1
|
C-Met as a Key Factor Responsible for Sustaining Undifferentiated Phenotype and Therapy Resistance in Renal Carcinomas. Cells 2019; 8:cells8030272. [PMID: 30909397 PMCID: PMC6468372 DOI: 10.3390/cells8030272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
C-Met tyrosine kinase receptor plays an important role under normal and pathological conditions. In tumor cells’ overexpression or incorrect activation of c-Met, this leads to stimulation of proliferation, survival and increase of motile activity. This receptor is also described as a marker of cancer initiating cells. The latest research shows that the c-Met receptor has an influence on the development of resistance to targeted cancer treatment. High c-Met expression and activation in renal cell carcinomas is associated with the progression of the disease and poor survival of patients. C-Met receptor has become a therapeutic target in kidney cancer. However, the therapies used so far using c-Met tyrosine kinase inhibitors demonstrate resistance to treatment. On the other hand, the c-Met pathway may act as an alternative target pathway in tumors that are resistant to other therapies. Combination treatment together with c-Met inhibitor reduces tumor growth, vascularization and pro-metastatic behavior and results in suppressed mesenchymal phenotype and vascular endothelial growth factor (VEGF) secretion. Recently, it has been shown that the acquirement of mesenchymal phenotype or lack of cell differentiation might be related to the presence of the c-Met receptor and is consequently responsible for therapy resistance. This review presents the results from recent studies identifying c-Met as an important factor in renal carcinomas being responsible for tumor growth, progression and metastasis, indicating the role of c-Met in resistance to antitumor therapy and demonstrating the pivotal role of c-Met in supporting mesenchymal cell phenotype.
Collapse
|
2
|
Omoto M, Suri K, Amouzegar A, Li M, Katikireddy KR, Mittal SK, Chauhan SK. Hepatocyte Growth Factor Suppresses Inflammation and Promotes Epithelium Repair in Corneal Injury. Mol Ther 2017; 25:1881-1888. [PMID: 28502469 DOI: 10.1016/j.ymthe.2017.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
Abstract
Corneal injuries are among the major causes of ocular morbidity and vision impairment. Optimal epithelial wound healing is critical for the integrity and transparency of the cornea after injury. Hepatocyte growth factor (HGF) is a mitogen and motility factor that primarily regulates epithelial cell function. Herein, we investigate the effect of HGF on proliferation of corneal epithelial cells (CECs) in inflamed conditions both in vitro and in vivo. We demonstrate that HGF not only promotes CEC proliferation in homeostatic conditions but also reverses the anti-proliferative effect of the inflammatory environment on these cells. Furthermore, using a mouse model of ocular injury, we show that HGF treatment suppresses ocular inflammation and actively augments CEC proliferation, leading to improved and accelerated corneal epithelial repair. These findings have potential translational implications and could provide a framework for the development of novel HGF-based therapies for corneal epithelial defects.
Collapse
Affiliation(s)
- Masahiro Omoto
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kunal Suri
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Mingshun Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Kishore R Katikireddy
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Adachi E, Hirose-Sugiura T, Kato Y, Ikebuchi F, Yamashita A, Abe T, Fukuta K, Adachi K, Matsumoto K. Pharmacokinetics and pharmacodynamics following intravenous administration of recombinant human hepatocyte growth factor in rats with renal injury. Pharmacology 2014; 94:190-7. [PMID: 25378205 DOI: 10.1159/000363412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Hepatocyte growth factor (HGF) plays a role in the regeneration and protection of the kidney, but little information is available concerning the pharmacokinetics of therapeutic treatment with HGF. In this study, HGF was administered after the onset of renal injury, and pharmacokinetic analysis was performed simultaneously with an efficacious dose. METHODS For the study of pharmacodynamics, recombinant human HGF was intravenously administered to rats with glycerol-induced acute kidney injury (AKI). In the pharmacokinetic study, rats subjected to glycerol injection or renal ischemia-reperfusion were used as models of AKI, and rats subjected to 5/6 nephrectomy were used as models of chronic kidney disease (CKD). RESULTS After intravenous administration of HGF at doses of 0.5-2.0 mg/kg, the elevation of blood urea nitrogen was suppressed, indicating that HGF had a pharmacodynamic effect. However, no significant difference was seen in the pharmacokinetic parameters such as clearance, distribution volume and half-life between the normal, AKI and CKD groups. CONCLUSION The intravenous administration of HGF after the onset of renal dysfunction exerted a pharmacological effect on AKI, and renal injury did not affect the clearance of plasma HGF. This unaffected profile may serve as a base for the safety of HGF during therapeutic administration.
Collapse
Affiliation(s)
- Eri Adachi
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nasu Y, Ido A, Tanoue S, Hashimoto S, Sasaki F, Kanmura S, Setoyama H, Numata M, Funakawa K, Moriuchi A, Fujita H, Sakiyama T, Uto H, Oketani M, Tsubouchi H. Hepatocyte growth factor stimulates the migration of gastric epithelial cells by altering the subcellular localization of the tight junction protein ZO-1. J Gastroenterol 2013; 48:193-202. [PMID: 22722904 DOI: 10.1007/s00535-012-0615-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/10/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is essential for epithelial restitution, a process in which epithelial cells rapidly migrate to cover desquamated epithelium after mucosal injury in the gastrointestinal tract. In this study, we aimed to elucidate the molecular mechanisms of the HGF-mediated reconstitution of gastric epithelial structures by analyzing the expression and subcellular dynamics of tight junction proteins. METHODS We treated human gastric epithelial MKN74 cells with HGF, and examined the effects of HGF on cell migration and proliferation, and the expression and subcellular dynamics of tight junction proteins; as well, we investigated the effect of HGF on paracellular permeability to macromolecules (using fluorescein isothiocyanate [FITC]-dextran). RESULTS HGF significantly stimulated the migration of MKN74 cells, but not their proliferation, in a dose-dependent manner. HGF did not affect the expression of tight junction proteins, including claudin-1, -3, -4 and -7; occludin; and zonula occludens (ZO)-1. However, fluorescence immunostaining revealed that, in the cell membrane, the levels of ZO-1, but not those of occludin or claudin-4, were transiently decreased 1 h after HGF treatment. The results were further confirmed by western blotting: HGF reduced the amount of ZO-1 protein in the cell membrane fraction concomitantly with an increase in cytoplasmic ZO-1. Furthermore, HGF reduced the interaction between ZO-1 and occludin, and induced the tyrosine phosphorylation of occludin, whereas the phosphorylation status of ZO-1 was not affected by exposure to HGF. Despite a decrease in the ZO-1/occludin interaction, HGF did not affect paracellular permeability to macromolecules. CONCLUSIONS HGF alters the subcellular localization of ZO-1, probably through the tyrosine phosphorylation of occludin, which may induce cell dispersion during epithelial restitution.
Collapse
Affiliation(s)
- Yuichiro Nasu
- Digestive Disease and Life-style Related Disease, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Libetta C, Esposito P, Sepe V, Rampino T, Zucchi M, Canevari M, Dal Canton A. Acute kidney injury: effect of hemodialysis membrane on Hgf and recovery of renal function. Clin Biochem 2013; 46:103-108. [PMID: 23099196 DOI: 10.1016/j.clinbiochem.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/08/2012] [Accepted: 10/13/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Acute kidney injury (AKI) is associated with a high mortality and morbidity rate. In this study we investigated whether dialysis membranes influence the recovery of renal function, through the regulation of hepatocyte growth factor (HGF). DESIGN AND METHODS 21 patients were enrolled and assigned to hemodialysis (HD) with cellulose (CE, N=11) versus polymethylacrylate (PMMA, N=10) membranes in alternating order. HGF and IL-1 were measured in serum and in peripheral blood mononuclear cells (PBMC) supernatants collected immediately before the first HD session (T0), at 15 minutes (T15), at 240 minutes (T240) and after the last HD, when renal recovery occurred. Eight healthy volunteers were the controls (CON). RESULTS Time to renal function recovery was lower in CE than in PMMA patients. Serum HGF in HD patients was significantly higher than in CON. HGF levels were higher in CE than in PMMA patients at T15 (13.4±2.7 vs 8.9±3.0 ng/mL, P=0.004) and T240. At recovery, HGF levels decreased. IL-1 serum levels showed a similar trend (at T15 CE: 20.5±2.9 vs PMMA: 16.9±3.2 pg/mL, P=0.005). HGF release significantly increased in the course of HD, resulting in higher levels in CE than that in PMMA patients. Considering all the patients, basal HGF release negatively correlated with time to renal recovery (r2=0.42, P<0.01). CONCLUSIONS Here we demonstrated that dialysis membranes influence the cytokine profile in AKI patients, HGF release being higher in patients treated with the CE membrane, in comparison to PMMA. Our results suggest that treatment with CE might improve clinical outcomes, possibly through increased release of HGF.
