1
|
Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:287-300. [PMID: 10491073 DOI: 10.1046/j.1432-1327.1999.00625.x] [Citation(s) in RCA: 480] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na+-channel specific scorpion toxins are peptides of 60-76 amino acid residues in length, tightly bound by four disulfide bridges. The complete amino acid sequence of 85 distinct peptides are presently known. For some toxins, the three-dimensional structure has been solved by X-ray diffraction and NMR spectroscopy. A constant structural motif has been found in all of them, consisting of one or two short segments of alpha-helix plus a triple-stranded beta-sheet, connected by variable regions forming loops (turns). Physiological experiments have shown that these toxins are modifiers of the gating mechanism of the Na+-channel function, affecting either the inactivation (alpha-toxins) or the activation (beta-toxins) kinetics of the channels. Many functional variations of these peptides have been demonstrated, which include not only the classical alpha- and beta-types, but also the species specificity of their action. There are peptides that bind or affect the function of Na+-channels from different species (mammals, insects or crustaceans) or are toxic to more than one group of animals. Based on functional and structural features of the known toxins, a classification containing 10 different groups of toxins is proposed in this review. Attempts have been made to correlate the presence of certain amino acid residues or 'active sites' of these peptides with Na+-channel functions. Segments containing positively charged residues in special locations, such as the five-residue turn, the turn between the second and the third beta-strands, the C-terminal residues and a segment of the N-terminal region from residues 2-11, seems to be implicated in the activity of these toxins. However, the uncertainty, and the limited success obtained in the search for the site through which these peptides bind to the channels, are mainly due to the lack of an easy method for expression of cloned genes to produce a well-folded, active peptide. Many scorpion toxin coding genes have been obtained from cDNA libraries and from polymerase chain reactions using fragments of scorpion DNAs, as templates. The presence of an intron at the DNA level, situated in the middle of the signal peptide, has been demonstrated.
Collapse
|
Review |
26 |
480 |
2
|
Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M. Optical and MRI multifunctional nanoprobe for targeting gliomas. NANO LETTERS 2005; 5:1003-8. [PMID: 15943433 DOI: 10.1021/nl0502569] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A multifunctional nanoprobe capable of targeting glioma cells, detectable by both magnetic resonance imaging and fluorescence microscopy, was developed. The nanoprobe was synthesized by coating iron oxide nanoparticles with covalently bound bifunctional poly(ethylene glycol) (PEG) polymer, which were subsequently functionalized with chlorotoxin and the near-infrared fluorescing molecule Cy5.5. Both MR imaging and fluorescence microscopy showed significant preferential uptake of the nanoparticle conjugates by glioma cells. Such a nanoprobe could potentially be used to image resections of glioma brain tumors in real time and to correlate preoperative diagnostic images with intraoperative pathology at cellular-level resolution.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
375 |
3
|
Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 2006; 440:959-62. [PMID: 16612389 DOI: 10.1038/nature04649] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 02/15/2006] [Indexed: 11/08/2022]
Abstract
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane--similar to the catalytic function of the active site of an enzyme--and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
359 |
4
|
Tytgat J, Chandy KG, Garcia ML, Gutman GA, Martin-Eauclaire MF, van der Walt JJ, Possani LD. A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Pharmacol Sci 1999; 20:444-7. [PMID: 10542442 DOI: 10.1016/s0165-6147(99)01398-x] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptidyl toxins are used extensively to determine the pharmacology of ion channels. Four families of peptides have been purified from scorpion venom. In this article, the classification of K+-channel-blocking peptides belonging to family 2 peptides and comprising 30-40 amino acids linked by three or four disulfide bridges, will be discussed. Evidence is provided for the existence of 12 molecular subfamilies, named alpha-KTx1-12, containing 49 different peptides. Because of the pharmacological divergence of these peptides, the principle of classification was based on a primary sequence alignment, combined with maximum parsimony and Neighbour-Joining analysis.
