51
|
de Oliveira Simões R, Fraga-Neto S, Vilar EM, Maldonado A, do Val Vilela R. A New Species of Bidigiticauda (Nematoda: Strongylida) from the Bat Artibeus Planirostris (Chiroptera: Phyllostomidae) in the Atlantic Forest and a Molecular Phylogeny of the Molineid Bat Parasites. J Parasitol 2019; 105:783-792. [PMID: 31633437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The nematode genus Bidigiticauda has 2 species (Bidigiticauda vivipara and Bidigiticauda embryophilum), which are parasites of bats from the Neotropical region. The present paper describes a new species of Bidigiticauda from a male Artibeus planirostris specimen collected in the Pratigi Environmental Protection Area in Bahia state, Brazil. The new species, Bidigiticauda serrafreirei n. sp., differs from B. embryophilum by having longer spicules, rays 5 and 6 arising from a common trunk and bifurcating in its first third, rays 3 and 4 emerging slightly separated from each other, and dorsal rays reaching the margin of the caudal bursa. The new species also differs from B. vivipara by the dorsal ray bifurcating at the extremity of the trunk. A molecular phylogenetic analysis was conducted to determine the evolutionary affinities of Bidigiticauda serrafreirei n. sp. within the Strongylida, which identified a clade that grouped Bidigiticauda with the other members of the Anoplostrongylinae. However, the molineid subfamilies did not group together, indicating that the family Molineidae is polyphyletic. Further analyses, which include additional taxa and genetic markers, should elucidate the complex relationships within the Molineidae, in particular its subfamilies and the evolution of the traits that define these groups.
Collapse
|
52
|
Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J, Miles MA, Andersson B, Grijalva MJ, Llewellyn MS. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat Commun 2019; 10:3972. [PMID: 31481692 PMCID: PMC6722143 DOI: 10.1038/s41467-019-11771-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.
Collapse
|
53
|
Speer KA, Luetke E, Bush E, Sheth B, Gerace A, Quicksall Z, Miyamoto M, Dick CW, Dittmar K, Albury N, Reed DL. A Fly on the Cave Wall: Parasite Genetics Reveal Fine-scale Dispersal Patterns of Bats. J Parasitol 2019; 105:555-566. [PMID: 31348717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Dispersal influences the evolution and adaptation of organisms, but it can be difficult to detect. Host-specific parasites provide information about the dispersal of their hosts and may be valuable for examining host dispersal that does not result in gene flow or that has low signals of gene flow. We examined the population connectivity of the buffy flower bat, Erophylla sezekorni (Chiroptera: Phyllostomidae), and its associated obligate ectoparasite, Trichobius frequens (Diptera: Streblidae), across a narrow oceanic channel in The Bahamas that has previously been implicated as a barrier to dispersal in bats. Due to the horizontal transmission of T. frequens, we were able to test the hypothesis that bats are dispersing across this channel, but this dispersal does not result in gene flow, occurs rarely, or started occurring recently. We developed novel microsatellite markers for the family Streblidae in combination with previously developed markers for bats to genotype individuals from 4 islands in The Bahamas. We provide evidence for a single population of the host, E. sezekorni, but 2 populations of its bat flies, potentially indicating a recent reduction of gene flow in E. sezekorni, rare dispersal, or infrequent transportation of bat flies with their hosts. Despite high population differentiation in bat flies indicated by microsatellites, mitochondrial DNA shows no polymorphism, suggesting that bacterial reproductive parasites may be contributing to mitochondrial DNA sweeps. Parasites, including bat flies, provide independent information about their hosts and can be used to test hypotheses of host dispersal that may be difficult to assess using host genetics alone.
