1
|
Larnder AH, Manges AR, Murphy RA. The estrobolome: Estrogen-metabolizing pathways of the gut microbiome and their relation to breast cancer. Int J Cancer 2025. [PMID: 40177842 DOI: 10.1002/ijc.35427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Increasing evidence links the gut microbiome to carcinogenesis. Disruptions in estrogen regulation by the estrobolome-gut microbiota with estrogen-related functions-may promote breast cancer. However, precise information on estrobolome targets and their underlying mechanisms is limited. This review identifies relevant targets for measuring the estrobolome, focusing on enzymes and microbial taxa involved in processing estrogens, precursors, metabolites, and phytoestrogens, to facilitate the exploration of potential links to breast cancer. Evidence from breast cancer case-control studies is synthesized to assess alignment with these targets, highlight gaps in the evidence, and suggest new paths forward. Findings from case-control studies were heterogeneous and showed limited alignment with estrobolome targets, with only Escherichia coli and Roseburia inulinivorans identified as differentially abundant and functionally relevant between cases and controls. The lack of compelling evidence for estrobolome-specific mechanisms may reflect measurement challenges or may suggest that broader ecological changes in the microbiome, which influence a network of interacting mechanisms, are more influential for carcinogenesis. To clarify the estrobolome's role in breast cancer, future research should use advanced sequencing techniques and methods such as metabolomics and transcriptomics, while considering clinical and behavioral factors that may modify estrobolome mechanisms.
Collapse
Affiliation(s)
- Ashley H Larnder
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- Cancer Control Research, BC Cancer, Vancouver, Canada
| |
Collapse
|
2
|
Altrawy A, Khalifa MM, Abdelmaksoud A, Khaled Y, Saleh ZM, Sobhy H, Abdel-Ghany S, Alqosaibi A, Al-Muhanna A, Almulhim J, El-Hashash A, Sabit H, Arneth B. Metabolites in the Dance: Deciphering Gut-Microbiota-Mediated Metabolic Reprogramming of the Breast Tumor Microenvironment. Cancers (Basel) 2024; 16:4132. [PMID: 39766032 PMCID: PMC11674667 DOI: 10.3390/cancers16244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/05/2025] Open
Abstract
Breast cancer (BC), a major cause of death among women worldwide, has traditionally been linked to genetic and environmental factors. However, emerging research highlights the gut microbiome's significant role in shaping BC development, progression, and treatment outcomes. This review explores the intricate relationship between the gut microbiota and the breast tumor microenvironment, emphasizing how these microbes influence immune responses, inflammation, and metabolic pathways. Certain bacterial species in the gut either contribute to or hinder BC progression by producing metabolites that affect hormone metabolism, immune system pathways, and cellular signaling. An imbalance in gut bacteria, known as dysbiosis, has been associated with a heightened risk of BC, with metabolites like short-chain fatty acids (SCFAs) and enzymes such as β-glucuronidase playing key roles in this process. Additionally, the gut microbiota can impact the effectiveness of chemotherapy, as certain bacteria can degrade drugs like gemcitabine and irinotecan, leading to reduced treatment efficacy. Understanding the complex interactions between gut bacteria and BC may pave the way for innovative treatment approaches, including personalized microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, offering new hope for more effective prevention, diagnosis, and treatment of BC.
Collapse
Affiliation(s)
- Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Maye M. Khalifa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Asmaa Abdelmaksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Yomna Khaled
- Department of Bioinformatics and Functional Genomics, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Zeinab M. Saleh
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Hager Sobhy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Afnan Al-Muhanna
- King Fahad Hospital of the University, Alkhobar, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia;
| | - Ahmed El-Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77840, USA;
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University, Feulgen Str., 35392 Giessen, Germany
| |
Collapse
|
3
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
5
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
7
|
Fan P, Ding L, Du G, Wei C. Effect of mastectomy on gut microbiota and its metabolites in patients with breast cancer. Front Microbiol 2024; 15:1269558. [PMID: 38860221 PMCID: PMC11163111 DOI: 10.3389/fmicb.2024.1269558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Background The relationship between gut microbiota and breast cancer has been extensively studied; however, changes in gut microbiota after breast cancer surgery are still largely unknown. Materials and methods A total of 20 patients with breast cancer underwent routine open surgery at the First Affiliated Hospital of Hainan Medical College from 1 June 2022 to 1 December 2022. Stool samples were collected from the patients undergoing mastectomy for breast cancer preoperatively, 3 days later, and 7 days later postoperatively. The stool samples were subjected to 16s rRNA sequencing. Results Surgery did not affect the α-diversity of gut microbiota. The β-diversity and composition of gut microorganisms were significantly affected by surgery in breast cancer patients. Both linear discriminant analysis effect size (LEfSe) analysis and between-group differences analysis showed that surgery led to a decrease in the abundance of Firmicutes and Lachnospiraceae and an increase in the abundance of Proteobacteria and Enterobacteriaceae. Moreover, 127 differential metabolites were screened and classified into 5 categories based on their changing trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant changes in the phenylalanine metabolic pathway and exogenous substance metabolic pathway. Eight characterized metabolites were screened using ROC analysis. Conclusion Our study found that breast cancer surgery significantly altered gut microbiota composition and metabolites, with a decrease in beneficial bacteria and an increase in potentially harmful bacteria. This underscores the importance of enhanced postoperative management to optimize gut microbiota.