Collapse
|
|
26 |
329 |
5
|
Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, Ravanpay AC, Stroud MR, Kusuma Y, Hansen SJ, Kwok D, Munoz NM, Sze RW, Grady WM, Greenberg NM, Ellenbogen RG, Olson JM. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 2007; 67:6882-8. [PMID: 17638899 DOI: 10.1158/0008-5472.can-06-3948] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Toward the goal of developing an optical imaging contrast agent that will enable surgeons to intraoperatively distinguish cancer foci from adjacent normal tissue, we developed a chlorotoxin:Cy5.5 (CTX:Cy5.5) bioconjugate that emits near-IR fluorescent signal. The probe delineates malignant glioma, medulloblastoma, prostate cancer, intestinal cancer, and sarcoma from adjacent non-neoplastic tissue in mouse models. Metastatic cancer foci as small as a few hundred cells were detected in lymph channels. Specific binding to cancer cells is facilitated by matrix metalloproteinase-2 (MMP-2) as evidenced by reduction of CTX:Cy5.5 binding in vitro and in vivo by a pharmacologic blocker of MMP-2 and induction of CTX:Cy5.5 binding in MCF-7 cells following transfection with a plasmid encoding MMP-2. Mouse studies revealed that CTX:Cy5.5 has favorable biodistribution and toxicity profiles. These studies show that CTX:Cy5.5 has the potential to fundamentally improve intraoperative detection and resection of malignancies.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
300 |
6
|
Abstract
Plant defensins are small (c.a. 5 kDa), basic, cysteine-rich proteins with antimicrobial activities. They are ubiquitous in plants and form part of the innate immunity arsenal. Plant defensins are encoded by small multigene families and are expressed in various plant tissues, but are best characterized in seeds. They are typically produced as preproteins, however, a small subset are produced as larger precursors with C-terminal prodomains. To date, the three-dimensional solution structures of seven seed- and two floral-derived defensins have been elucidated by (1)H-NMR spectroscopy. Despite limited amino acid sequence identities, these defensins have comparable global folds with features that are characteristic of the cysteine-stabilized alphabeta (CSalphabeta) motif. Interestingly, their structures are remarkably similar to those of insect defensins and scorpion toxins. Functionally, these proteins exhibit a diverse array of biological activities, although they all serve a common function as defenders of their hosts. This review describes the distribution, biosynthesis, structure, function and mode of action of plant defensins and reflects on their potential in agribiotechnological applications.
Collapse
|
Journal Article |
20 |
297 |
7
|
Bontems F, Roumestand C, Gilquin B, Ménez A, Toma F. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 1991; 254:1521-3. [PMID: 1720574 DOI: 10.1126/science.1720574] [Citation(s) in RCA: 296] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conflicting three-dimensional structures of charybdotoxin (Chtx), a blocker of K+ channels, have been previously reported. A high-resolution model depicting the tertiary structure of Chtx has been obtained by DIANA and X-PLOR calculations from new proton nuclear magnetic resonance (NMR) data. The protein possesses a small triple-stranded antiparallel beta sheet linked to a short helix by two disulfides and to an extended fragment by one disulfide, respectively. This motif also exists in all known structures of scorpion toxins, irrespective of their size, sequence, and function. Strikingly, antibacterial insect defensins also adopt this folding pattern.
Collapse
|
Comparative Study |
34 |
296 |
8
|
Ranganathan R, Lewis JH, MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 1996; 16:131-9. [PMID: 8562077 DOI: 10.1016/s0896-6273(00)80030-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structurally well-characterized scorpion toxin Agitoxin2 inhibits ion permeation through Shaker K+ channels by binding to the external pore entryway. Scanning mutagenesis identified a set of inhibitor residues critical for making energetic contacts with the channel. Using thermodynamic mutant cycle analysis, we have mapped channel residues relative to the known inhibitor structure. This study constrains the position of multiple channel residues within the pore-forming loops; in one stretch, we have been able to map five out of seven contiguous residues to the inhibitor interaction surface, including those involved in ion selectivity. One interaction in particular, that of K27M on the inhibitor with Y445F on the channel, is unique in that it depends on the K+ ion concentration. These results reveal a shallow vestibule formed by the pore loops at the K+ channel entryway. The selectivity filter is located at the center of the vestibule close to (approximately 5 A) the extracellular solution.