Collapse
Affiliation(s)
- Carmelo Libetta
- Nephrology, Dialysis and Transplantation, University and Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Lim DL, Ko R, Pautler SE. Current understanding of the molecular mechanisms of kidney cancer: a primer for urologists. Can Urol Assoc J 2011; 1:S13-20. [PMID: 18542780 DOI: 10.5489/cuaj.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC), the fifth leading malignant condition for men and tenth for women, accounts for 3% of all malignancies in Canada. It is a heterogeneous epithelial malignancy with different subtypes and varied tumour biology. Although most cases of RCC are sporadic, up to 4% of patients have an inherited predisposition for the disease. In this article, we review the current molecular genetics of the different subtypes in hereditary and sporadic RCC. Significant developments in understanding the underlying genetic basis of RCC over the last 2 decades are attributed to intensive research about rare inherited renal cancer syndromes and the identification of the genes responsible for them. Many of these genes are also found in sporadic RCC. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for this disease.
Collapse
Affiliation(s)
- Darwin L Lim
- Divisions of Urology and Surgical Oncology, University of Western Ontario, London, Ont
| | | | | |
Collapse
|
7
|
Tanaka H, Kimura T, Kudoh S, Mitsuoka S, Watanabe T, Suzumura T, Tachibana K, Noguchi M, Yano S, Hirata K. Reaction of plasma hepatocyte growth factor levels in non-small cell lung cancer patients treated with EGFR-TKIs. Int J Cancer 2011; 129:1410-6. [PMID: 21128242 DOI: 10.1002/ijc.25799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/20/2010] [Indexed: 11/12/2022]
Abstract
Hepatocyte growth factor induces resistance to epidermal growth factor receptor tyrosine kinase inhibitors. It has been hypothesized that epidermal growth factor receptor tyrosine kinase inhibitors administration may influence the levels of plasma hepatocyte growth factor. Patients with advanced non-small cell lung cancer and relapsed after chemotherapies were eligible. Plasma hepatocyte growth factor levels were analyzed on pretreatment and post-treatment day 15 and 30. We also investigated the correlation between plasma hepatocyte growth factor levels and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors, tissue immunoreactivity for hepatocyte growth factor and MET gene status. Thirty-one patients were enrolled. Plasma hepatocyte growth factor levels on post-treatment day 15 (630.1 ± 366.9 pg/ml) were significantly higher (p = 0.029) than the pretreatment plasma hepatocyte growth factor levels (485.9 ± 230.2 pg/ml). Plasma hepatocyte growth factor levels on the post-treatment day 30 (581.5 ± 298.1 pg/ml) tend to be higher than those before treatment (p = 0.057). Pretreatment plasma hepatocyte growth factor levels in patients with progressive disease (724.1 ± 216.4 pg/ml) were significantly higher than those in patients with stable disease (396.5 ± 148.3 pg/ml; p = 0.0008) and partial response (381.7 ± 179.0 pg/ml; p = 0.0039). The optimal pretreatment plasma hepatocyte growth factor cut-off value for diagnosis of responder was 553.5 pg/ml, and its sensitivity and specificity were 90% and 65%, respectively. Pretreatment plasma hepatocyte growth factor levels had no correlation with tissue immunoreactivities for hepatocyte growth factor, MET gene status and active EGFR mutations. Administration of epidermal growth factor receptor tyrosine kinase inhibitors significantly increased plasma hepatocyte growth factor levels. High levels of pretreatment plasma hepatocyte growth factor indicated intrinsic resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Plasma hepatocyte growth factor can serve as a useful biomarker for the early diagnosis of tumor relapse treated with epidermal growth factor receptor tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Hidenori Tanaka
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nagi FM, Omar AAM, Mostafa MG, Mohammed EA, Abd-Elwahed Hussein MR. The expression pattern of Von Hippel-Lindau tumor suppressor protein, MET proto-oncogene, and TFE3 transcription factor oncoprotein in renal cell carcinoma in Upper Egypt. Ultrastruct Pathol 2011; 35:79-86. [PMID: 21299348 DOI: 10.3109/01913123.2010.544844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Genetic alterations in renal cell carcinoma (RCC) involve tumor suppressor genes such as Von Hippel-Lindau (VHL); proto-oncogenes such as MET and transcription factors such as TFE3 oncoprotein. AIM To examine the clinicopathologic features and the expression of some oncogenic molecules in various RCCs in patients from Upper Egypt. MATERIALS AND METHODS The authors examined the expression pattern of pVHL; MET; and TFE3 proteins in 59 RCC using immunoperoxidase staining methods. The study group consisted of clear cell RCCs (CRCC); papillary RCCs type 1 (PRCC1); papillary RCCs type 2 (PRCC2); Xp11-2 translocation RCCs (XP11.2RCC); chromophobe RCCs (ChRCC); and sarcomatoid RCCs (SRCC). RESULTS Variations were found in the expression of these molecules in the different types of RCCs. The mean age of RCCs among Egyptians was 52.70 ± 1.73 years; with male sex predominance. Mass lesion; pain; and hematuria were the main presenting features. Metastatic disease was more frequent with CRCC variant. pVHL expression was strong in PCRCC2; Xp11.2RCC; and ChRCC; moderate in CRCC; and weak in both PRCC1 and sarcomatoid RCC. MET protein expression was moderate in Xp11.2RCC; PRCC1; PRCC2; and sarcomatoid RCC. TFE3 protein expression was strong in Xp11.2RCC and PRCC2 variants. The expression was moderate in PRCC1; CRCC; ChRCC; and sarcomatoid RCC. Positive correlation was found in the expression of the different proteins (pVHL; MET; and TFE3) and some histological features (tumor grade; inflammation; necrosis and metastasis) and the presence of metastasis and some histological features (inflammation and/or necrosis). CONCLUSIONS This study provides the first indication about the clinicopathologic features of RCCs in Upper Egypt. The variable expression of these molecules in the different variants of RCC suggests that several oncogenic pathways are operational in their development.
Collapse
Affiliation(s)
- Fayed Mohamad Nagi
- Pathology Department, Faculty of Medicine, Assuit University, Assuit, Egypt
| | | | | | | | | |
Collapse
|
9
|
Rho O, Kim DJ, Kiguchi K, Digiovanni J. Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Mol Carcinog 2010; 50:264-79. [PMID: 20648549 DOI: 10.1002/mc.20665] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/24/2022]
Abstract
Growth factor receptor (GFR) signaling controls epithelial cell growth by responding to various endogenous or exogenous stimuli and subsequently activating downstream signaling pathways including Stat3, PI3K/Akt/mTOR, MAPK, and c-Src. Environmental chemical toxicants and UVB irradiation cause enhanced and prolonged activation of GFR signaling and downstream pathways that contributes to epithelial cancer development including skin cancer. Recent studies, especially those with tissue-specific transgenic mouse models, have demonstrated that GFRs and their downstream signaling pathways contribute to all three stages of epithelial carcinogenesis by regulating a wide variety of biological functions including proliferation, apoptosis, angiogenesis, cell adhesion, and migration. Inhibiting these signaling pathways early in the carcinogenic process results in reduced cell proliferation and survival, leading to decreased tumor formation. Collectively, these studies suggest that GFR signaling and subsequent downstream signaling pathways are potential targets for the prevention of epithelial cancers including skin cancer.