Collapse
Affiliation(s)
- Pingming Fan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Linwei Ding
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
8
|
Little RB, Carter SJ, Motl RW, Hunter G, Cook A, Liu N, Krontiras H, Lefkowitz EJ, Turan B, Schleicher E, Rogers LQ. Role of Gut Microbe Composition in Psychosocial Symptom Response to Exercise Training in Breast Cancer Survivors (ROME) study: protocol for a randomised controlled trial. BMJ Open 2024; 14:e081660. [PMID: 38702085 PMCID: PMC11086582 DOI: 10.1136/bmjopen-2023-081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Breast cancer survivors have an increased risk for chronic fatigue and altered gut microbiota composition, both with negative health and quality of life affects. Exercise modestly improves fatigue and is linked to gut microbial diversity and production of beneficial metabolites. Studies suggest that gut microbiota composition is a potential mechanism underlying fatigue response to exercise. Randomised controlled trials testing the effects of exercise on the gut microbiome are limited and there is a scarcity of findings specific to breast cancer survivors. The objective of this study is to determine if fitness-related modifications to gut microbiota occur and, if so, mediate the effects of aerobic exercise on fatigue response. METHODS AND ANALYSIS The research is a randomised controlled trial among breast cancer survivors aged 18-74 with fatigue. The primary aim is to determine the effects of aerobic exercise training compared with an attention control on gut microbiota composition. The secondary study aims are to test if exercise training (1) affects the gut microbiota composition directly and/or indirectly through inflammation (serum cytokines), autonomic nervous system (heart rate variability) or hypothalamic-pituitary-adrenal axis mediators (hair cortisol assays), and (2) effects on fatigue are direct and/or indirect through changes in the gut microbiota composition. All participants receive a standardised controlled diet. Assessments occur at baseline, 5 weeks, 10 weeks and 15 weeks (5 weeks post intervention completion). Faecal samples collect the gut microbiome and 16S gene sequencing will identify the microbiome. Fatigue is measured by a 13-item multidimensional fatigue scale. ETHICS AND DISSEMINATION The University of Alabama at Birmingham Institutional Review Board (IRB) approved this study on 15 May 2019, UAB IRB#30000320. A Data and Safety Monitoring Board convenes annually or more often if indicated. Findings will be disseminated in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT04088708.
Collapse
Affiliation(s)
- Rebecca B Little
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen J Carter
- Department of Kinesiology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gary Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abby Cook
- Baylor Scott & White Medical Center Temple, Temple, Texas, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elliot J Lefkowitz
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bulent Turan
- Department of Psychology, Koc University, Istanbul, Turkey
| | - Erica Schleicher
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura Q Rogers
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Mahno NE, Tay DD, Khalid NS, Yassim ASM, Alias NS, Termizi SA, Kasian J, Mokhtar NM, Ahmad HF. The Relationship Between Gut Microbiome Estrobolome and Breast Cancer: A Systematic Review of Current Evidences. Indian J Microbiol 2024; 64:1-19. [PMID: 38468730 PMCID: PMC10924874 DOI: 10.1007/s12088-023-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is the most frequent kind of cancer and the second leading cause of mortality worldwide, behind heart disease. Next-generation sequencing technologies enables for unprecedented enumeration of human resident gut microorganisms, conferring novel insights into the role of the microbiota in health and individuals with breast cancer. A growing body of research on microbial dysbiosis seems to indicate an elevated risk of health complications including cancer. Although several dysbiosis indices have been proposed, their underlying methodology, as well as the cohorts and conditions of breast cancer patients are significantly different. To date, these indices have not yet been thoroughly reviewed especially when it comes to researching the estrogen-gut microbiota axis. Instead of providing a thorough rating of the most effective diversity measurements, the current work aims to be used to assess the relevance of each study's findings across the demographic data, different subtypes, and stages of breast cancer, and tie them to the estrobolome, which controls the amount of oestrogen that circulates through humans. This review will cover 11 studies which will go into a detailed discussion for the microbiome results of the mentioned studies, leaving to the user the final choice of the most suited indices as well as highlight the observed bacteria found to be related to the estrobolome in hopes of giving the reader a better understanding for the biological cross-talk between gut microbiome and breast cancer progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01135-z.