Collapse
|
Comparative Study |
29 |
233 |
9
|
Goldstein SA, Pheasant DJ, Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron 1994; 12:1377-88. [PMID: 7516689 DOI: 10.1016/0896-6273(94)90452-9] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Charybdotoxin (CTX) is a peptide of known structure that inhibits Shaker K+ channels by a pore-blocking mechanism. Point mutagenesis of all 30 solvent-exposed residues identified the part of the CTX molecular surface making contact with the receptor in the K+ channel. All close-contact residues are clustered in a well-defined interaction surface; the shape of this surface implies that the outer opening of the Shaker channel conduction pore abruptly widens to a 25 x 35 A plateau. A mutagenic scan of the S5-S6 linker sequence of the Shaker K+ channel identified those channel residues influencing CTX binding affinity. The Shaker residues making the strongest contribution to toxin binding are located close to the pore-lining sequence, and more distant residues on both sides of this region influence CTX binding weakly, probably by an electrostatic mechanism. Complementary mutagenesis of both CTX and Shaker suggests that Shaker-F425 contacts a specific area near T8 and T9 on the CTX molecular surface. This contact point constrains Shaker-F425 to be located at a 20 A radial distance from the pore axis and 10-15 A above the "floor" of the CTX receptor.
Collapse
|
|
31 |
227 |
10
|
Possani LD, Merino E, Corona M, Bolivar F, Becerril B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 2000; 82:861-8. [PMID: 11086216 DOI: 10.1016/s0300-9084(00)01167-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most scorpion toxins are ligand peptides that recognize and bind to integral membrane proteins known as ion-channels. To date there are at least 202 distinct sequences described, obtained from 30 different species of scorpions, 27 from the family Buthidae and three from the family Scorpionidae. Toxins that recognize potassium and chloride channels are usually from 29 to 41 amino acids long, stabilized by three or four disulfide bridges, whereas those that recognize sodium channels are longer, 60 to 76 amino acid residues, compacted by four disulfide bridges. Toxins specific for calcium channels are scarcely known and have variable amino acid lengths. The entire repertoire of toxins, independently of their specificity, was analyzed together by computational programs and a phylogenetic tree was built showing two separate branches. The K(+) and Cl(-) channel specific toxins are clustered into 14 subfamilies, whereas those of Na(+) and Ca(2+) specific toxins comprise at least 12 subfamilies. There are clear similarities among them, both in terms of primary sequence and the main three-dimensional folding pattern. A dense core formed by a short alpha helix segment and several antiparallel beta-sheet stretches, maintained by disulfide pairing, seems to be a common structural feature present in all toxins. The physiological function of these peptides is manifested by a blockage of ion passage through the channels or by a modification of the gating mechanism that controls opening and closing of the ion pore.
Collapse
|
Review |
25 |
222 |
11
|
Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon 2015; 93:125-35. [PMID: 25432067 PMCID: PMC7130864 DOI: 10.1016/j.toxicon.2014.11.233] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/25/2014] [Indexed: 10/25/2022]
Abstract
Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins have been the driving force in the scorpion natural compounds research field. On the other hand, for thousands of years, scorpions and their venoms have been applied in traditional medicine, mainly in Asia and Africa. With the remarkable growth in the number of characterized scorpion venom components, several drug candidates have been found with the potential to tackle many of the emerging global medical threats. Scorpions have become a valuable source of biologically active molecules, from novel antibiotics to potential anticancer therapeutics. Other venom components have drawn attention as useful scaffolds for the development of drugs. This review summarizes the most promising candidates for drug development that have been isolated from scorpion venoms.