Collapse
Affiliation(s)
- Okkyung Rho
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78723-3092, USA
| | | | | | | |
Collapse
|
10
|
Yamada M, Tatsumi R, Yamanouchi K, Hosoyama T, Shiratsuchi SI, Sato A, Mizunoya W, Ikeuchi Y, Furuse M, Allen RE. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. Am J Physiol Cell Physiol 2009; 298:C465-76. [PMID: 20007454 DOI: 10.1152/ajpcell.00449.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle regeneration and work-induced hypertrophy rely on molecular events responsible for activation and quiescence of resident myogenic stem cells, satellite cells. Recent studies demonstrated that hepatocyte growth factor (HGF) triggers activation and entry into the cell cycle in response to mechanical perturbation, and that subsequent expression of myostatin may signal a return to cell quiescence. However, mechanisms responsible for coordinating expression of myostatin after an appropriate time lag following activation and proliferation are not clear. Here we address the possible role of HGF in quiescence through its concentration-dependent negative-feedback mechanism following satellite cell activation and proliferation. When activated/proliferating satellite cell cultures were treated for 24 h beginning 48-h postplating with 10-500 ng/ml HGF, the percentage of bromodeoxyuridine-incorporating cells decreased down to a baseline level comparable to 24-h control cultures in a HGF dose-dependent manner. The high level HGF treatment did not impair the cell viability and differentiation levels, and cells could be reactivated by lowering HGF concentrations to 2.5 ng/ml, a concentration that has been shown to optimally stimulate activation of satellite cells in culture. Coaddition of antimyostatin neutralizing antibody could prevent deactivation and abolish upregulation of cyclin-dependent kinase (Cdk) inhibitor p21. Myostatin mRNA expression was upregulated with high concentrations of HGF, as demonstrated by RT-PCR, and enhanced myostatin protein expression and secretion were revealed by Western blots of the cell lysates and conditioned media. These results indicate that HGF could induce satellite cell quiescence by stimulating myostatin expression. The HGF concentration required (over 10-50 ng/ml), however, is much higher than that for activation, which is initiated by rapid release of HGF from its extracellular association. Considering that HGF is produced by satellite cells and spleen and liver cells in response to muscle damage, local concentrations of HGF bathing satellite cells may reach a threshold sufficient to induce myostatin expression. This time lag may delay action of the quiescence signaling program in proliferating satellite cells during initial phases of muscle regeneration followed by induction of quiescence in a subset of cells during later phases.
Collapse
Affiliation(s)
- Michiko Yamada
- Dept. of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nagano T, Mori-Kudo I, Kawamura T, Taiji M, Noguchi H. Pre‐ or Post‐treatment with Hepatocyte Growth Factor Prevents Glycerol‐Induced Acute Renal Failure. Ren Fail 2009; 26:5-11. [PMID: 15083915 DOI: 10.1081/jdi-120028537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hepatocyte growth factor (HGF) is known to have beneficial effects against damage in various organs, including liver, kidney and lung, in disease models. Previously, we reported that repeated administration of HGF ameliorates renal dysfunction and histological alteration of glycerol-injected rats, an animal model for severe acute renal failure (ARF). In the present study, we investigated in more detail the efficacy of pre- and post-treatment of HGF in this model. ARF was induced by intramuscular injection of glycerol into the hind limbs of male Wistar rats. The efficacy of pre-treatment was studied by intravenous injection of HGF (1 mg/kg) or vehicle 1 and 18 hours prior to glycerol injection. Pre-treatment of HGF dramatically protected glycerol-induced ARF rats against death, and prevented deterioration of biochemical parameters for renal function. We also analyzed expression of heme oxygenase-1 (HO-1), a cytoprotective protein, in kidney of HGF-injected rats. Intravenous administration of HGF enhanced renal expression of HO-1 mRNA from 1 to 3 hours after injection. Next, as a post-treatment study, HGF (1 mg/kg/3 hours) with dopamine was infused into glycerol-induced ARF rats 7 hours after glycerol injection. Intravenous infusion of HGF after ARF onset also ameliorated renal biochemical parameters. These results indicate that pre-treatment of HGF can improve ARF, and induction of HO-1 expression in kidney may be a cause of the protective effect. In addition, post-treatment of HGF with dopamine was also effective against the establishment of ARF.
Collapse
Affiliation(s)
- Tomokazu Nagano
- Discovery Research Laboratories I, Sumitomo Pharmaceuticals Research Division, Konohana-ku, Osaka, Japan
| | | | | | | | | |
Collapse
|
12
|
Komamura K, Miyazaki JI, Imai E, Matsumoto K, Nakamura T, Hori M. Hepatocyte growth factor gene therapy for hypertension. Methods Mol Biol 2008; 423:393-404. [PMID: 18370217 DOI: 10.1007/978-1-59745-194-9_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hepatocyte growth factor (HGF) has mitogenic, motogenic, and morphogenic biological activities as well as helps in regenerating various tissues. In cardiovascular organs, HGF was reported to have anti-apoptotic, anti-fibrotic, and vasodilating effects. HGF has close relationships with hypertension, arteriosclerosis, and heart failure. HGF enhances renal regeneration and suppresses the progression of hypertension. Intramuscular electroporation of the therapeutic gene is a simple, economic, and low toxic method compared with systemic administration of the purified proteins or peptides. We outline the technique of intramuscular electroporation of HGF gene as a remedy for hypertension.
Collapse
Affiliation(s)
- Kazuo Komamura
- Department of Cardiovascular Dynamics, Research Institute, National Cardiovascular Center, Suita, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Ohnishi H, Mizuno S, Nakamura T. Inhibition of tubular cell proliferation by neutralizing endogenous HGF leads to renal hypoxia and bone marrow-derived cell engraftment in acute renal failure. Am J Physiol Renal Physiol 2007; 294:F326-35. [PMID: 18032545 DOI: 10.1152/ajprenal.00480.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During the progression of acute renal failure (ARF), the renal tubular S3 segment is sensitive to ischemic stresses. For reversing tubular damage, resident tubular cells proliferate, and bone marrow-derived cells (BMDC) can be engrafted into injured tubules. However, how resident epithelium or BMDC are involved in tubular repair remains unknown. Using a mouse model of ARF, we examined whether hepatocyte growth factor (HGF) regulates a balance of resident cell proliferation and BMDC recruitment. Within 48 h post-renal ischemia, tubular destruction became evident, followed by two-waved regenerative events: 1) tubular cell proliferation between 2 and 4 days, along with an increase in blood HGF; and 2) appearance of BMDC in the tubules from 6 days postischemia. When anti-HGF IgG was injected in the earlier stage, tubular cell proliferation was inhibited, leading to an increase in BMDC in renal tubules. Under the HGF-neutralized state, stromal cell-derived factor-1 (SDF1) levels increased in renal tubules, associated with the enhanced hypoxia. Administrations of anti-SDF1 receptor IgG into ARF mice reduced the number of BMDC in interstitium and tubules. Thus possible cascades include 1) inhibition of tubular cell proliferation by neutralizing HGF leads to renal hypoxia and SDF1 upregulation; and 2) BMDC are eventually engrafted in tubules through SDF1-mediated chemotaxis. Inversely, administration of recombinant HGF suppressed the renal hypoxia, SDF1 upregulation, and BMDC engraftment in ARF mice by enhancing resident tubular cell proliferation. Thus we conclude that HGF is a positive regulator for eliciting resident tubular cell proliferation, and SDF1 for BMDC engraftment during the repair process of ARF.
Collapse
Affiliation(s)
- Hiroyuki Ohnishi
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | |
Collapse
|
14
|
Homsi E, Janino P, Biswas SK, Mizuno S, Nakamura T, Lopes de Faria JB. Attenuation of glycerol-induced acute kidney injury by previous partial hepatectomy: role of hepatocyte growth factor/c-met axis in tubular protection. Nephron Clin Pract 2007; 107:e95-106. [PMID: 17940345 DOI: 10.1159/000109828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 06/29/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Previous partial hepatectomy (HPTX) can attenuate glycerol-induced acute kidney injury (Gly-AKI). The aim of this study was to explore the pathophysiological mechanisms and the role of hepatocyte growth factor (HGF) in kidney protection. METHODS Rats were subjected to HPTX 24 h before glycerol administration. Renal function, acute tubular necrosis, apoptosis, leukocyte infiltration, and the expression of HGF, c-met, monocyte chemoattractant protein-1, interleukin-1beta, and heme oxygenase-1 were evaluated 24 h after glycerol injection. The regenerative response was analyzed from 6 to 72 h after glycerol injection (BrdU incorporation). In a separate series of experiments, Gly-AKI+HPTX rats were treated with anti-HGF antibody. RESULTS Gly-AKI+HPTX rats showed an increased expression of renal HGF and c-met as well as an improved creatinine clearance and reduced acute tubular necrosis and apoptosis, cytokine expression, and leukocyte infiltration. The regenerative response was less intense 24 and 72 h after glycerol administration in this group. The anti-HGF treatment disclosed an important role of HGF in the reduction of tubular injury, particularly apoptosis. Overexpression of heme oxygenase-1 was observed in Gly-AKI+HPTX rats, but was not associated with HPTX-induced renal protection. CONCLUSION We conclude that Gly-AKI+HPTX rats have a reduced susceptibility to renal injury instead of an increased regenerative response and that endogenous HGF overexpression is responsible for suppression of tubular apoptosis.