Collapse
Affiliation(s)
- Noor Ezmas Mahno
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Darren Dean Tay
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
| | - Nurul Syazwani Khalid
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Aini Syahida Mat Yassim
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Nor Syuhada Alias
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Sahrol Azmi Termizi
- Division of Disease Control, Ministry of Health Malaysia, 62590 Putrajaya, Malaysia
| | - Junaini Kasian
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
11
|
Zhou Q, Meng Q. Insights into the Microbial Composition of Intratumoral, Reproductive Tract, and Gut Microbiota in Ovarian Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:107-118. [PMID: 38805127 DOI: 10.1007/978-3-031-58311-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
According to the latest global cancer data, ovarian cancer is the deadliest among all gynecological malignant tumors and ranks fifth in terms of mortality. Its etiology and pathogenesis are unknown, and the 5-year survival rate of patients with advanced ovarian cancer is only 40% (Sung et al. CA Cancer J Clin 71:209-49, 2021). Recent research has shown that the human microbiota plays a crucial role in the development and progression of tumors, including ovarian cancer. Numerous studies have highlighted the complex connections between the reproductive tract microbiota, intestinal microbiota, and ovarian cancer (Jacobson et al. PeerJ 9:e11574, 2021). Therefore, this chapter will delve into composition, function, and the correlation between microbiota and immunity in the field of ovarian cancer microbiota, as well as the potential of bacteria in therapeutics and diagnostics of ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China.
| | - Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Avtanski D, Reddy V, Stojchevski R, Hadzi-Petrushev N, Mladenov M. The Microbiome in the Obesity-Breast Cancer Axis: Diagnostic and Therapeutic Potential. Pathogens 2023; 12:1402. [PMID: 38133287 PMCID: PMC10747404 DOI: 10.3390/pathogens12121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Varun Reddy
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11545, USA;
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| |
Collapse
|
13
|
Altinok Dindar D, Chun B, Palma A, Cheney J, Krieger M, Kasschau K, Stagaman K, Mitri ZI, Goodyear SM, Shannon J, Karstens L, Sharpton T, Zhang Z. Association between Gut Microbiota and Breast Cancer: Diet as a Potential Modulating Factor. Nutrients 2023; 15:4628. [PMID: 37960281 PMCID: PMC10649662 DOI: 10.3390/nu15214628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) has many well-known risk factors, including age, genetics, lifestyle, and diet; however, the influence of the gut microbiome on BCa remains an emerging area of investigation. This study explores the connection between the gut microbiome, dietary habits, and BCa risk. We enrolled newly diagnosed BCa patients and age-matched cancer-free controls in a case-control study. Comprehensive patient data was collected, including dietary habits assessed through the National Cancer Institute Diet History Questionnaire (DHQ). 16S rRNA amplicon sequencing was used to analyze gut microbiome composition and assess alpha and beta diversity. Microbiome analysis revealed differences in the gut microbiome composition between cases and controls, with reduced microbial diversity in BCa patients. The abundance of three specific microbial genera-Acidaminococus, Tyzzerella, and Hungatella-was enriched in the fecal samples taken from BCa patients. These genera were associated with distinct dietary patterns, revealing significant associations between the presence of these genera in the microbiome and specific HEI2015 components, such as vegetables and dairy for Hungatella, and whole fruits for Acidaminococus. Demographic characteristics were well-balanced between groups, with a significantly higher body mass index and lower physical activity observed in cases, underscoring the role of weight management in BCa risk. Associations between significant microbial genera identified from BCa cases and dietary intakes were identified, which highlights the potential of the gut microbiome as a source of biomarkers for BCa risk assessment. This study calls attention to the complex interplay between the gut microbiome, lifestyle factors including diet, and BCa risk.
Collapse
Affiliation(s)
- Duygu Altinok Dindar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
| | - Brie Chun
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, OR 97239, USA (S.M.G.)
| | - Amy Palma
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| | - John Cheney
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
| | - Kristin Kasschau
- Department of Microbiology, Department of Statistics, Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA; (K.K.); (K.S.); (T.S.)
| | - Keaton Stagaman
- Department of Microbiology, Department of Statistics, Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA; (K.K.); (K.S.); (T.S.)
| | - Zahi I. Mitri
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada;
| | - Shaun M. Goodyear
- Division of Hematology & Oncology, Oregon Health & Science University, Portland, OR 97239, USA (S.M.G.)
| | - Jackilen Shannon
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; (D.A.D.); (J.C.); (M.K.); (J.S.)
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Thomas Sharpton
- Department of Microbiology, Department of Statistics, Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA; (K.K.); (K.S.); (T.S.)
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
14
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
15
|
Kim L, Coman M, Pusztai L, Park TS. Neoadjuvant Immunotherapy in Early, Triple-Negative Breast Cancers: Catching Up with the Rest. Ann Surg Oncol 2023; 30:6441-6449. [PMID: 37349612 DOI: 10.1245/s10434-023-13714-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Despite breast cancer being long thought to be "immunologically cold," within early, triple-negative breast cancer (TNBC), there has been exciting advances with the use of immune checkpoint modulation combined with neoadjuvant chemotherapy. We review the major trials that have investigated combination immunochemotherapy in the neoadjuvant setting, reviewing both the pathological complete response rates and the maturing data regarding event-free and overall survival. Strategies to deescalate adjuvant therapy in patients with preserving excellent clinical outcome, as well as exploration of combinatorial adjuvant therapies to improve outcome in those with extensive residual are the next-generation challenges. In addition to refinement of existing biomarkers, such as PD-L1, TILs, and tumor mutational burden (TMB), exploration of topics like the microbiome as both a biomarker and a therapeutic has shown promise in other cancer types, which motivates investigating these in breast cancer.