Collapse
|
Review |
10 |
221 |
12
|
Garcia ML, Garcia-Calvo M, Hidalgo P, Lee A, MacKinnon R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 1994; 33:6834-9. [PMID: 8204618 DOI: 10.1021/bi00188a012] [Citation(s) in RCA: 214] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three new toxins from the venom of the scorpion Leiurus quinquestriatus var. hebraeus have been identified on the basis of their ability to block the Shaker K+ channel. These toxins have been purified using HPLC techniques and characterized as 38 amino acid peptides by mass spectroscopy, amino acid analysis, and sequence determination. Their chemical identity was confirmed by producing fully functional synthetic toxins using recombinant methods. These peptides are potent inhibitors of the Shaker K+ channel (Kd < 1 nM) as well as the mammalian homologues of Shaker. They are related to other previously described K+ channel toxins, but form a new subclass within the larger family of K+ channel inhibitors derived from scorpion venom. We have named these toxins agitoxin 1, 2, and 3, respectively.
Collapse
|
|
31 |
214 |
13
|
Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:372-9. [PMID: 18232053 PMCID: PMC2692358 DOI: 10.1002/smll.200700784] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Converging advances in the development of nanoparticle-based imaging probes and improved understanding of the molecular biology of brain tumors offer the potential to provide physicians with new tools for the diagnosis and treatment of these deadly diseases. However, the effectiveness of promising nanoparticle technologies is currently limited by insufficient accumulation of these contrast agents within tumors. Here a biocompatible nanoprobe composed of a poly(ethylene glycol) (PEG) coated iron oxide nanoparticle that is capable of specifically targeting glioma tumors via the surface-bound targeting peptide, chlorotoxin (CTX), is presented. The preferential accumulation of the nanoprobe within gliomas and subsequent magnetic resonance imaging (MRI) contrast enhancement are demonstrated in vitro in 9L cells and in vivo in tumors of a xenograft mouse model. TEM imaging reveals that the nanoprobes are internalized into the cytoplasm of 9L cells and histological analysis of selected tissues indicates that there are no acute toxic effects of these nanoprobes. High targeting specificity and benign biological response establish this nanoprobe as a potential platform to aid in the diagnosis and treatment of gliomas and other tumors of neuroectodermal origin.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
211 |
14
|
Goudet C, Chi CW, Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 2002; 40:1239-58. [PMID: 12220709 DOI: 10.1016/s0041-0101(02)00142-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the different scorpion species, Buthus martensi Karsch (BmK), a widely distributed scorpion species in Asia, has received a lot of attention. Indeed, over the past decade, more than 70 different peptides, toxins or homologues have been isolated and more peptides are probably still to be revealed. This review is focusing on the many peptides isolated from the venom of this scorpion, their targets, their genes and their structures. The aim is to give both a 'state of the art' view of the research on BmK venom and an illustration of the complexity of this scorpion venom. In the present manuscript, we have listed the different ion channel toxins and homologues isolated from the venom of BmK, either from the literature or from databases. We have described here 51 long-chain peptides related to the Na(+) channel toxins family: 34 related to the alpha-toxin family, four related to the excitatory insect toxin family, 10 related to the depressant insect toxin, one beta-like toxin plus two peptides, BmK AS and AS1, that act on ryanodine receptors. We also listed 18 peptides related to the K(+) channel toxin family: 14 short chain toxins or homologues, two long chain K(+) toxin homologues and two putative K(+) toxin precursors. Additionally, two chlorotoxin like peptides (Bm-12 and 12 b) have been isolated in the venom of BmK. Besides these ion channels toxins, two peptides without disulfide bridges (the bradykinin-potentiating peptide BmK bpp and BmK n1) and three peptides with no known functions have also been discovered in this venom. We have also taken the opportunity of this review to update the classification of scorpion K(+) toxins () which now presents 17 subfamilies instead of the 12 described earlier. The work on the venom of BmK led to the discovery of two new subfamilies, alpha-KT x 14 and alpha-KT x 17.