Collapse
Affiliation(s)
- Eduardo Homsi
- Division of Nephrology, Department of Medicine, School of Medical Sciences, State University of Campinas, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Mahmoud K, Opelz G, Pelzl S, Daniel V, Sommerer C, Zeier M, Schmidt J, Schönemann C, Schnülle P, Süsal C. Evaluation of hepatocyte growth factor as a sensitive marker for early detection of acute renal allograft rejection. Transplantation 2007; 83:1035-40. [PMID: 17452892 DOI: 10.1097/01.tp.0000259653.41436.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It has been shown that hepatocyte growth factor (HGF), besides its well-established hepatotrophic effect in liver regeneration, is involved in the regeneration of the kidney after injury. In the present study we investigated whether HGF can serve as a marker for detection of acute rejection in the early posttransplantation period. METHODS HGF levels were determined in pre- and posttransplant sera (up to day 21) of 26 recipients with biopsy-proven acute rejection, 30 recipients with acute tubular necrosis (ATN), and 32 recipients without posttransplant complications. RESULTS Although no association was found between pretransplant HGF and death-censored functional graft survival, receiver operating characteristic (ROC) curves demonstrated that HGF measured during the entire posttransplant study period, and especially on days 3 to 5, was a good marker for differentiating recipients who subsequently developed acute rejection from recipients with an uncomplicated course (P<0.0001, specificity 87%, sensitivity 84%). HGF measured from day 3 until day 21 posttransplantation, and especially on days 7 to 9, was also a sensitive marker for differentiating recipients with ATN from recipients with an uncomplicated course (P<0.0001). If considered in combination with sCD30, the diagnostic value of HGF was further improved. While 73% of samples from patients with impending rejection were positive for both HGF and sCD30, 94% of samples from nonrejecting patients were double-negative and none of the samples from this group fell into the double-positive category (P<0.0001). CONCLUSIONS Our data suggest that HGF measured during the early posttransplant period might be a useful parameter for early detection of acute renal allograft rejection.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sugiura K, Taketani S, Yoshimura T, Nishino T, Nishino N, Fujisawa JI, Hisha H, Inaba T, Ikehara S. Effect of hepatocyte growth factor on long term hematopoiesis of human progenitor cells in transgenic-sever combined immunodeficiency mice. Cytokine 2007; 37:218-26. [PMID: 17512212 DOI: 10.1016/j.cyto.2007.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 03/01/2007] [Accepted: 04/02/2007] [Indexed: 11/18/2022]
Abstract
Hepatocyte growth factor (HGF), which was originally isolated as a liver generating factor, enhances hematopoiesis. To study the effect of HGF on hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs), we generated severe combined immunodeficiency (SCID) mice producing human (h) HGF and/or stem cell factor (SCF) by transferring the relevant genes to fertilized eggs, and then transplanted hematopoietic progenitors from human cord blood into the transgenic (Tg) SCID mice. Six months after transplantation, a significantly larger number of human cells were found in the Tg SCID mice than in non-Tg controls. Characteristically, the recipient SCID mice producing h HGF (HGF-SCID) had a significantly increased number of h CD41+ cells, whereas the SCF-SCID recipients had more CD11b+ cells. Significantly large numbers of CD34+ progenitors were found in the SCID mice transferred with both h HGF and h SCF genes (HGF/SCF-SCID) when compared with HGF-SCID or SCF-SCID mice. These results imply that HGF supports the differentiation of progenitors in megakaryocyte lineage, whereas SCF supports that in myeloid lineage. The results also imply that HGF acts on HSCs/HPCs as a synergistic proliferative factor combined with SCF. We have demonstrated the advantage of the human cytokine-producing animal in the maintenance of human HSCs.
Collapse
Affiliation(s)
- Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai City, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maeshima A, Sakurai H, Nigam SK. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol 2005; 17:188-98. [PMID: 16338966 DOI: 10.1681/asn.2005040370] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Using in vivo bromodeoxyuridine (BrdU) labeling, a tubular cell population (label-retaining tubular cells [LRTC]) was identified recently in normal adult kidneys, which contributes actively to the regeneration process of the kidney after injury. Here, these LRTC are characterized in vitro. The LRTC population was isolated from BrdU-treated rat kidney by FACS. Both LRTC and non-LRTC underwent proliferation and maintained an epithelial phenotype in the presence of tubulogenic growth factors such as EGF, TGF-alpha, IGF-I, and hepatocyte growth factor. It is interesting that LRTC also proliferated without epithelial markers expression in the presence of soluble factors derived from an embryonic kidney metanephric mesenchyme cell line. The type of extracellular matrix strongly influenced the phenotype of LRTC. Furthermore, in three-dimensional collagen gel culture, LRTC formed tubule-like or tubulocystic structures in response to growth factors (hepatocyte growth factor and fibroblast growth factor) that are known to induce kidney cell tubulogenesis in vitro and/or participate in renal regeneration in vivo. In contrast, non-LRTC did not form these structures. When transplanted into the metanephric kidney, LRTC but not non-LRTC were integrated into epithelial components of nephron, including the proximal tubular cells and the ureteric bud. They also differentiated into fibroblast-like cells. Collectively, these findings suggest that LRTC are an adult kidney tubular cell population that shows phenotypic plasticity, tubulogenic capacity, and integration capability into the developing kidney.
Collapse
Affiliation(s)
- Akito Maeshima
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA
| | | | | |
Collapse
|
18
|
Uehara A, Muramoto K, Imamura T, Nakayama K, Potempa J, Travis J, Sugawara S, Takada H. Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. THE JOURNAL OF IMMUNOLOGY 2005; 175:6076-84. [PMID: 16237103 DOI: 10.4049/jimmunol.175.9.6076] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cystein proteinases (gingipains) from Porphyromonas gingivalis cleave a broad range of in-host proteins and are considered to be key virulence factors in the onset and development of adult periodontitis and host defense evasion. In periodontitis, an inflammatory disease triggered by bacterial infection, the production of hepatocyte growth factor (HGF) is induced not only by various factors derived from the host, such as inflammatory cytokines, but also by bacterial components. In this study we examined the possible enhanced production of HGF produced by human gingival fibroblasts upon stimulation with gingipains. Arginine-specific gingipain (Rgp) caused a marked production of HGF into the supernatant, the induction of HGF expression on the cell surface, and the up-regulation of HGF mRNA expression in a dose-dependent and an enzymatic activity-dependent manner. Because it has been reported that Rgp activated protease-activated receptors (PARs), we examined whether the induction of HGF triggered by Rgps on human gingival fibroblasts occurred through PARs. An RNA interference assay targeted to PAR-1 and PAR-2 mRNA revealed that gingipains-induced secretion of HGF was significantly inhibited by RNA interference targeted to PAR-1 and PAR-2. In addition, the Rgps-mediated HGF induction was completely inhibited by the inhibition of phospholipase C and was clearly inhibited by RNA interference targeted to p65, which is an NF-kappaB component. These results suggest that Rgps activated human gingival fibroblasts to secrete HGF in the inflamed sites and the mechanism(s) involved may actively participate in both inflammatory and reparative processes in periodontal diseases.
Collapse
Affiliation(s)
- Akiko Uehara
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ido A, Numata M, Kodama M, Tsubouchi H. Mucosal repair and growth factors: recombinant human hepatocyte growth factor as an innovative therapy for inflammatory bowel disease. J Gastroenterol 2005; 40:925-31. [PMID: 16261428 DOI: 10.1007/s00535-005-1705-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/01/2005] [Indexed: 02/04/2023]
Abstract
The repair of intestinal mucosal injuries is a tightly regulated process involving epithelial restitution, cell proliferation and maturation, and the dedifferentiation of epithelial cells. Deeper injuries also require additional repair mechanisms, including inflammatory processes, angiogenesis, and extracellular-matrix deposition. Once intestinal mucosal injury occurs, numerous growth factors and cytokines, including hepatocyte growth factor (HGF), keratinocyte growth factor, endothelial growth factor, epidermal growth factor, transforming growth factor-beta1, intestinal trefoil factor, interleukin (IL)-1, and IL-2, are induced in both the intestinal lumen and submucosa, and these factors cooperatively stimulate epithelial mucosal repair. HGF, a major agent promoting hepatocyte proliferation, also modulates intestinal epithelial cell proliferation and migration, leading to the acceleration of intestinal mucosal repair. Additionally, the proteolytic activation of HGF, which is mediated by HGF activator, is essential for the regeneration of injured intestinal mucosa. Recently, several studies have shown that the administration of recombinant human HGF or HGF gene therapy abrogates disease severity in several animal models of inflammatory bowel disease (IBD). Recombinant human HGF will soon be available for administration to patients with fulminant hepatic failure. Although additional preclinical biological studies are required, HGF has the potential to be an important new treatment modality promoting intestinal mucosal repair in patients with IBD.