Collapse
Affiliation(s)
- Leah Kim
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Coman
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lajos Pusztai
- Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| | - Tristen S Park
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Vahid F, Hajizadeghan K, Khodabakhshi A. Nutritional Metabolomics in Diet-Breast Cancer Relations: Current Research, Challenges, and Future Directions-A Review. Biomedicines 2023; 11:1845. [PMID: 37509485 PMCID: PMC10377267 DOI: 10.3390/biomedicines11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is one of the most common types of cancer in women worldwide, and its incidence is increasing. Diet has been identified as a modifiable risk factor for breast cancer, but the complex interplay between diet, metabolism, and cancer development is not fully understood. Nutritional metabolomics is a rapidly evolving field that can provide insights into the metabolic changes associated with dietary factors and their impact on breast cancer risk. The review's objective is to provide a comprehensive overview of the current research on the application of nutritional metabolomics in understanding the relationship between diet and breast cancer. The search strategy involved querying several electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar. The search terms included combinations of relevant keywords such as "nutritional metabolomics", "diet", "breast cancer", "metabolites", and "biomarkers". In this review, both in vivo and in vitro studies were included, and we summarize the current state of knowledge on the role of nutritional metabolomics in understanding the diet-breast cancer relationship, including identifying specific metabolites and metabolic pathways associated with breast cancer risk. We also discuss the challenges associated with nutritional metabolomics research, including standardization of analytical methods, interpretation of complex data, and integration of multiple-omics approaches. Finally, we highlight future directions for nutritional metabolomics research in studying diet-breast cancer relations, including investigating the role of gut microbiota and integrating multiple-omics approaches. The application of nutritional metabolomics in the study of diet-breast cancer relations, including 2-amino-4-cyano butanoic acid, piperine, caprate, rosten-3β,17β-diol-monosulfate, and γ-carboxyethyl hydrochroman, among others, holds great promise for advancing our understanding of the role of diet in breast cancer development and identifying personalized dietary recommendations for breast cancer prevention, control, and treatment.
Collapse
Affiliation(s)
- Farhad Vahid
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Kimia Hajizadeghan
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Adeleh Khodabakhshi
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
17
|
Little A, Tangney M, Tunney MM, Buckley NE. Fusobacterium nucleatum: a novel immune modulator in breast cancer? Expert Rev Mol Med 2023; 25:e15. [PMID: 37009688 PMCID: PMC10407221 DOI: 10.1017/erm.2023.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Alexa Little
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Tangney
- Cancer Research, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E. Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
18
|
Viswanathan S, Parida S, Lingipilli BT, Krishnan R, Podipireddy DR, Muniraj N. Role of Gut Microbiota in Breast Cancer and Drug Resistance. Pathogens 2023; 12:pathogens12030468. [PMID: 36986390 PMCID: PMC10058520 DOI: 10.3390/pathogens12030468] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. The cause of cancer is multifactorial. An early diagnosis and the appropriate treatment of cancer can improve the chances of survival. Recent studies have shown that breast cancer is influenced by the microbiota. Different microbial signatures have been identified in the breast microbiota, which have different patterns depending on the stage and biological subgroups. The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. In this review article, we discuss the impact of the microbiota on breast cancer, with a primary focus on the gut microbiota’s regulation of the breast cancer microenvironment. Ultimately, updates on how immunotherapy can affect the breast cancer-based microbiome and further clinical trials on the breast and microbiome axis may be an important piece of the puzzle in better predicting breast cancer risk and prognosis.