Collapse
|
Review |
23 |
205 |
15
|
Aiyar J, Withka JM, Rizzi JP, Singleton DH, Andrews GC, Lin W, Boyd J, Hanson DC, Simon M, Dethlefs B. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron 1995; 15:1169-81. [PMID: 7576659 DOI: 10.1016/0896-6273(95)90104-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The architecture of the pore-region of a voltage-gated K+ channel, Kv1.3, was probed using four high affinity scorpion toxins as molecular calipers. We established the structural relatedness of these toxins by solving the structures of kaliotoxin and margatoxin and comparing them with the published structure of charybdotoxin; a homology model of noxiustoxin was then developed. Complementary mutagenesis of Kv1.3 and these toxins, combined with electrostatic compliance and thermodynamic mutant cycle analyses, allowed us to identify multiple toxin-channel interactions. Our analyses reveal the existence of a shallow vestibule at the external entrance to the pore. This vestibule is approximately 28-32 A wide at its outer margin, approximately 28-34 A wide at its base, and approximately 4-8 A deep. The pore is 9-14 A wide at its external entrance and tapers to a width of 4-5 A at a depth of approximately 5-7 A from the vestibule. This structural information should directly aid in developing topological models of the pores of related ion channels and facilitate therapeutic drug design.
Collapse
|
|
30 |
204 |
16
|
Quintero-Hernández V, Jiménez-Vargas J, Gurrola G, Valdivia H, Possani L. Scorpion venom components that affect ion-channels function. Toxicon 2013; 76:328-42. [PMID: 23891887 PMCID: PMC4089097 DOI: 10.1016/j.toxicon.2013.07.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022]
Abstract
The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na(+)-, K(+)- and Ca(++)-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are nowadays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na(+)-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K(+)-channels are normally pore blocking agents. The Ryanodine Ca(++)-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
200 |
17
|
Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kivit F, Stephen Z, Lee D, Ellenbogen RG, Ratner B, Zhang M. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS NANO 2010; 4:2402-10. [PMID: 20232826 PMCID: PMC2860962 DOI: 10.1021/nn100190v] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor-targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, nontoxicity, and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic, or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
192 |
18
|
Conde R, Zamudio FZ, Rodríguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett 2000; 471:165-8. [PMID: 10767415 DOI: 10.1016/s0014-5793(00)01384-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel peptide, scorpine, was isolated from the venom of the scorpion Pandinus imperator, with anti-bacterial activity and a potent inhibitory effect on the ookinete (ED(50) 0.7 microM) and gamete (ED(50) 10 microM) stages of Plasmodium berghei development. It has 75 amino acids, three disulfide bridges with a molecular mass of 8350 Da. Scorpine has a unique amino acid sequence, similar only to some cecropins in its N-terminal segment and to some defensins in its C-terminal region. Its gene was cloned from a cDNA library.
Collapse
|
|
25 |
185 |
19
|
Candia S, Garcia ML, Latorre R. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Biophys J 1992; 63:583-90. [PMID: 1384740 PMCID: PMC1262182 DOI: 10.1016/s0006-3495(92)81630-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding.