Collapse
|
54
|
Rangel DA, Lisboa CV, Novaes RLM, Silva BA, Souza RDF, Jansen AM, Moratelli R, Roque ALR. Isolation and characterization of trypanosomatids, including Crithidia mellificae, in bats from the Atlantic Forest of Rio de Janeiro, Brazil. PLoS Negl Trop Dis 2019; 13:e0007527. [PMID: 31291252 PMCID: PMC6619607 DOI: 10.1371/journal.pntd.0007527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/06/2019] [Indexed: 01/30/2023] Open
Abstract
We studied infection by Trypanosomatidae in bats captured in two areas with different degradation levels in the Atlantic Forest of Rio de Janeiro state: Reserva Ecológica de Guapiaçu (REGUA) and Estação Fiocruz Mata Atlântica (EFMA). Furthermore, we evaluated whether the diversity of trypanosomatids changes according to bat diversity and the different levels of preservation in the region. The results showed no influence of the level of preservation on bat species richness (15 and 14 species, respectively), with similar chiropterofauna and higher abundance of two common fruit-eating bat species in the tropics: Carollia perspicillata and Artibeus lituratus. Of the 181 bat specimens analyzed by LIT/Schneider hemoculture, we detected 24 infected individuals (13%), including one positive Sturnira lilium individual that was also positive by fresh blood examination. Molecular characterization using nested PCR targeting the 18 SSU rRNA-encoding gene fragment showed similar trypanosomatid infection rates in bats from the two areas: 15% in REGUA and 11% in EFMA (p = 0.46). Trypanosoma dionisii was the most frequently detected parasite (54%), followed by T. cruzi DTUs TcI and TcIV and Trypanosoma sp., in Neotropical phyllostomid bats (RNMO63 and RNMO56); mixed infections by T. dionisii/T. cruzi TcIII and T. dionisii/T. cruzi TcI were also observed. The T. cruzi DTUs TcI and TcIV are the genotypes currently involved in cases of acute Chagas disease in Brazil, and T. dionisii was recently found in the heart tissue of an infected child. Surprisingly, we also describe for the first time Crithidia mellificae, a putative monoxenous parasite from insects, infecting a vertebrate host in the Americas. Bats from the Atlantic Forest of Rio de Janeiro state harbor a great diversity of trypanosomatids, maintaining trypanosomatid diversity in this sylvatic environment.
Collapse
|
55
|
Smit JT, Miller J. Bat Ectoparasites From Sint Eustatius, Lesser Antilles (Diptera: Hippoboscidae: Streblinae; Hemiptera: Polyctenidae). J Parasitol 2019; 105:45-51. [PMID: 30807716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
In this paper 4 species of bat ectoparasites are recorded from the island of Sint Eustatius, Dutch Caribbean. One species of true bug (Hemiptera: Polyctenidae) as well as 3 species of bat flies (Diptera: Hippoboscidae: Streblinae) are recorded. All species are photographed. The first DNA barcodes for 3 bat ectoparasite species ( Trichobius frequens, Trichobius intermedius, and Hesperoctenes fumarius) have been posted to the BOLD database; DNA barcode sequences for a fourth species ( Megistopoda aranea) are the first from a Caribbean island.
Collapse
|
56
|
Trujillo-Pahua L, Ibáñez-Bernal S. New Geographical Records of Bat Flies (Diptera: Streblidae) Associated With Phyllostomid Bats (Chiroptera: Phyllostomidae) in the West Highlands of Mexico. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:18-28. [PMID: 30247709 DOI: 10.1093/jme/tjy166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Streblidae are ectoparasites exclusive to bats and feed only on their blood. Studies on ectoparasite fauna have increased our ecological knowledge of the parasitic relationship between streblids and their bat hosts. We evaluate assemblages of phyllostomid bats and their ectoparasitic flies in three scenarios with different types of anthropogenic use: pine-oak forest, avocado orchards, and an urban park during an annual cycle in the highlands of Michoacan, Mexico. We recorded a total of 325 bats belonging to nine species in three subfamilies: Glossophaginae, Desmodontinae, and Stenodermatinae, and obtained 225 bat flies belonging to seven species. The nectivorous bat Anoura geoffroyi Gray, 1838, had the highest prevalence of infestation and the hematophagous bat Desmodus rotundus (É. Geoffroy, 1810) was the host with the highest mean parasite abundance and mean intensity. Aspidoptera delatorrei Wenzel, 1966, Megistopoda proxima (Séguy, 1926), Paratrichobius longicrus (Miranda Ribeiro, 1907), Trichobius brennani Wenzel, 1966, and T. parasiticus Gervais, 1844, are new records for the state of Michoacan reported in this study.
Collapse
|
57
|
Sándor AD, Földvári M, Krawczyk AI, Sprong H, Corduneanu A, Barti L, Görföl T, Estók P, Kováts D, Szekeres S, László Z, Hornok S, Földvári G. Eco-epidemiology of Novel Bartonella Genotypes from Parasitic Flies of Insectivorous Bats. MICROBIAL ECOLOGY 2018; 76:1076-1088. [PMID: 29705820 DOI: 10.1007/s00248-018-1195-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Bats are important zoonotic reservoirs for many pathogens worldwide. Although their highly specialized ectoparasites, bat flies (Diptera: Hippoboscoidea), can transmit Bartonella bacteria including human pathogens, their eco-epidemiology is unexplored. Here, we analyzed the prevalence and diversity of Bartonella strains sampled from 10 bat fly species from 14 European bat species. We found high prevalence of Bartonella spp. in most bat fly species with wide geographical distribution. Bat species explained most of the variance in Bartonella distribution with the highest prevalence of infected flies recorded in species living in dense groups exclusively in caves. Bat gender but not bat fly gender was also an important factor with the more mobile male bats giving more opportunity for the ectoparasites to access several host individuals. We detected high diversity of Bartonella strains (18 sequences, 7 genotypes, in 9 bat fly species) comparable with tropical assemblages of bat-bat fly association. Most genotypes are novel (15 out of 18 recorded strains have a similarity of 92-99%, with three sequences having 100% similarity to Bartonella spp. sequences deposited in GenBank) with currently unknown pathogenicity; however, 4 of these sequences are similar (up to 92% sequence similarity) to Bartonella spp. with known zoonotic potential. The high prevalence and diversity of Bartonella spp. suggests a long shared evolution of these bacteria with bat flies and bats providing excellent study targets for the eco-epidemiology of host-vector-pathogen cycles.