Collapse
Affiliation(s)
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Bhuvana Teja Lingipilli
- Gandhi Institute of Technology and Management (GITAM), Deemed University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Ramalingam Krishnan
- Department of Biochemistry, Narayana Medical College, Nellore 524003, Andhra Pradesh, India
| | - Devendra Rao Podipireddy
- Rangaraya Medical College, Dr. YSR University of Health Sciences, Kakinada 533001, Andhra Pradesh, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-202-476-2466
| |
Collapse
|
19
|
Cardeiro M, Ardeljan AD, Frankel L, Kim E, Takabe K, Rashid OM. Incidence of Breast Cancer and Enterococcus Infection: A Retrospective Analysis. World J Oncol 2023; 14:32-39. [PMID: 36895996 PMCID: PMC9990735 DOI: 10.14740/wjon1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 03/01/2023] Open
Abstract
Background Enterococci role in the microbiome remains controversial, and researches regarding enterococcal infection (EI) and its sequelae are limited. The gut microbiome has shown to play an important role in immunology and cancer. Recent data have suggested a relationship between the gut microbiome and breast cancer (BC). Methods Patients in a Health Insurance Portability and Accountability Act (HIPAA) compliant national database (2010 - 2020) were used for this retrospective study. International Classification of Disease (ICD) Ninth and Tenth Codes, Current Procedural Terminology (CPT), and National Drug Codes were used to identify BC diagnosis and EI. Patients were matched for age, sex, Charlson comorbidity index (CCI), antibiotic treatment, obesity, and region of residence. Statistical analyses were implemented to assess significance and estimate odds ratio (OR). Results EI was associated with a decreased incidence of BC (OR = 0.60, 95% confidence interval (CI): 0.57 - 0.63) and the difference was statistically significant (P < 2.2 × 10-16). Treatment for EI was controlled for in both EI and noninfected populations. Patients with a prior EI and treated with antibiotics were compared to patients with no history of EI and received antibiotics. Both populations subsequently developed BC. Results remained statistically significant (P < 2.2 × 10-16) with an OR of 0.57 (95% CI: 0.54 - 0.60). In addition to standard matching protocol, obesity was controlled for in both groups by exclusively containing obese patients, but one group with prior EI and the other without. In obese patients, a lower incidence of BC was shown in the infected group compared to the noninfected group. Results were statistically significant (P < 2.2 × 10-16) with an OR of 0.56 (95% CI: 0.53 - 0.58). Age of BC diagnosis with and without a prior EI was analyzed and demonstrated increased BC incidence with increasing age in both groups, but less in the EI group. Incidence of BC based on region was analyzed, which showed lower BC incidence across all regions in the EI group. Conclusion This study shows a statistically significant correlation between EI and decreased incidence of BC. Further exploration is needed to identify and understand not only the role of enterococcus in the microbiome, but also the protective mechanism(s) and impact of EI on BC development.
Collapse
Affiliation(s)
- Matthew Cardeiro
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Amalia D. Ardeljan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
| | - Lexi Frankel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Enoch Kim
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
| | - Omar M. Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
- University of Miami, Leonard Miami School of Medicine, Miami, FL, USA
- Massachusetts General Hospital, Boston, MA, USA
- Broward Health, Fort Lauderdale, FL, USA
- TopLine MD Alliance, Fort Lauderdale, FL, USA
- Memorial Health, Pembroke Pines, FL, USA
- Delray Medical Center, Delray, FL, USA
| |
Collapse
|
20
|
Caleça T, Ribeiro P, Vitorino M, Menezes M, Sampaio-Alves M, Mendes AD, Vicente R, Negreiros I, Faria A, Costa DA. Breast Cancer Survivors and Healthy Women: Could Gut Microbiota Make a Difference?-"BiotaCancerSurvivors": A Case-Control Study. Cancers (Basel) 2023; 15:cancers15030594. [PMID: 36765550 PMCID: PMC9913170 DOI: 10.3390/cancers15030594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In this first analysis, samples from 23 BC survivors (group 1) and 291 healthy female controls (group 2) were characterised through the V3 and V4 regions that encode the "16S rRNA" gene of each bacteria. The samples were sequenced by next-generation sequencing (NGS), and the taxonomy was identified by resorting to Kraken2 and improved with Bracken, using a curated database called 'GutHealth_DB'. The α and β-diversity analyses were used to determine the richness and evenness of the gut microbiota. A non-parametric Mann-Whitney U test was applied to assess differential abundance between both groups. The Firmicutes/Bacteroidetes (F/B) ratio was calculated using a Kruskal-Wallis chi-squared test. The α-diversity was significantly higher in group 1 (p = 0.28 × 10-12 for the Chao index and p = 1.64 × 10-12 for the ACE index). The Shannon index, a marker of richness and evenness, was not statistically different between the two groups (p = 0.72). The microbiota composition was different between the two groups: a null hypothesis was rejected for PERMANOVA (p = 9.99 × 10-5) and Anosim (p = 0.04) and was not rejected for β-dispersion (p = 0.158), using Unifrac weighted distance. The relative abundance of 14 phyla, 29 classes, 25 orders, 64 families, 116 genera, and 74 species differed significantly between both groups. The F/B ratio was significantly lower in group 1 than in group 2, p < 0.001. Our study allowed us to observe significant taxonomic disparities in the two groups by testing the differences between BC survivors and healthy controls. Additional studies are needed to clarify the involved mechanisms and explore the relationship between microbiota and BC survivorship.
Collapse
Affiliation(s)
- Telma Caleça
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
- Correspondence: (T.C.); (D.A.C.)
| | - Pedro Ribeiro
- Laboratory Medicine Centre Germano de Sousa, 1600-513 Lisbon, Portugal
| | - Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Maria Menezes
- Medical Oncology Department, Hospital do Espírito Santo de Évora, 7000-811 Évora, Portugal
| | - Mafalda Sampaio-Alves
- PTSurg–Portuguese Surgical Research Collaborative, 1600 Lisbon, Portugal
- Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana Duarte Mendes
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Rodrigo Vicente
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Ida Negreiros
- Hospital CUF, Breast Cancer Unit, 1998-018 Lisbon, Portugal
| | - Ana Faria
- Faculdade de Ciências Médicas, NOVA Medical School, 1169-056 Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Faculdade de Ciências Médicas, NOVA Medical School, 1150-082 Lisbon, Portugal
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo Alpuim Costa
- Hospital CUF, Breast Cancer Unit, 1998-018 Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, 1169-056 Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, 2755-009 Cascais, Portugal
- Correspondence: (T.C.); (D.A.C.)