Collapse
Affiliation(s)
- Akio Ido
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | |
Collapse
|
20
|
Sheen-Chen SM, Liu YW, Eng HL, Chou FF. Serum levels of hepatocyte growth factor in patients with breast cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:715-7. [PMID: 15767355 DOI: 10.1158/1055-9965.epi-04-0340] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hepatocyte growth factor (HGF) has been reported the cause of many biological events, including cell proliferation, movement, invasiveness, morphogenesis, and angiogenesis. Elevated hepatocyte growth factor content in tumor tissue was reported to predict a more aggressive biology in non-small cell lung cancer patients. However, there is still limited knowledge about the role of HGF in breast cancer. This study was designed with the aim to elucidate the possible relationship between the preoperative circulating soluble HGF and breast cancer. MATERIALS AND METHODS One hundred twenty-four consecutive patients with invasive breast cancer undergoing surgery were prospectively included and evaluated. Venous blood samples were collected before the surgery. Sera were obtained by centrifugation and stored at -70 degrees C until assayed. The control group consisted of 35 patients with benign breast tumor (20 with fibrocystic disease and 15 with fibroadenoma). Serum concentrations of soluble HGF were measured by the quantitative sandwich enzyme immunoassay technique. The data on primary tumor staging, age, estrogen receptor status, lymph node status, distant metastases status, histologic grading, and tumor-node-metastasis (TNM) staging were reviewed and recorded. RESULTS The mean value of serum soluble HGF in patients with invasive breast cancer was 529.05 +/- 123.33 pg/mL and that of control group was 343.00+/- 31.03 pg/mL and the difference was significant (P < 0.001). Furthermore, there were significantly higher serum levels of soluble HGF in patients with negative estrogen receptor (P = 0.035), in patients with poorer differentiated tumor (P < 0.001), in patients with more advanced primary tumor staging (P < 0.001), in patients with more advanced lymph node status (P < 0.001), in patients with distant metastases (P < 0.001), and in patients with more advanced TNM staging (P < 0.001). In multivariate analysis by the multiple linear regression method, TNM staging (P < 0.001) seemed an independent factor regarding the significant higher serum levels of soluble HGF. CONCLUSION Patients with more advanced TNM staging were shown to have higher serum soluble HGF. Thus, preoperative serum soluble HGF levels might reflect the severity of invasive breast cancer and deserve further evaluation.
Collapse
Affiliation(s)
- Shyr-Ming Sheen-Chen
- Departmen of Surgery, Chang Gung Memorial Hospital, Kaohsiung College of Medicine, Chang Gung University, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
21
|
Ayhan A, Ertunc D, Tok EC, Ayhan A. Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. Int J Gynecol Cancer 2005; 15:618-23. [PMID: 16014115 DOI: 10.1111/j.1525-1438.2005.00117.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to evaluate the prognostic significance of c-Met expression in advanced cases of epithelial ovarian carcinoma. Paraffin-embedded tissues from 41 stage IIIC primary ovarian adenocarcinoma were stained immunohistochemically for c-Met expression. The expression of c-Met was correlated with conventional clinicopathologic parameters and with overall survival of the patients. c-Met expression was found in 60.9% of cases. This clinicopathologic study showed that epithelial ovarian carcinomas with c-Met expression had higher histologic tumor grade and were more frequently associated with para-aortic lymph node metastasis (P < 0.05). In multivariate analysis, c-Met expression remained as a statistically significant predictor for survival with histologic grade. The patients with stage IIIC epithelial ovarian cancers whose tumors expressed c-Met were more likely to have high-grade tumors, have more para-aortic lymph node involvement, and have a significantly worse overall survival than those whose tumors were c-Met negative. In conclusion, c-Met expression might be a potential prognostic marker for patients with advanced-stage epithelial ovarian cancers.
Collapse
Affiliation(s)
- A Ayhan
- Department of Pathology, School of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
22
|
Numata M, Ido A, Moriuchi A, Kim I, Tahara Y, Yamamoto S, Hasuike S, Nagata K, Miyata Y, Uto H, Tsubouchi H. Hepatocyte growth factor facilitates the repair of large colonic ulcers in 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats. Inflamm Bowel Dis 2005; 11:551-8. [PMID: 15905702 DOI: 10.1097/01.mib.0000164192.71381.5c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) modulates intestinal epithelial cell proliferation and migration, serving as a critical regulator of intestinal wound healing. The aim of this study was to clarify the effects of administration of recombinant human HGF on colonic mucosal damage in vivo. METHODS Rats were given 7.5 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS) per rectum on day 0. On day 5, the degree of TNBS-induced colitis was evaluated endoscopically, and rats suffering from large ulcers (occupying more than two thirds of the luminal circumference) were treated with intravenous bolus injections of recombinant human HGF (1.0 mg/kg per day) or phosphate-buffered saline (PBS) for 5 days. RESULTS Rats with TNBS-induced colitis given human HGF showed a significant reduction in colonic ulcer coverage and large intestinal shortening compared with those treated with PBS. Administration of recombinant human HGF also stimulated the proliferation of epithelial cells and reduced the inflammatory cell infiltrate. Finally, HGF treatment decreased the myeloperoxidase activity and tumor necrosis factor alpha levels in the TNBS-inflamed colon tissues. CONCLUSIONS These results indicate that intravenous injection of HGF accelerates colonic mucosal repair and reduces infiltration of inflammatory cells in rats with TNBS-induced colitis and suggest that HGF has the potential to be a new therapeutic modality to promote intestinal mucosal repair in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Masatsugu Numata
- Department of Internal Medicine II, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Okada M, Sugita K, Inukai T, Goi K, Kagami K, Kawasaki K, Nakazawa S. Hepatocyte growth factor protects small airway epithelial cells from apoptosis induced by tumor necrosis factor-alpha or oxidative stress. Pediatr Res 2004; 56:336-44. [PMID: 15201405 DOI: 10.1203/01.pdr.0000134255.58638.59] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Involvement of hepatocyte growth factor (HGF) in lung morphogenesis and regeneration has been established by in vitro and in vivo experiments in animals. In the present study, the protective activity of HGF against tumor necrosis factor (TNF)-alpha or hydrogen peroxide (H2O2)-induced damage of pulmonary epithelial cells was examined using the human small airway epithelial cell line (SAEC). Western blot analysis revealed that the receptor for HGF (c-Met) was highly expressed on the surface of SAEC and its downstream signal transduction pathway was functional. The SAEC was induced into apoptosis by the treatment with TNF-alpha or H2O2 in a dose-dependant manner, but was significantly rescued from apoptosis in the presence of HGF. The HGF effect was evident when added not only at the same time but also within several hours after treatment. This protective activity of HGF against the TNF-alpha- or H2O2-induced apoptosis was mediated, at least in part, by up-regulating the nuclear factor kappaB activity and an increase in the ratio of apoptosis-suppressing to apoptosis-inducing proteins. These results suggest that administration of HGF might exhibit a potent function in vivo for protection and improvement of acute and chronic lung injuries induced by inflammation and/or oxidative stress.