Collapse
|
58
|
do Amaral RB, Lourenço EC, Famadas KM, Garcia AB, Machado RZ, André MR. Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil. PLoS One 2018; 13:e0198629. [PMID: 29870549 PMCID: PMC5988283 DOI: 10.1371/journal.pone.0198629] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
The family Streblidae comprises a monophyletic group of Hippoboscoidea, hematophagous dipterans that parasitize bats. Bartonella spp. and Rickettsia spp. have been reported in bats sampled in Europe, Africa, Asia, North, Central and South America. However, there are few reports on the Bartonella and Rickettsia bacteria infecting Hippoboscoidea flies and mites. While Spinturnicidae mites are ectoparasites found only in bats, those belonging to the family Macronyssidae comprise mites that also parasitize other mammal species. This study investigates the occurrence and assesses the phylogenetic positioning of Bartonella spp. and Rickettsia spp. found in Streblidae flies and Spinturnicidae and Macronyssidae mites collected from bats captured in Brazil. From May 2011 to April 2012 and September 2013 to December 2014, 400 Streblidae flies, 100 Macronyssidaes, and 100 Spinturnicidae mites were collected from bats captured in two sites in northeastern Nova Iguaçu, Rio de Janeiro, southeastern Brazil. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the flies positive for the bacterium, six (18%) were Paratrichobius longicrus, seven (29%) Strebla guajiro, two (40%) Aspidoptera phyllostomatis, five (11%) Aspidoptera falcata, one (10%) Trichobius anducei, one (25%) Megistopoda aranea, and 18 (32%) Trichobius joblingi, and collected from bats of the following species: Artibeus lituratus, Carollia perspicillata, Artibeus planirostris, Sturnira lilium, and Artibeus obscurus. Six sequences were obtained for Bartonella (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC = 1]). The phylogenetic analysis based on gltA (750pb) gene showed that the Bartonella sequences clustered with Bartonella genotypes detected in bats and ectoparasites previously sampled in Latin America, including Brazil. Only one sample (0.49%) of the species Trichobius joblingi collected from a specimen of Carollia perspicillata was positive for Rickettsia sp. in cPCR based on the gltA gene (401bp). This sequence was clustered with a 'Candidatus Rickettsia andaenae" genotype detected in an Amblyomma parvum tick collected from a rodent in the southern region of Brazilian Pantanal. The sampled Macronyssidae and Spinturnicidae mites were negative for Bartonella spp. and Rickettsia spp. This study demonstrated the first occurrence of Bartonella spp. and Rickettsia spp. DNA in Streblidae flies collected from bats in Brazil.
Collapse
|
59
|
Colín-Martínez H, García-Estrada C. Parasite load and new soft tick record (Ixodida: Argasidae) on the bat species Balantiopteryx plicata and Pteronotus parnellii in Oaxaca, Mexico. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:190-192. [PMID: 29757508 DOI: 10.1111/jvec.12299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
60
|
McKee CD, Osikowicz LM, Schwedhelm TR, Bai Y, Castle KT, Kosoy MY. Survey of Parasitic Bacteria in Bat Bugs, Colorado. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:237-241. [PMID: 29329460 DOI: 10.1093/jme/tjx155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Bat bugs (Cimex adjunctus Barber) (Hemiptera: Cimicidae) collected from big brown bats (Eptesicus fuscus Palisot de Beauvoir) in Colorado, United States were assessed for the presence of Bartonella, Brucella, and Yersinia spp. using molecular techniques. No evidence of Brucella or Yersinia infection was found in the 55 specimens collected; however, 4/55 (7.3%) of the specimens were positive for Bartonella DNA. Multi-locus characterization of Bartonella DNA shows that sequences in bat bugs are phylogenetically related to other Bartonella isolates and sequences from European bats.