| |
Collapse
|
21
|
García-Chico C, López-Ortiz S, Peñín-Grandes S, Pinto-Fraga J, Valenzuela PL, Emanuele E, Ceci C, Graziani G, Fiuza-Luces C, Lista S, Lucia A, Santos-Lozano A. Physical Exercise and the Hallmarks of Breast Cancer: A Narrative Review. Cancers (Basel) 2023; 15:324. [PMID: 36612320 PMCID: PMC9818971 DOI: 10.3390/cancers15010324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Growing evidence suggests that, among the different molecular/cellular pathophysiological mechanisms associated with cancer, there are 14 hallmarks that play a major role, including: (i) sustaining proliferative signaling, (ii) evading growth suppressors, (iii) activating invasion and metastasis, (iv) enabling replicative immortality, (v) inducing angiogenesis, (vi) resisting cell death, (vii) reprogramming energy metabolism, (viii) evading immune destruction, (ix) genome instability and mutations, (x) tumor-promoting inflammation, (xi) unlocking phenotypic plasticity, (xii) nonmutational epigenetic reprogramming, (xiii) polymorphic microbiomes, and (xiv) senescent cells. These hallmarks are also associated with the development of breast cancer, which represents the most prevalent tumor type in the world. The present narrative review aims to describe, for the first time, the effects of physical activity/exercise on these hallmarks. In summary, an active lifestyle, and particularly regular physical exercise, provides beneficial effects on all major hallmarks associated with breast cancer, and might therefore help to counteract the progression of the disease or its associated burden.
Collapse
Affiliation(s)
- Celia García-Chico
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Susana López-Ortiz
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - José Pinto-Fraga
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Pedro L. Valenzuela
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain
| | | | - Claudia Ceci
- Departmental Faculty of Medicine, Saint Camillus International University of Health and Medical Sciences, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carmen Fiuza-Luces
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
| |
Collapse
|
22
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
23
|
de la Rosa-Díaz I, Barrero-Santiago L, Acosta-Ramírez P, Martín-Peces-Barba M, Iglesias-Hernández E, Plisset B, Lutinier N, Belzanne M, La Touche R, Grande-Alonso M. Cross-Sectional Comparative Study on Central Sensitization-Psychosocial Associated Comorbidities and Psychological Characteristics in Breast Cancer Survivors with Nociceptive Pain and Pain with Neuropathic Features and without Pain. Life (Basel) 2022; 12:life12091328. [PMID: 36143365 PMCID: PMC9505522 DOI: 10.3390/life12091328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Persistent pain after breast cancer treatment is still under research due to its complex and multifactorial underlying pathogenesis, including phycological factors. Further research is needed to elucidate more information about the factors that cause and perpetuate this pain. Thus, this study defined the influence of psychosocial and psychological factors on breast cancer survivors who report pain and those who do not. The psychosocial factors assessed were those that are associated with a central sensitization process, and the psychological factors were pain catastrophizing, fear of movement, anxiety and depression. Hence, the psychosocial symptom clusters were identified related to the clinical features of pain or to not reporting pain, which may encourage health clinicians to establish a customized biopsychosocial model focused on the management of pain-catastrophizing thoughts and fear of movement. Furthermore, anxiety and depression should be detected early by health professionals and referred to psychologists to be managed. Abstract The frequency of a high Central Sensitization Inventory (CSI) total score and the prevalence of pain have already been established among breast cancer survivors (BCS). However, the psychological factors’ influence based on the clinical features of pain is still unknown, as well as BCS characteristics with no pain. Thus, our main aim was to evaluate the presence of a high CSI total score in BCS with pain and compare it with BCS without pain and to evaluate the influence of psychosocial factors. A cross-sectional comparative study was designed to compare BCS with nociceptive pain (n = 19), pain with neuropathic features (n = 19) or no pain (n = 19), classified by the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS). CSI, pain catastrophizing, fear of movement, anxiety and depression symptoms were analyzed and compared among the three groups. The CSI total score was higher in both BCS pain groups compared to BCS without pain, but there were no statistical differences between the pain groups. The same observation was made when comparing pain catastrophizing. The neuropathic feature group showed greater levels of fear of movement, anxiety and depression compared to the no pain group. Thus, CS-psychosocial associated comorbidities and pain-catastrophizing thoughts were more prevalent among BCS with pain, regardless of the clinical features of pain. BCS with neuropathic pain features showed greater psychological disturbances.