Collapse
|
research-article |
33 |
178 |
20
|
Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang M. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS NANO 2010; 4:4587-94. [PMID: 20731441 PMCID: PMC2928580 DOI: 10.1021/nn1008512] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Glioma accounts for 80% of brain tumors and currently remains one of the most lethal forms of cancers. Gene therapy could potentially improve the dismal prognosis of patients with glioma, but this treatment modality has not yet reached the bedside from the laboratory due to the lack of safe and effective gene delivery vehicles. In this study we investigate targeted gene delivery to C6 glioma cells in a xenograft mouse model using chlorotoxin (CTX) labeled nanoparticles. The developed nanovector consists of an iron oxide nanoparticle core, coated with a copolymer of chitosan, polyethylene glycol (PEG), and polyethylenimine (PEI). Green fluorescent protein (GFP) encoding DNA was bound to these nanoparticles, and CTX was then attached using a short PEG linker. Nanoparticles without CTX were also prepared as a control. Mice bearing C6 xenograft tumors were injected intravenously with the DNA-bound nanoparticles. Nanoparticle accumulation in the tumor site was monitored using magnetic resonance imaging and analyzed by histology, and GFP gene expression was monitored through Xenogen IVIS fluorescence imaging and confocal fluorescence microscopy. Interestingly, the CTX did not affect the accumulation of nanoparticles at the tumor site but specifically enhanced their uptake into cancer cells as evidenced by higher gene expression. These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
163 |
21
|
Gordon D, Martin-Eauclaire MF, Cestèle S, Kopeyan C, Carlier E, Khalifa RB, Pelhate M, Rochat H. Scorpion toxins affecting sodium current inactivation bind to distinct homologous receptor sites on rat brain and insect sodium channels. J Biol Chem 1996; 271:8034-45. [PMID: 8626486 DOI: 10.1074/jbc.271.14.8034] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sodium channels posses receptor sites for many neurotoxins, of which several groups were shown to inhibit sodium current inactivation. Receptor sites that bind alpha- and alpha-like scorpion toxins are of particular interest since neurotoxin binding at these extracellular regions can affect the inactivation process at intramembranal segments of the channel. We examined, for the first time, the interaction of different scorpion neurotoxins, all affecting sodium current inactivation and toxic to mammals, with alpha-scorpion toxin receptor sites on both mammalian and insect sodium channels. As specific probes for rat and insect sodium channels, we used the radiolabeled alpha-scorpion toxins AaH II and LqhalphaIT, the most active alpha-toxins on mammals and insect, respectively. We demonstrate that the different scorpion toxins may be classified to several groups, according to their in vivo and in vitro activity on mammalian and insect sodium channels. Analysis of competitive binding interaction reveal that each group may occupy a distinct receptor site on sodium channels. The alpha-mammal scorpion toxins and the anti-insect Lqh alphaIT bind to homologous but not identical receptor sites on both rat brain and insect sodium channels. Sea anemone toxin ATX II, previously considered to share receptor site 3 with alpha-scorpion toxins, is suggested to bind to a partially overlapping receptor site with both AaH II and Lqh alphaIT. Competitive binding interactions with other scorpion toxins suggest the presence of a putative additional receptor site on sodium channels, which may bind a unique group of these scorpion toxins (Bom III and IV), active on both mammals and insects. We suggest the presence of a cluster of receptor sites for scorpion toxins that inhibit sodium current inactivation, which is very similar on insect and rat brain sodium channels, in spite of the structural and pharmacological differences between them. The sea anemone toxin ATX II is also suggested to bind within this cluster.
Collapse
|
Comparative Study |
29 |
153 |
22
|
Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. PLANT PHYSIOLOGY 2004; 135:2055-67. [PMID: 15299136 PMCID: PMC520777 DOI: 10.1104/pp.104.040873] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 05/12/2004] [Accepted: 05/13/2004] [Indexed: 05/18/2023]
Abstract
Plant defensins are a family of small Cys-rich antifungal proteins that play important roles in plant defense against invading fungi. Structures of several plant defensins share a Cys-stabilized alpha/beta-motif. Structural determinants in plant defensins that govern their antifungal activity and the mechanisms by which they inhibit fungal growth remain unclear. Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibits the growth of Fusarium graminearum in vitro, and its antifungal activity is markedly reduced in the presence of Ca(2+). By contrast, MtDef2 from Medicago truncatula, which shares 65% amino acid sequence identity with MsDef1, lacks antifungal activity against F. graminearum. Characterization of the in vitro antifungal activity of the chimeras containing portions of the MsDef1 and MtDef2 proteins shows that the major determinants of antifungal activity reside in the carboxy-terminal region (amino acids 31-45) of MsDef1. We further define the active site by demonstrating that the Arg at position 38 of MsDef1 is critical for its antifungal activity. Furthermore, we have found for the first time, to our knowledge, that MsDef1 blocks the mammalian L-type Ca(2+) channel in a manner akin to a virally encoded and structurally unrelated antifungal toxin KP4 from Ustilago maydis, whereas structurally similar MtDef2 and the radish (Raphanus sativus) seed defensin Rs-AFP2 fail to block the L-type Ca(2+) channel. From these results, we speculate that the two unrelated antifungal proteins, KP4 and MsDef1, have evolutionarily converged upon the same molecular target, whereas the two structurally related antifungal plant defensins, MtDef2 and Rs-AFP2, have diverged to attack different targets in fungi.