Collapse
|
61
|
Mierzyński Ł, Izdebska JN, Ciechanowski M. New data on the distribution of Carios vespertilionis Latreille, 1802 (Ixodida, Argasidae) in bats (Chiroptera) from northern Poland. ANNALS OF PARASITOLOGY 2018; 64:361-366. [PMID: 30738420 DOI: 10.17420/ap6404.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carios vespertilionis Latreille, 1802 is a typical bat parasite, widely distributed in the Palearctic, Oriental and Afrotropical realms. Its localities were found throughout Poland, yet it is considerably more common in the south. Currently, 105 bats have been examined, collected in the period 1999–2017 from 27 localities in northern Poland; 102 C. vespertilionis larvae were noted in 6 bats of 3 species of the Pipistrellus genus, originating from 5 localities, of which all constitute new locality for the short-legged bat tick. Instances of C. vespertilionis larvae wintering in the hosts have been observed as well as occurrence of this parasite outside of bat breeding colonies.
Collapse
|
62
|
Dario MA, Lisboa CV, Costa LM, Moratelli R, Nascimento MP, Costa LP, Leite YLR, Llewellyn MS, Xavier SCDC, Roque ALR, Jansen AM. High Trypanosoma spp. diversity is maintained by bats and triatomines in Espírito Santo state, Brazil. PLoS One 2017; 12:e0188412. [PMID: 29176770 PMCID: PMC5703495 DOI: 10.1371/journal.pone.0188412] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to reevaluate the ecology of an area in the Atlantic Forest, southeast Brazil, where Chagas disease (CD) has been found to occur. In a previous study, immediately after the occurrence of a CD case, we did not observe any sylvatic small mammals or dogs with Trypanosoma cruzi cruzi infections, but Triatoma vitticeps presented high T. c. cruzi infection rates. In this study, we investigated bats together with non-volant mammals, dogs, and triatomines to explore other possible T. c. cruzi reservoirs/hosts in the area. Seventy-three non-volant mammals and 186 bats were captured at three sites within the Guarapari municipality, Espírito Santo state. Rio da Prata and Amarelos sites exhibited greater richness in terms of non-volant mammals and bats species, respectively. The marsupial Metachirus nudicaudatus, the rodent Trinomys paratus, and the bats Artibeus lituratus and Carollia perspicillata were the most frequently captured species. As determined by positive hemocultures, only two non-volant mammals were found to be infected by Trypanosoma species: Monodelphis americana, which was infected by T. cascavelli, T. dionisii and Trypanosoma sp., and Callithrix geoffroyi, which was infected by T. minasense. Bats presented T. c. cruzi TcI and TcIII/V, T. c. marinkellei, T. dionisii, T. rangeli B and D, and Trypanosoma sp. infections. Seven dogs were infected with T. cruzi based only on serological exams. The triatomines T. vitticeps and Panstrongylus geniculatus were found to be infected by trypanosomes via microscopy. According to molecular characterization, T. vitticeps specimens were infected with T. c. cruzi TcI, TcII, TcIII/V, and TcIV, T. c. marinkellei and T. dionisii. We observed high trypanosome diversity in a small and fragmented region of the Atlantic Forest. This diversity was primarily maintained by bats and T. vitticeps. Our findings show that the host specificity of the Trypanosoma genus should be thoroughly reviewed. In addition, our data show that CD cases can occur without an enzootic cycle near residential areas.
Collapse
|
63
|
LAVOIPIERRE MJ. Notes acarologiques. II. quelques remarques sur Trixacarus diversus Sellnick, 1944 ( = Sarcoptes Anacanthos Guilhon, 1946) et sur trois espèces récemment décrites de sarcoptes des singes et des chauve-souris. ACTA ACUST UNITED AC 2017; 35:166-70. [PMID: 14414674 DOI: 10.1051/parasite/1960351166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
64
|
Ju HD, Li L, Zhang LP. Durettenema guangdongense gen. et sp. nov. (Nematoda: Molineoidea) from Hipposideros larvatus (Horsfield) (Chiroptera: Rhinolophidae) with discussion of the taxonomic status of Macielia rhinolophi Yin, 1980. Acta Parasitol 2017; 62:575-581. [PMID: 28682762 DOI: 10.1515/ap-2017-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/20/2017] [Indexed: 11/15/2022]
Abstract
Durettenema guangdongense gen. et sp. nov. is described from Hipposideros larvatus (Horsfield) (Chiroptera: Rhinolophidae) in Guangdong Province, China. The new genus differs from the other genera of subfamily Molineinae in the structure of the synlophe, the absence of lateral alae, the arrangement of the bursa rays, the shape of the spicules, the female tail and the presence of gubernaculum. Meanwhile, considering the morphological characters of Macielia rhinolophi Yin, 1980, including the pattern of the bursa ray, the shape of the spicules, and the female tail, this species should be transferred to the genus Durettenema, as D. rhinolophi (Yin, 1980) comb. nov., which can be distinguished from D. guangdongense in the shape of the ovejector. In addition, the ITS-1 sequences of D. guangdongense were also analysed, these sequence added new data for the molecular diagnosis of trichostrongylid nematodes.