Collapse
Affiliation(s)
- Irene de la Rosa-Díaz
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
- Physical Therapist in Women’s Health Research Group, Department of Physical Therapy, University of Alcalá, Avenida de León, 3A, 28805 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Laura Barrero-Santiago
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Paz Acosta-Ramírez
- Physical Therapy in Torrejón Hospital, Rehabilitation Department, Calle Mateo Inurria, 28850 Madrid, Spain
| | - Marina Martín-Peces-Barba
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Esther Iglesias-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Bastien Plisset
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Nicolás Lutinier
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Margot Belzanne
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
- Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Calle Luisa Fernanda, n° 12, Bj Izq, 28023 Madrid, Spain
- Correspondence:
| | - Mónica Grande-Alonso
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Aravaca, Calle Ganímedes, n° 11, 28023 Madrid, Spain
- Instituto de Rehabilitación Funcional La Salle, Aravaca, 28850 Madrid, Spain
| |
Collapse
|
24
|
An J, Kwon H, Lim W, Moon BI. Staphylococcus aureus-Derived Extracellular Vesicles Enhance the Efficacy of Endocrine Therapy in Breast Cancer Cells. J Clin Med 2022; 11:jcm11072030. [PMID: 35407638 PMCID: PMC9000115 DOI: 10.3390/jcm11072030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome involved in the human estrogen metabolism is known as the estrobolome. This study aimed to show that the estrobolome can be used in breast cancer treatment. We first analyzed the blood microbiome composition of healthy controls and patients with breast cancer. In particular, we investigated the bacteria producing β-glucuronidase and/or β-galactosidase, which are involved in estrogen metabolism in the human body. Staphylococcus species were more abundant in healthy controls than in breast cancer patients and therefore were selected for further analyses. The effect of Staphylococcus aureus on endocrine therapy was analyzed by a combination treatment with tamoxifen. Analysis of the microbiome of blood samples showed that species producing β-glucuronidase were more abundant in breast cancer patients than in healthy controls. Further experiments confirmed that the efficacy of tamoxifen increased when administered in conjugation with the extracellular vesicles (EVs) of S. aureus. Based on our results, we deduced that S. aureus EVs could potentially be used as adjuvants for breast cancer treatment in the future.
Collapse
Affiliation(s)
- Jeongshin An
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
- Institute of Convergence Medicine Research, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
| | - Woosung Lim
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University Mokdong Hospital, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea; (J.A.); (H.K.); (W.L.)
- Correspondence: ; Tel.: +82-2-2650-5584; Fax: +82-2-2644-7984
| |
Collapse
|
25
|
Costa B, Vale N. Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. Int J Mol Sci 2022; 23:3181. [PMID: 35328602 PMCID: PMC8951384 DOI: 10.3390/ijms23063181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is classified into four major molecular subtypes, and is considered a heterogenous disease. The risk profiles and treatment of breast cancer differ according to these subtypes. Early detection dramatically improves the prospects of successful treatment, resulting in a reduction in overall mortality rates. However, almost 30% of women primarily diagnosed with the early-stage disease will eventually develop metastasis or resistance to chemotherapies. Immunotherapies are among the most promising cancer treatment options; however, long-term clinical benefit has only been observed in a small subset of responding patients. The current strategies for diagnosis and treatment rely heavily on histopathological examination and molecular diagnosis, disregarding the tumor microenvironment and microbiome involving cancer cells. In this review, we aim to praise the use of pharmacogenomics and pharmacomicrobiomics as a strategy to identify potential biomarkers for guiding and monitoring therapy in real-time. The finding of these biomarkers can be performed by studying the metabolism of drugs, more specifically, immunometabolism, and its relationship with the microbiome, without neglecting the information provided by genetics. A larger understanding of cancer biology has the potential to improve patient care, enable clinical decisions, and deliver personalized medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory RISE-Health Research Network, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
26
|
Zarei A, Javid H, Sanjarian S, Senemar S, Zarei H. Metagenomics studies for the diagnosis and treatment of prostate cancer. Prostate 2022; 82:289-297. [PMID: 34855234 DOI: 10.1002/pros.24276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
AIM Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.
Collapse
Affiliation(s)
- Ali Zarei
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hossein Javid
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Sanjarian
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Senemar
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hanieh Zarei
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Esposito MV, Fosso B, Nunziato M, Casaburi G, D'Argenio V, Calabrese A, D'Aiuto M, Botti G, Pesole G, Salvatore F. Microbiome composition indicate dysbiosis and lower richness in tumor breast tissues compared to healthy adjacent paired tissue, within the same women. BMC Cancer 2022; 22:30. [PMID: 34980006 PMCID: PMC8722097 DOI: 10.1186/s12885-021-09074-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Breast cancer (BC) is the most common malignancy in women, in whom it reaches 20% of the total neoplasia incidence. Most BCs are considered sporadic and a number of factors, including familiarity, age, hormonal cycles and diet, have been reported to be BC risk factors. Also the gut microbiota plays a role in breast cancer development. In fact, its imbalance has been associated to various human diseases including cancer although a consequential cause-effect phenomenon has never been proven. Methods The aim of this work was to characterize the breast tissue microbiome in 34 women affected by BC using an NGS-based method, and analyzing the tumoral and the adjacent non-tumoral tissue of each patient. Results The healthy and tumor tissues differed in bacterial composition and richness: the number of Amplicon Sequence Variants (ASVs) was higher in healthy tissues than in tumor tissues (p = 0.001). Moreover, our analyses, able to investigate from phylum down to species taxa for each sample, revealed major differences in the two richest phyla, namely, Proteobacteria and Actinobacteria. Notably, the levels of Actinobacteria and Proteobacteria were, respectively, higher and lower in healthy with respect to tumor tissues. Conclusions Our study provides information about the breast tissue microbial composition, as compared with very closely adjacent healthy tissue (paired samples within the same woman); the differences found are such to have possible diagnostic and therapeutic implications; further studies are necessary to clarify if the differences found in the breast tissue microbiome are simply an association or a concausative pathogenetic effect in BC. A comparison of different results on similar studies seems not to assess a universal microbiome signature, but single ones depending on the environmental cohorts’ locations. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09074-y.