Collapse
Affiliation(s)
- Michiyo Okada
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Tamaho, Nakakoma, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
KOBAYASHI A, AMANO O, TANI Y, NAKAMURA T, ISEKI S, TOMITA K. Hepatocyte growth factor regulates the proliferation and differentiation of cartilage in developing forelimb of mouse embryos in vitro. Biomed Res 2004. [DOI: 10.2220/biomedres.25.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Tahara Y, Ido A, Yamamoto S, Miyata Y, Uto H, Hori T, Hayashi K, Tsubouchi H. Hepatocyte growth factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. J Pharmacol Exp Ther 2003; 307:146-51. [PMID: 12954797 DOI: 10.1124/jpet.103.054106] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte growth factor (HGF) modulates intestinal epithelial cell proliferation and migration, serving as a critical regulator of intestinal wound healing. In this study, we examined the effect of administration of recombinant human HGF on colonic mucosal damage in vivo. Acute colitis was induced in rats by feeding with 5% dextran sulfate sodium (DSS) for 7 days, and colitis was subsequently maintained by feeding with 1% DSS. On the 5th day of DSS administration, osmotic pumps releasing recombinant human HGF (200 microg/day) were implanted into the peritoneum of the rats. Continuous intraperitoneal delivery of HGF led to both increased serum human HGF levels and c-Met tyrosine phosphorylation within the colonic mucosa. Compared with mock-treated rats, those administered human HGF showed a reduction in colitis-associated weight loss, large intestinal shortening, and improved colonic erosions. Enhanced epithelial regeneration and cellular proliferation were observed in rats treated with recombinant human HGF. The weights of the liver, kidneys, and spleen were not affected by HGF administration. These results indicate that HGF administration accelerates colonic mucosal repair in rats with DSS-induced colitis and suggest that recombinant human HGF may be a useful therapeutic tool to facilitate intestinal wound healing in patients with ulcerative colitis.
Collapse
Affiliation(s)
- Yoshihiro Tahara
- Department of Internal Medicine II, Miyazaki Medical College, Kiyotake, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yango A, Morrissey P, Monaco A, Gohh R, Centracchio J, Dworkin L. Renal production of hepatocyte growth factor increases after unilateral nephrectomy in man. Transplant Proc 2002; 34:3128-9. [PMID: 12493396 DOI: 10.1016/s0041-1345(02)03622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- A Yango
- Division of Organ Transplantation, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903, USA.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Ohshima M, Yokosuka R, Yamazaki Y, Tokunaga T, Maeno M, Otsuka K. Effects of serum on hepatocyte growth factor secretion and activation by periodontal ligament and gingival fibroblasts. J Periodontol 2002; 73:473-8. [PMID: 12027247 DOI: 10.1902/jop.2002.73.5.473] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF)/scatter factor is a paracrine growth factor secreted by mesenchymal cells, which exerts an effect on a variety of epithelial cell types. Our recent study revealed that periodontal ligament fibroblasts (PLF) and gingival fibroblasts (GF) cultured in the presence of serum which contains various stimulants produced HGF or HGF-like factor, a predominant chemoattractant for gingival epithelial cells, and suggested that it could be involved in epithelial down-growth in periodontitis. METHODS To clarify whether serum in medium stimulates PLF and GF to synthesize or activate HGF, the effect of fetal bovine serum (FBS) on HGF production was determined by enzyme-linked immunoabsorbent assay (ELISA), and its chemotactic activity for gingival epithelial cells was examined by modified Boyden chamber assay. RESULTS One to 10% FBS in the culture medium stimulated HGF secretion in a dose-dependent manner and the chemotactic activity was decreased by treatment with anti-hHGF neutralizing antibody. Furthermore, fibroblast-conditioned medium incubated with FBS and aprotinin reduced its chemotactic activity. Interestingly, serum-free culture of PLF and GF produced potent chemoattractants for gingival epithelial cells other than HGF. CONCLUSIONS These results show that FBS stimulates both HGF secretion and activation by PLF and GF.
Collapse
Affiliation(s)
- Mitsuhiro Ohshima
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K, Tojo H. Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 2002; 292:709-14. [PMID: 11922624 DOI: 10.1006/bbrc.2002.6706] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) is present in skeletal muscle and facilitates skeletal muscle regeneration by activating quiescent satellite cells and stimulating their proliferation. However, possible involvement of HGF from non-muscle organs during muscle regeneration is still uncovered. Since liver injury induces HGF expression in distal HGF-producing organs such as lung, kidney and spleen, we examined if this is the case in muscle injury in analogy. In rat femoral muscle, HGF protein levels were elevated within 1 h after muscle injury, with a simultaneous proteolytic activation of HGF protein. Semiquantitative RT-PCR analysis revealed an elevation of HGF mRNA expression after muscle injury in the liver and spleen, and also an increase of HGF protein levels in the spleen, suggesting the presence of endocrine HGF-inducing factor(s) during muscle regeneration. Indeed, the sera from the rat with muscle regeneration were capable of inducing HGF mRNA expression when applied to primary cultured spleen cells from intact rats. These results indicated that skeletal muscle injury induces HGF expression in the non-muscle HGF-producing organs, especially in the spleen, and suggested the possible involvement of non-muscle organ-derived HGF in activation/proliferation of satellite cells during muscle regeneration.
Collapse
Affiliation(s)
- Shunichi Suzuki
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Yoshimura R, Watanable Y, Kasai S, Wada S, Ohyama A, Hase T, Nakatani T, Chargui J, Touraine JL, Nakamura T. Hepatocyte growth factor (HGF) as a rapid diagnostic marker and its potential in the prevention of acute renal rejection. Transpl Int 2002. [DOI: 10.1111/j.1432-2277.2002.tb00146.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Nakamura T, Kanda S, Yamamoto K, Kohno T, Maeda K, Matsuyama T, Kanetake H. Increase in hepatocyte growth factor receptor tyrosine kinase activity in renal carcinoma cells is associated with increased motility partly through phosphoinositide 3-kinase activation. Oncogene 2001; 20:7610-23. [PMID: 11753639 DOI: 10.1038/sj.onc.1204975] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Revised: 08/28/2001] [Accepted: 09/13/2001] [Indexed: 11/08/2022]
Abstract
Dysregulated cell motility is one of the major characteristics of invasion and metastatic potentials of malignant tumor cells. Here, we examined the hepatocyte growth factor (HGF)-induced cell motility of two human renal carcinoma cell lines, ACHN and VMRC-RCW. Scattering and migration was induced in ACHN in an HGF-dependent manner, whereas they were maintained in VMRC-RCW even in the absence of HGF. In VMRC-RCW, HGF receptor (HGFR) tyrosine kinase was constitutively active, and sequence analysis showed N375S, A1209G and V1290L mutations. However, transfection experiments using porcine aortic endothelial (PAE) cells demonstrated that no single mutation or combination of two or three mutations caused HGF-independent constitutive activation. Conversely, the expressed amount of receptor protein had a pivotal role in the basal kinase activity. With respect to downstream signaling molecules of HGFR in ACHN or VMRC-RCW, the Ras-MAPK pathway was downregulated, whereas phosphoinositide 3-kinase (PI3-kinase) was not further activated by HGF-treatment in VMRC-RCW cells. The PI3-kinase inhibitors, wortmannin and LY294002 strongly inhibited spontaneous migration of VMRC-RCW. One transfected PAE cell line with massive overexpression of HGFR demonstrated scattered morphology and increased PI3-kinase activity in association with increased motility, which was partially inhibited by LY294002. Taken together, our results indicate that the overexpression of HGFR causes increase in cellular motility and PI3-kinase shows the important contribution on the increased motility of renal carcinoma cells.
Collapse
Affiliation(s)
- T Nakamura
- Department of Urology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Azuma H, Takahara S, Matsumoto K, Ichimaru N, Wang JD, Moriyama T, Waaga AM, Kitamura M, Otsuki Y, Okuyama A, Katsuoka Y, Chandraker A, Sayegh MH, Nakamura T. Hepatocyte growth factor prevents the development of chronic allograft nephropathy in rats. J Am Soc Nephrol 2001; 12:1280-1292. [PMID: 11373353 DOI: 10.1681/asn.v1261280] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Long-term renal isografts in humans and laboratory animals exhibit features similar to those of chronic allograft nephropathy (CAN), indicating that antigen-independent factors, such as acute renal ischemia, are likely to be involved in the development of CAN. Hepatocyte growth factor (HGF) has been demonstrated to play a renotropic role in renal regeneration and protection from acute ischemic injury. This study was thus conducted to investigate the effect of HGF on the development of CAN, using an established rat model. HGF was administered daily (100 microg/d, intravenously) for 4 wk after engraftment. Control animals received saline solution. Allografts from control animals exhibited early evidence of severe structural collapse and necrotic cell death in the proximal tubules and outer medulla, with mononuclear cell infiltration, within 1 wk after engraftment. This was followed by sequential upregulation of adhesion molecules and cytokines, accompanied by dense macrophage infiltration. Fibrogenic events, as indicated by marked increases in transforming growth factor-beta1 expression and the accumulation of smooth muscle alpha-actin, occurred during the same period. Control animals ultimately developed features typical of CAN, with functional deterioration and severe histologic changes; a survival rate of 50.6% by 32 wk was observed. In contrast, remarkably little early injury and no late fibrogenic events were observed for the HGF-treated group. All treated animals survived, with well preserved graft function, during the 32-wk follow-up period. These results indicate that renal protection and recovery from early allograft injury with HGF treatment greatly contribute to a reduction of susceptibility to the subsequent development of CAN in a rat model. The potential application of HGF in the prevention of CAN warrants further attention.