Collapse
|
65
|
Dorn PL, McClure AG, Gallaspy MD, Waleckx E, Woods AS, Monroy MC, Stevens L. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia. PLoS Negl Trop Dis 2017; 11:e0005878. [PMID: 28957315 PMCID: PMC5619707 DOI: 10.1371/journal.pntd.0005878] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023] Open
Abstract
Little is known about the strains of Trypanosoma cruzi circulating in Central America and specifically in the most important vector in this region, Triatoma dimidiata. Approximately six million people are infected with T. cruzi, the causative agent of Chagas disease, which has the greatest negative economic impact and is responsible for ~12,000 deaths annually in Latin America. By international consensus, strains of T. cruzi are divided into six monophyletic clades called discrete typing units (DTUs TcI-VI) and a seventh DTU first identified in bats called TcBat. TcI shows the greatest geographic range and diversity. Identifying strains present and diversity within these strains is important as different strains and their genotypes may cause different pathologies and may circulate in different localities and transmission cycles, thus impacting control efforts, treatment and vaccine development. To determine parasite strains present in T. dimidiata across its geographic range from Mexico to Colombia, we isolated abdominal DNA from T. dimidiata and determined which specimens were infected with T. cruzi by PCR. Strains from infected insects were determined by comparing the sequence of the 18S rDNA and the spliced-leader intergenic region to typed strains in GenBank. Two DTUs were found: 94% of infected T. dimidiata contained TcI and 6% contained TcIV. TcI exhibited high genetic diversity. Geographic structure of TcI haplotypes was evident by Principal Component and Median-Joining Network analyses as well as a significant result in the Mantel test, indicating isolation by distance. There was little evidence of association with TcI haplotypes and host/vector or ecotope. This study provides new information about the strains circulating in the most important Chagas vector in Central America and reveals considerable variability within TcI as well as geographic structuring at this large geographic scale. The lack of association with particular vectors/hosts or ecotopes suggests the parasites are moving among vectors/hosts and ecotopes therefore a comprehensive approach, such as the Ecohealth approach that makes houses refractory to the vectors will be needed to successfully halt transmission of Chagas disease.
Collapse
|
66
|
Dario MA, Moratelli R, Schwabl P, Jansen AM, Llewellyn MS. Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats. PLoS Negl Trop Dis 2017; 11:e0005790. [PMID: 28727769 PMCID: PMC5544246 DOI: 10.1371/journal.pntd.0005790] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/04/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bats are a highly successful, globally dispersed order of mammals that occupy a wide array of ecological niches. They are also intensely parasitized and implicated in multiple viral, bacterial and parasitic zoonoses. Trypanosomes are thought to be especially abundant and diverse in bats. In this study, we used 18S ribosomal RNA metabarcoding to probe bat trypanosome diversity in unprecedented detail. METHODOLOGY/PRINCIPAL FINDINGS Total DNA was extracted from the blood of 90 bat individuals (17 species) captured along Atlantic Forest fragments of Espírito Santo state, southeast Brazil. 18S ribosomal RNA was amplified by standard and/or nested PCR, then deep sequenced to recover and identify Operational Taxonomic Units (OTUs) for phylogenetic analysis. Blood samples from 34 bat individuals (13 species) tested positive for infection by 18S rRNA amplification. Amplicon sequences clustered to 14 OTUs, of which five were identified as Trypanosoma cruzi I, T. cruzi III/V, Trypanosoma cruzi marinkellei, Trypanosoma rangeli, and Trypanosoma dionisii, and seven were identified as novel genotypes monophyletic to basal T. cruzi clade types of the New World. Another OTU was identified as a trypanosome like those found in reptiles. Surprisingly, the remaining OTU was identified as Bodo saltans-closest non-parasitic relative of the trypanosomatid order. While three blood samples featured just one OTU (T. dionisii), all others resolved as mixed infections of up to eight OTUs. CONCLUSIONS/SIGNIFICANCE This study demonstrates the utility of next-generation barcoding methods to screen parasite diversity in mammalian reservoir hosts. We exposed high rates of local bat parasitism by multiple trypanosome species, some known to cause fatal human disease, others non-pathogenic, novel or yet little understood. Our results highlight bats as a long-standing nexus among host-parasite interactions of multiple niches, sustained in part by opportunistic and incidental infections of consequence to evolutionary theory as much as to public health.
Collapse
|
67
|
Goldberg TL, Bennett AJ, Kityo R, Kuhn JH, Chapman CA. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda. Sci Rep 2017; 7:5287. [PMID: 28706276 PMCID: PMC5509700 DOI: 10.1038/s41598-017-05236-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.
