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bo-Hyun Seo
- Military Working Dog Training Center, Chuncheon, Gangwon-do, 24408, Republic of Korea
| | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
14
|
Detection of West Nile Virus and other common equine viruses in three locations from the Leeward Islands, West Indies. Acta Trop 2017. [PMID: 28648789 DOI: 10.1016/j.actatropica.2017.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Equines in the West Indies are used for recreational purposes, tourism industry, racing and agriculture or can be found in feral populations. Little is known in the Caribbean basin about the prevalence of some major equine infectious diseases, some with zoonotic potential, listed as reportable by the OIE. Our objective was to study the prevalence of antibodies for West Nile Virus (WNV), Equine Herpes Virus-1 and 4 (EHV-1 and EHV-4), Equine Influenza (EI), Equine Viral Arteritis (EVA) and Equine Infectious Anemia Virus (EIAV) using a retrospective serological convenience study. We used 180 equine serum samples, 140 from horses and 40 from donkeys in St. Kitts, Nevis, and Sint Eustatius, collected between 2006 and 2015 that were tested with ELISA kits and virus neutralization (for WNV and EVA). Combining ELISA with virus neutralization testing, 25 (13.8%) equine sera were WNV positive (a mixture of indigenous and imported equines) and 3 sera (1.6%) showed doubtful results. For EHV-1, 41 equines (23.7%), mean age 6.7 years, were seropositive. For EHV-4, 138 equines were found seropositive (82.8%), mean age 6.3 years. For EI, 49 equines (27.2%), mean age 7.5 years, were seropositive on ELISA, some previously vaccinated horses. No antibodies against EAV were found on virus neutralization testing, although one animal (0.6%), was EAV positive on ELISA. All samples were EIAV negative. The seroprevalence for EHV-1 and EHV-4 is similar to other parts of the world. For the first time in the study location serologic evidence of antibodies against WNV and EI is reported. This was found in both indigenous and imported animals, highlighting the need for developing proper surveillance plans based on complementary methods of virus detection. Further studies will be needed to define the prevalence, rates of transmission, characterize local virus strains, and study their impact on these populations.
Collapse
|