Collapse
Affiliation(s)
- Maria Valeria Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola, 122/O, 70126, Bari, BA, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy
| | | | - Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Alessandra Calabrese
- Department of Senology, Istituto Nazionale Tumori - IRCCS, 'Fondazione Pascale', Via Mariano Semmola, 53, 80131, Napoli, NA, Italy
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori - IRCCS, 'Fondazione Pascale', Via Mariano Semmola, 53, 80131, Napoli, NA, Italy.,Clinica Villa Fiorita, Via Filippo Saporito, 24, 81031, Aversa, CE, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola, 53, 80131, Napoli, NA, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola, 122/O, 70126, Bari, BA, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Piazza Umberto I, 1, BA, 70121, Bari, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy. .,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.
| |
Collapse
|
28
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Jiang Z, Li L, Chen J, Wei G, Ji Y, Chen X, Liu J, Huo J. Human gut-microbiome interplay: Analysis of clinical studies for the emerging roles of diagnostic microbiology in inflammation, oncogenesis and cancer management. INFECTION GENETICS AND EVOLUTION 2021; 93:104946. [PMID: 34052417 DOI: 10.1016/j.meegid.2021.104946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Microorganisms have been known to coexist in various parts of human body including the gut. The interactions between microbes and the surrounding tissues of the host are critical for fine fettle of the gut. The incidence of such microorganisms tends to vary among specific type of cancer affected individuals. Such microbial communities of specific tumor sites in cancer affected individuals could plausibly be used as prognostic and/or diagnostic markers for tumors associated with that specific site. Microorganisms of intestinal and non-intestinal origins including Helicobacter pylori can target several organs, act as carcinogens and promote cancer. It is interesting to note that diets causing inflammation can also increase the cancer risk. Yet, dietary supplementation with prebiotics and probiotics can reduce the incidence of cancer. Therefore, both diet and microbial community of the gut have dual roles of prevention and oncogenesis. Hence, this review intends to summarize certain important details related to gut microbiome and cancer.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jianan Chen
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Yi Ji
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Xi Chen
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jingbing Liu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
30
|
Adebayo OA, Akinloye O, Adaramoye OA. Cerium oxide nanoparticles elicit antitumourigenic effect in experimental breast cancer induced by N-methyl-N-nitrosourea and benzo(a)pyrene in female Wistar rats. J Biochem Mol Toxicol 2020; 35:e22687. [PMID: 33314526 DOI: 10.1002/jbt.22687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
The use of cerium oxide nanoparticles [CeO2 NPs] in the biomedical field has continued to gain prominence due to its potent antioxidant property. This study was designed to assess the antitumorigenic effect of CeO2 NPs in rats administered N-methyl-N-nitrosourea [NMU] and benzo(a)pyrene (BaP). Twenty four female Wistar rats were equally assigned into four groups and treated with normal saline (control), [NMU + BaP], [NMU + BaP+CeO2 NPs], and [NMU + BaP + vincristine]. Animals were pretreated with NMU and BaP three times (age 7, 10, and 13 weeks). Thereafter, vincristine and CeO2 NPs were administered twice and three times per week, respectively, for 13 weeks. Results showed that the administration of NMU and BaP increased serum nitric oxide [NO] and myeloperoxidase [MPO] by 220% and 132%, respectively, whereas the activities of aspartate and alanine aminotransferases and level of total bilirubin remained unchanged. Furthermore, mammary inflammatory [NO and MPO] and oxidative stress (LPO) markers were increased by 37%, 19%, and 24%, respectively. Mammary superoxide dismutase, catalase, reduced glutathione, and glutathione-S-transferase were significantly decreased in [NMU + BaP]-administered rats by 165%, 146%, 35%, and 36%, respectively. Immunohistochemistry showed downregulation of Bax, p53, and caspase-3, while histology revealed the presence of malignant epithelial cells with pyknotic nuclei and high nucleocytoplasm in [NMU + BaP]-administered rats. Treatment with CeO2 NPs attenuated oxidative stress, apoptosis, and inflammation and restored the cytoarchitecture of the tissue. Overall, CeO2 NPs show an antitumourigenic effect in experimental breast cancer by targeting pathways linked to inflammation and apoptosis.
Collapse
Affiliation(s)
- Olayinka A Adebayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyemi Akinloye
- Department of Medical Laboratory Science, Clinical Chemistry and Molecular Diagnostic Laboratory, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Oluwatosin A Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|