Collapse
|
68
|
Rajemison FI, Noroalintseheno Lalarivoniaina OS, Goodman SM. Parasitism by Nycteribiidae and Streblidae Flies (Diptera) of a Malagasy Fruit Bat (Pteropodidae): Effects of Body Size and Throat Gland Development on Parasite Abundance. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:805-811. [PMID: 28399201 DOI: 10.1093/jme/tjw245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 06/07/2023]
Abstract
We examined the possible effects of host body size and throat gland development on the abundance of blood-feeding nycteribiid and streblid flies parasitizing a Malagasy fruit bat, Rousettus madagascariensis G. Grandidier, 1928. Data were collected in the Parc National d'Ankarana in northern Madagascar during four visits: September 2014, 2015 (dry season), and January 2015, 2016 (wet season). Two bat fly species were identified, Eucampsipoda madagascarensis Theodor, 1955 (Nycteribiidae) and Megastrebla wenzeli (Jobling, 1952) (Streblidae). A positive correlation was found between host body size and abundance of E. madagascarensis during the four visits, suggesting that larger hosts have more parasites, and for M. wenzeli, this relationship was identified only during the wet season visits. In male hosts, body size and throat gland development are correlated with variation in E. madagascarensis abundance during the two seasons; this relationship was not found for M. wenzeli. We present some explanations for the observed patterns of bat fly abundance associated with throat gland development: increased vascularization and easier access to bloodmeals, chemical properties of gland secretions acting as attractants or perhaps being consumed, and modification of hair around the gland providing protection from bat grooming.
Collapse
|
69
|
Bendjeddou ML, Loumassine HA, Scheffler I, Bouslama Z, Amr Z. Bat ectoparasites (Nycteribiidae, Streblidae, Siphonaptera, Heteroptera, Mesostigmata, Argasidae, and Ixodidae) from Algeria. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:13-23. [PMID: 28504443 DOI: 10.1111/jvec.12235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/18/2016] [Indexed: 06/07/2023]
Abstract
Twenty two species of ectoparasites (Family Nycteribiidae: Nycteribia (Listropoda) schmidlii schmidlii, Nycteribia (Nycteribia) latreillii, Nycteribia (Nycteribia) pedicularia, Penicillidia (Penicillidia) dufourii, and Phthiridium biarticulatum; Family Streblidae: Brachytarsina (Brachytarsina) flavipennis and Raymondia huberi; Order Siphonaptera: Rhinolophopsylla unipectinata arabs, Nycteridopsylla longiceps, Araeopsylla gestroi, Ischnopsyllus intermedius, and Ischnopsyllus octactenus; Order Heteroptera: Cimex pipistrelli, Cimex lectularius, and Cacodmus vicinus; Class Arachnida: Order Mesostigmata: Spinturnix myoti and Eyndhovenia euryalis; Order Ixodida: Family Argasidae: Argas transgariepinus and Argas vespertilionis; Family Ixodidae: Hyalomma dromedarii, Ixodes ricinus, and Ixodes vespertilionis) were recovered from 19 bat species in Algeria. New host records for bats are recorded for the first time: N. schmidlii from Rh. clivosus and R. cystops; N. latreillii from Rh. blasii and P. gaisleri; R. huberi from Rh. clivosus; C. pipistrelli from E. isabellinus and H. savii; C. vicinus from E. isabellinus; S. myoti from P. gaisleri; E. euryalis from P. gaisleri and Rh. blasii; A. vespertilionis from P. gaisleri; I. ricinus from T. teniotis and Rh. hipposideros and H. dromedarii from P. kuhlii. Raymondia huberi is recorded for the first time from Algeria.
Collapse
|
70
|
McAllister CT, Seville RS, Bursey CR. Helminth (Cestoda, Nematoda) and coccidian (Apicomplexa: Eimeriidae) parasites of the eastern small-footed myotis, Myotis leibii (Chiroptera: Vespertilionidae) from Arkansas, with a description of a new species of Eimeria. Acta Parasitol 2017; 62:377-381. [PMID: 28426407 DOI: 10.1515/ap-2017-0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2016] [Indexed: 11/15/2022]
Abstract
During May and July 2016, 32 eastern small-footed myotis (Myotis leibii) were collected from five counties of northwestern Arkansas and their faeces examined for coccidian parasites. Four of 32 (13%) M. leibii harboured an eimerian that we describe here as new. Oocysts of Eimeria sassei sp. n. were ovoidal to ellipsoidal with a bi-layered wall and measured (length × width, L × W) 18.3 × 15.2 µm, with an L/W ratio of 1.2. A micropyle and oocyst residuum were absent but 1-2 polar granules were present. Sporocysts were ovoidal, 9.6 × 6.3 µm, with an L/W ratio of 1.5. A pronounced, button-like Stieda body was present but substieda and parastieda bodies were absent. A sporocyst residuum was present as distinct aligned or dispersed granules. One bat that we found dead was examined for helminth parasites. It harbored the tapeworm, Vampirolepis sp. and a nematode, Seuratum cancellatum. This is the first coccidian as well as the second helminths reported from M. leibii. In addition, this is the seventh species of coccidian parasite documented from Arkansas bats.