Collapse
Affiliation(s)
- Haruhito Azuma
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shiro Takahara
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kunio Matsumoto
- Division of Biochemistry, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naotsugu Ichimaru
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jing Ding Wang
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiki Moriyama
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ana-Maria Waaga
- Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Masaya Kitamura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Biology, Osaka Medical College, Osaka, Japan
| | - Akihiko Okuyama
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoji Katsuoka
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Anil Chandraker
- Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mohamed H Sayegh
- Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Toshikazu Nakamura
- Division of Biochemistry, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
34
|
Hara H, Yoshimura H, Uchida S, Toyoda Y, Aoki M, Sakai Y, Morimoto S, Shiokawa K. Molecular cloning and functional expression analysis of a cDNA for human hepassocin, a liver-specific protein with hepatocyte mitogenic activity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:45-53. [PMID: 11470158 DOI: 10.1016/s0167-4781(01)00249-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
By means of differential cDNA expression cloning, we earlier isolated a novel rat cDNA and its protein, named hepassocin, which is upregulated during liver regeneration. Using the rat cDNA as a probe, we have now isolated human hepassocin cDNA encoding a protein of 312 amino acids, which has 81.4% and 83.8% identity, respectively, to rat hepassocin before and after elimination of its signal peptide. Dot blot analysis revealed that hepassocin mRNA was strongly expressed in adult liver, fairly strongly in fetal liver, and weakly in pancreas, but not in other tissues. Recombinant human hepassocin produced in Chinese hamster ovary (CHO) cells by the dihydrofolate reductase-methotrexate (DHFR--MTX) gene amplification method is a homodimer (68 kDa) and has mitogenic activities in hepatocytes of various animal species including rat, mouse, rabbit and dog, and the activity was lost with 2-mercaptoethanol treatment. These results suggest that hepassocin is a potent regulator in liver cell growth not only in rats but also in humans. Computer searches revealed that human hepassocin as well as rat hepassocin has a characteristic disulfide structure close to that of fibrinogen-gamma. We assume that this newly identified growth factor exerts functions in association with an extracellular matrix such as fibrinogen.
Collapse
Affiliation(s)
- H Hara
- Medical Research Laboratories, Taisho Pharmaceutical Co., Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ishida Y, Smith S, Wallace L, Sadamoto T, Okamoto M, Auth M, Strazzabosco M, Fabris L, Medina J, Prieto J, Strain A, Neuberger J, Joplin R. Ductular morphogenesis and functional polarization of normal human biliary epithelial cells in three-dimensional culture. J Hepatol 2001; 35:2-9. [PMID: 11495037 DOI: 10.1016/s0168-8278(01)00078-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS The understanding of the physiology and function of human biliary epithelial cells (hBEC) has been improved by studies in monolayer culture systems. The aim was to develop a polarized model to elucidate the mechanisms of ductular morphogenesis and functional differentiation of hBEC. METHODS The morphological, phenotypic and functional properties of hBEC cultured as three-dimensional aggregates in collagen gel were assessed in medium supplemented with (or without) human hepatocyte growth factor (hHGF) and foetal bovine serum. RESULTS In the absence of added mitogens and serum, cells maintained as morphologically polarized aggregates, organized around a central lumen, were positive for phenotypic markers of biliary epithelium and negative for markers of other cell types. Functional markers, gamma-glutamyl-transferase, anion exchanger-2, responses to gamma interferon and forskolin induced secretion, were preserved. hHGF increased both the size and number of aggregates and induced hBEC to invade the gel and lumena forming anastomosing networks of cells. CONCLUSIONS Collagen gel culture in the absence of added growth factors and serum provides a model for analysis of the polarized functions of hBEC. The formation of poorly organized cords of cells in response to hHGF suggests that collagen gel culture may provide a model for the investigation of atypical ductular morphogenesis of the human biliary tract.
Collapse
Affiliation(s)
- Y Ishida
- Liver Unit, University Hospital, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 2001; 59:2023-38. [PMID: 11380804 DOI: 10.1046/j.1523-1755.2001.00717.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, has mitogenic, motogenic, anti-apoptotic, and morphogenic (for example, induction of branching tubulogenesis) activities for renal tubular cells, while it has angiogenic and angioprotective actions for endothelial cells. Stromal cells such as mesangial cells, endothelial cells, and macrophages are sources of renal HGF; thus, HGF mediates epithelial-stromal and endothelial-mesangial interactions in the kidney. In response to acute renal injury, the expression of HGF increases in the injured kidney and in distant intact organs such as the lung and spleen. Locally and systemically increased HGF supports renal regeneration, possibly not only by enhancing cell growth but also by promoting morphogenesis of renal tissue. During progression of chronic renal failure/renal fibrosis, the expression of HGF decreases in a manner reciprocal to the increase in expression of transforming growth factor-beta (TGF-beta), a key player in tissue fibrosis. A decrease in endogenous HGF, as well as increase in TGF-beta, augments susceptibility to the onset of chronic renal failure/renal fibrosis. On the other hand, supplements of exogenous HGF have preventive and therapeutic effects in cases of acute and chronic renal failure/renal fibrosis in laboratory animals. HGF prevents epithelial cell death and enhances regeneration and remodeling of renal tissue with injury or fibrosis. A renotropic system underlies the vital potential of the kidney to regenerate, while an impaired renotropic system may confer susceptibility to the onset of renal diseases. Thus, HGF supplementation may be one therapeutic strategy to treat subjects with renal diseases, as it enhances the intrinsic ability of the kidney to regenerate.
Collapse
Affiliation(s)
- K Matsumoto
- Division of Biochemistry, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | |
Collapse
|
37
|
Mizuno S, Matsumoto K, Nakamura T. Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int 2001; 59:1304-14. [PMID: 11260391 DOI: 10.1046/j.1523-1755.2001.0590041304.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND As tubulointerstitial fibrosis (TIF) reflects the prognosis of patients with various chronic renal diseases, the pathogenesis of TIF has to be clarified. Transforming growth factor-beta (TGF-beta) is a key mediator for renal fibrosis. We reported that hepatocyte growth factor (HGF) prevents renal fibrosis in nephrotic mice. However, the function of HGF in chronic renal failure, except for nephrotic syndrome, remains to be determined. METHODS Using mice subjected to unilateral ureter-ligated obstruction (UUO), we investigated the roles of HGF in TIF, as induced by obstructive nephropathy. Pathophysiological changes in the kidney after UUO treatment were analyzed focusing on expressions of renal HGF and TGF-beta, TIF, tubular proliferation, and apoptosis. Neutralizing antibody against rodent HGF, or recombinant human HGF (rhHGF), was administrated to the UUO mice, and pathophysiological changes after neutralization or supplements of HGF were analyzed. RESULTS In this UUO model, TIF with tubular apoptosis became evident, and it was accompanied by a decrease in renal HGF expression and an increase in renal TGF-beta expression. Neutralization of endogenous HGF accelerated the progression of TIF, accompanied by increases in TGF-beta expression and tubular apoptosis as well as by decreases in tubular proliferation. In contrast, rhHGF attenuated TIF progression, and there were decreases in TGF-beta expression and tubular apoptosis, and an increase in tubular proliferation. CONCLUSIONS Endogenous as well as exogenous HGF attenuated the progression of the fibrosis caused by obstructive nephropathy in these mice. Thus, local reduction in HGF levels may account for TIF in chronic renal diseases.