Collapse
|
Comparative Study |
21 |
151 |
23
|
Stampe P, Kolmakova-Partensky L, Miller C. Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin. Biochemistry 1994; 33:443-50. [PMID: 7506933 DOI: 10.1021/bi00168a008] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The external vestibules of many K+ channels carry a high-affinity receptor for charybdotoxin, a peptide of known structure. Point mutations of a recombinant toxin identified the residues directly involved in the interaction with a Ca(2+)-activated K+ channel. The interaction surface is formed from 8 of the 37 residues and covers about 25% of the peptide's molecular surface. The shape of the toxin permits a deduced picture of the complementary receptor site in the external vestibule of the K+ channel.
Collapse
|
|
31 |
150 |
24
|
Valiyaveetil FI, MacKinnon R, Muir TW. Semisynthesis and folding of the potassium channel KcsA. J Am Chem Soc 2002; 124:9113-20. [PMID: 12149015 DOI: 10.1021/ja0266722] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this contribution we describe the semisynthesis of the potassium channel, KcsA. A truncated form of KcsA, comprising the first 125 amino acids of the 160-amino acid protein, was synthesized using expressed protein ligation. This truncated form corresponds to the entire membrane-spanning region of the protein and is similar to the construct previously used in crystallographic studies on the KcsA protein. The ligation reaction was carried out using an N-terminal recombinant peptide alpha-thioester, corresponding to residues 1-73 of KcsA, and a synthetic C-terminal peptide corresponding to residues 74-125. Chemical synthesis of the C-peptide was accomplished by optimized Boc-SPPS techniques. A dual fusion strategy, involving glutathione-S-transferase (GST) and the GyrA intein, was developed for recombinant expression of the N-peptide alpha-thioester. The fusion protein, expressed in the insoluble form as inclusion bodies, was refolded and then cleaved successively to remove the GST tag and the intein, thereby releasing the N-peptide alpha-thioester. Following chemical ligation, the KcsA polypeptide was folded into the tetrameric state by incorporation into lipid vesicles. The correctness of the folded state was verified by the ability of the KcsA tetramer to bind to agitoxin-2. To our knowledge, this work represents the first reported semisynthesis of a polytopic membrane protein and highlights the potential application of native chemical ligation and expressed protein ligation for the (semi)synthesis of integral membrane proteins.
Collapse
|
|
23 |
148 |
25
|
Bontems F, Roumestand C, Boyot P, Gilquin B, Doljansky Y, Menez A, Toma F. Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:19-28. [PMID: 1705886 DOI: 10.1111/j.1432-1033.1991.tb15780.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 600-MHz proton NMR study of natural charybdotoxin, a toxin acting on K+ channels, is reported. The unambiguous sequential assignment of all the protons of the toxin was achieved. The analysis of NOEs and of backbone coupling constants showed the existence of an alpha-helix (residues 10-19) and of an antiparallel beta-sheet in the 26-35 part. Three-dimensional structures were generated by distance geometry, using a set of 114 interresidual calibrated constraints (63 sequential, 47 medium and long range, 4 hydrogen bonds) and 29 phi angles. These structures show that charybdotoxin is composed of a beta-sheet linked to an alpha-helix by two disulphide bridges and to an extended fragment by the third disulphide bridge. Comparison with the other known structures of long and short scorpion toxins shows that this structural motif is common to all these proteins.
Collapse
|
|
34 |
148 |