Collapse
|
71
|
Jansen van Vuren P, Wiley MR, Palacios G, Storm N, Markotter W, Birkhead M, Kemp A, Paweska JT. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J Gen Virol 2017; 98:935-945. [PMID: 28488954 PMCID: PMC5656801 DOI: 10.1099/jgv.0.000753] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae family comprises viruses causing diseases of public and veterinary health importance, including viral haemorrhagic and arboviral fevers. We report the isolation, identification and genome characterization of a novel orthobunyavirus, named Wolkberg virus (WBV), from wingless bat fly ectoparasites (Eucampsipoda africana) of Egyptian fruit bats (Rousettus aegyptiacus) in South Africa. Complete genome sequence data of WBV suggests it is most closely related to two bat viruses (Mojuí dos Campos and Kaeng Khoi viruses) and an arbovirus (Nyando virus) previously shown to infect humans. WBV replicates to high titres in VeroE6 and C6-36 cells, characteristic of mosquito-borne arboviruses. These findings expand our knowledge of the diversity of orthobunyaviruses and their insect vector host range.
Collapse
|
72
|
Hornok S, Szőke K, Görföl T, Földvári G, Tu VT, Takács N, Kontschán J, Sándor AD, Estók P, Epis S, Boldogh S, Kováts D, Wang Y. Molecular investigations of the bat tick Argas vespertilionis (Ixodida: Argasidae) and Babesia vesperuginis (Apicomplexa: Piroplasmida) reflect "bat connection" between Central Europe and Central Asia. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 72:69-77. [PMID: 28536802 DOI: 10.1007/s10493-017-0140-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Argas vespertilionis is a geographically widespread haematophagous ectoparasite species of bats in the Old World, with a suspected role in the transmission of Babesia vesperuginis. The aims of the present study were (1) to molecularly screen A. vespertilionis larvae (collected in Europe, Africa and Asia) for the presence of piroplasms, and (2) to analyze mitochondrial markers of A. vespertilionis larvae from Central Asia (Xinjiang Province, Northwestern China) in a phylogeographical context. Out of the 193 DNA extracts from 321 A. vespertilionis larvae, 12 contained piroplasm DNA (10 from Hungary, two from China). Sequencing showed the exclusive presence of B. vesperuginis, with 100% sequence identity between samples from Hungary and China. In addition, A. vespertilionis cytochrome oxidase c subunit 1 (cox1) and 16S rRNA gene sequences had 99.1-99.2 and 99.5-100% similarities, respectively, between Hungary and China. Accordingly, in the phylogenetic analyses A. vespertilionis from China clustered with haplotypes from Europe, and (with high support) outside the group formed by haplotypes from Southeast Asia. This is the first molecular evidence on the occurrence of B. vesperuginis in Asia. Bat ticks from hosts in Vespertilionidae contained only the DNA of B. vesperuginis (in contrast with what was reported on bat ticks from Rhinolophidae and Miniopteridae). Molecular taxonomic analyses of A. vespertilionis and B. vesperuginis suggest a genetic link of bat parasites between Central Europe and Central Asia, which is epidemiologically relevant in the context of any pathogens associated with bats.
Collapse
|
73
|
Haelewaters D, Pfliegler WP, Szentiványi T, Földvári M, Sándor AD, Barti L, Camacho JJ, Gort G, Estók P, Hiller T, Dick CW, Pfister DH. Parasites of parasites of bats: Laboulbeniales (Fungi: Ascomycota) on bat flies (Diptera: Nycteribiidae) in central Europe. Parasit Vectors 2017; 10:96. [PMID: 28222795 PMCID: PMC5320862 DOI: 10.1186/s13071-017-2022-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. Members of these two related families have an obligate ectoparasitic lifestyle on bats, and they are known disease vectors for their hosts. However, bat flies have their own ectoparasites: fungi of the order Laboulbeniales. In Europe, members of the Nycteribiidae are parasitized by four species belonging to the genus Arthrorhynchus. We carried out a systematic survey of the distribution and fungus-bat fly associations of the genus in central Europe (Hungary, Romania). RESULTS We encountered the bat fly Nycteribia pedicularia and the fungus Arthrorhynchus eucampsipodae as new country records for Hungary. The following bat-bat fly associations are for the first time reported: Nycteribia kolenatii on Miniopterus schreibersii, Myotis blythii, Myotis capaccinii and Rhinolophus ferrumequinum; Penicillidia conspicua on Myotis daubentonii; and Phthiridium biarticulatum on Myotis capaccinii. Laboulbeniales infections were found on 45 of 1,494 screened bat flies (3.0%). We report two fungal species: Arthrorhynchus eucampsipodae on Nycteribia schmidlii, and A. nycteribiae on N. schmidlii, Penicillidia conspicua, and P. dufourii. Penicillidia conspicua was infected with Laboulbeniales most frequently (25%, n = 152), followed by N. schmidlii (3.1%, n = 159) and P. dufourii (2.0%, n = 102). Laboulbeniales seem to prefer female bat fly hosts to males. We think this might be due to a combination of factors: female bat flies have a longer life span, while during pregnancy female bat flies are significantly larger than males and accumulate an excess of fat reserves. Finally, ribosomal DNA sequences for A. nycteribiae are presented. CONCLUSIONS We screened ectoparasitic bat flies from Hungary and Romania for the presence of ectoparasitic Laboulbeniales fungi. Arthrorhynchus eucampsipodae and A. nycteribiae were found on three species of bat flies. This study extends geographical and host ranges of both bat flies and Laboulbeniales fungi. The sequence data generated in this work contribute to molecular phylogenetic studies of the order Laboulbeniales. Our survey shows a complex network of bats, bat flies and Laboulbeniales fungi, of which the hyperparasitic fungi are rare and species-poor. Their host insects, on the other hand, are relatively abundant and diverse.
Collapse
|
74
|
Greiman SE, Vaughan JA, Elmahy R, Adisakwattana P, Van Ha N, Fayton TJ, Khalil AI, Tkach VV. Real-time PCR detection and phylogenetic relationships of Neorickettsia spp. in digeneans from Egypt, Philippines, Thailand, Vietnam and the United States. Parasitol Int 2017; 66:1003-1007. [PMID: 27510768 PMCID: PMC5125851 DOI: 10.1016/j.parint.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
Neorickettsia (Rickettsiales, Anaplasmataceae) is a genus of obligate intracellular bacterial endosymbionts of digeneans (Platyhelminthes, Digenea). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of domestic animals, wildlife, and humans. In this study we report the results of screening digenean samples for Neorickettsia collected from bats in Egypt and Mindoro Island, Philippines, snails and fishes from Thailand, and fishes from Vietnam and the USA. Neorickettsia were detected using a real-time PCR protocol targeting a 152bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1853bp long region of the GroESL operon and a 1371bp long region of 16S rRNA. Eight unique genotypes of Neorickettsia were obtained from digenean samples. Neorickettsia sp. 8 obtained from Lecithodendrium sp. from Egypt; Neorickettsia sp. 9 and 10 obtained from two species of Paralecithodendrium from Mindoro, Philippines; Neorickettsia sp. 11 from Lecithodendrium sp. and Neorickettsia sp. 4 (previously identified from Saccocoelioides lizae, from China) from Thailand; Neorickettsia sp. 12 from Dicrogaster sp. Florida, USA; Neorickettsia sp. 13 and SF agent from Vietnam. Sequence comparison and phylogenetic analysis demonstrated that the forms, provisionally named Neorickettsia sp. 8-13, represent new genotypes. We have for the first time detected Neorickettsia in a digenean from Egypt (and the African continent as a whole), the Philippines, Thailand and Vietnam based on PCR and sequencing evidence. Our findings suggest that further surveys from the African continent, SE Asia, and island countries are likely to reveal new Neorickettsia lineages as well as new digenean host associations.
Collapse
|
75
|
Martínez MMR, Lopez MPI, Iñiguez-Dávalos LI, Yuill T, Orlova MV, Reeves WK. New records of ectoparasitic Acari (Arachnida) and Streblidae (Diptera) from bats in Jalisco, Mexico. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:309-313. [PMID: 27860017 DOI: 10.1111/jvec.12228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Ectoparasites of bats in the Neotropics are diverse and play numerous ecological roles as vectors of microbial pathogens and endoparasites and as food sources for other cave fauna living both on their hosts and in bat roosts. The ectoparasites of bats in Jalisco State of western Mexico have not been as well described as those of other states with recent checklists that have focused primarily on the Yucatan Peninsula. We captured bats from 2011-2015 on the south coast and Sierra de Amula, Jalisco using mist nets, and we removed ectoparasites by hand. We identified 24 species of streblid bat flies and six ectoparasitic mites from bats caught in mist nets. There were an additional eight possibly undescribed species of Streblidae. Our collections extend the known range of species into Jalisco.
Collapse
|