Collapse
Affiliation(s)
- S Mizuno
- Division of Biochemistry, Department of Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Yamadaoka, Japan
| | | | | |
Collapse
|
38
|
Gao C, Kennedy S, Ponder KP. Lipopolysaccharide potentiates the effect of hepatocyte growth factor upon replication in lung, thyroid, spleen, and colon in rats in vivo. Mol Ther 2001; 3:462-75. [PMID: 11319906 DOI: 10.1006/mthe.2001.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Induction of replication may potentiate in vivo gene therapy, as some viral vectors only transduce dividing cells. Hepatocyte growth factor (HGF) increases the percentage of replicating hepatocytes to 18-fold that in normal rats, and lipopolysaccharide (LPS) modestly potentiates this effect. In this study, the effect of iv HGF upon replication in other organs was determined. HGF at 10 mg/kg resulted in replication that was < or =3-fold that of normal rats in alveolar and proximal renal tubular cells. HGF alone had no effect upon replication of epithelial cells from the bronchi, thyroid, pancreas, or colon or upon cells from the muscle, pancreatic islets, spleen, blood vessels, or thymus. HGF and LPS at 5 mg/kg resulted in replication that was 9-fold that of normal rats in alveolar cells, 25-fold in bronchial epithelial cells, 4-fold in thyroid epithelial cells, 1.5-fold in the red pulp of the spleen, and 2-fold in colonic epithelial cells. The synergistic effect may be due to the fact that LPS upregulated the HGF receptor c-met in thyroid, spleen, and colon. We conclude that iv administration of HGF alone is relatively specific for inducing hepatocyte replication and would allow selective gene transfer into the liver.
Collapse
Affiliation(s)
- C Gao
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
39
|
Lee YR, Yamazaki M, Mitsui S, Tsuboi R, Ogawa H. Hepatocyte growth factor (HGF) activator expressed in hair follicles is involved in in vitro HGF-dependent hair follicle elongation. J Dermatol Sci 2001; 25:156-63. [PMID: 11164712 DOI: 10.1016/s0923-1811(00)00124-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatocyte growth factor (HGF), a paracrine factor secreted by follicular papilla cells, acts on neighboring follicular epithelial cells to promote follicular growth, while HGF activator is a serine proteinase, which converts inactive single-chain HGF to the active heterodimeric form. In this study, using 3' rapid amplification of cDNA end/nested polymerase chain reaction (3' RACE/nested PCR) and immunoblotting, we confirmed the expression of HGF activator in both cultured human follicular papilla cells and outer root sheath cells. HGF activator mRNA was expressed in all of the isolated 15 anagen hair follicles taken from the scalps of seven individuals. In an organ culture system, single-chain HGF stimulated hair follicle elongation, which was partially inhibited by aprotinin, a serine proteinase inhibitor (P<0.01). These results suggest that single-chain HGF secreted from follicular papilla cells is converted to an active heterodimeric form by intrinsic HGF activator and that the resultant active form of HGF stimulates hair growth.
Collapse
Affiliation(s)
- Y R Lee
- Department of Dermatology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
40
|
Matsumoto K, Mizuno S, Nakamura T. Hepatocyte growth factor in renal regeneration, renal disease and potential therapeutics. Curr Opin Nephrol Hypertens 2000; 9:395-402. [PMID: 10926176 DOI: 10.1097/00041552-200007000-00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hepatocyte growth factor (HGF) has mitogenic, motogenic, morphogenic, and anti-apoptotic activities on renal cells and is a potential renotropin for renal protection and repair. In chronic renal failure/fibrosis, HGF in the kidney declines in a reciprocal manner to the increase in transforming growth factor-beta (TGF-beta). Neutralization of HGF by the antibody leads to acceleration of renal failure/fibrosis while HGF administration leads to remarkable attenuation, thus indicating the importance of HGF versus TGF-beta counterbalance in both pathogenesis and therapeutics in cases of chronic renal failure. HGF is being strongly considered for potential treatment of acute and chronic renal failure.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | |
Collapse
|
41
|
Abstract
Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.
Collapse
Affiliation(s)
- G A Vargas
- Department of Internal Medicine II, Division of Nephrology, University of Ulm, Germany
| | | | | |
Collapse
|
42
|
Lu YP, Nishigai K, Ishiwata T, Asano G. Differential expression of hepatocyte growth factor and its receptor (c-Met) in a rat artificial anus model. Wound Repair Regen 2000; 8:59-67. [PMID: 10760215 DOI: 10.1046/j.1524-475x.2000.00059.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor is a multifunctional polypeptide that has been implicated in cancer growth, tissue development and wound repair. It is mainly synthesized in mesenchymal cells and acts on epithelial cells, where its actions are dependent on binding to a specific cell-surface hepatocyte growth factor receptor (c-Met). In an artificial anus, two different types of epithelial cells (ductal cells of the colon and squamous cells of the skin) intermingle with each other. In the present study, we examined the localization of hepatocyte growth factor and c-Met during the process of repair in a rat artificial anus model, and attempted to clarify the cell types that express hepatocyte growth factor or c-Met messenger RNA by in situ hybridization. Western blot analysis revealed abundant localization of the mature form of hepatocyte growth factor in artificial anal tissues. Moderate hepatocyte growth factor immunoreactivity was noted in regenerated squamous cells in the skin and colonic ductal cells, and strong expression in macrophages and fibroblasts. Moderate c-Met immunoreactivity was present in regenerated epithelial cells in the skin and colon. Throughout the repair process, hepatocyte growth factor and c-Met immunoreactivities were more prominently localized in the squamous cells of the skin than in colonic ductal cells. Competitive reverse transcription-polymerase chain reaction analysis revealed that hepatocyte growth factor mRNA was maximal on day 14 after the operation; however, c-Met mRNA expression had two peaks, on day 1 and day 7. Hepatocyte growth factor mRNA was expressed more in the stromal fibroblasts, macrophages and endothelial cells, and c-Met mRNA was predominant in regenerated squamous cells of the skin. These findings suggest the possibility that hepatocyte growth factor may act in a paracrine manner to mainly enhance the growth of squamous cells of the skin and to a lesser extent the ductal cells of the colon in the artificial anus.
Collapse
Affiliation(s)
- Y P Lu
- Department of Pathology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
43
|
Oka A, Tanji N, Toshino A, Miyauchi Y, Yokoyama M. Expression of growth factors after the release of ureteral obstruction in the rat kidney. Int J Urol 1999; 6:607-15. [PMID: 10609543 DOI: 10.1046/j.1442-2042.1999.00121.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Little is known about the mechanisms underlying recovery from hydronephrosis. Using a rat kidney model, we investigated the possible contribution of growth factors during regeneration after hydronephrosis. METHODS After the unilateral ureteral obstruction for 7 days, the obstruction was released by ureterocystostomy. Epidermal growth factor (EGF), hepatocyte growth factor (HGF) and transforming growth factor-beta1 (TGF-beta1) were studied using immunohistochemistry and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS The immunoreaction of EGF in the medulla of both obstructed and contralateral kidneys increased after releasing the obstruction. The release of ureteral obstruction brought further increased immunoreaction of HGF to both the cortex and the medulla of the contralateral kidney. The immunoreaction of TGF-beta1 also increased in the interstitium especially around the blood vessels in the post-obstructed kidney. The expression of HGF and EGF mRNA in both kidneys and TGF-beta1 mRNA in the obstructed kidney were increased after releasing the obstruction. CONCLUSIONS These results suggest that various growth factors may be involved in the post-obstructive tubular recovery and interstitial damage in the rat kidney.
Collapse
Affiliation(s)
- A Oka
- Department of Urology, Ehime University Medical School, Japan
| | | | | | | | | |
Collapse
|
44
|
Amano O, Koshimizu U, Nakamura T, Iseki S. Enhancement by hepatocyte growth factor of bone and cartilage formation during embryonic mouse mandibular development in vitro. Arch Oral Biol 1999; 44:935-46. [PMID: 10580541 DOI: 10.1016/s0003-9969(99)00086-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To elucidate the possible roles of hepatocyte growth factor (HGF) in the early development of mouse mandible, HGF was applied to an organ-culture system with chemically defined media. Mandibular arches microdissected from mouse embryos at the 10th day of gestation were cultured for 10 days with or without HGF, HGF plus HGF-receptor (c-met) antisense oligodeoxyribonucleotide, or HGF plus c-met sense oligodeoxyribonucleotide in the media. The cultured mandibles were then analysed, histologically in serial paraffin sections. In the absence of HGF, the tooth organs of bud stage, Meckel's cartilage and the tongue were formed, whereas only a slight amount of bone tissue was formed in the cultured mandible. The expression of intrinsic HGF and c-met in the cultured mandibles was confirmed by reverse transcriptase-polymerase chain reaction. Furthermore, immunohistochemistry demonstrated that both HGF and c-met were localized in areas of the mesenchymal tissue forming bone and cartilage. With HGF in the medium, the volume of both bone and cartilage increased significantly and dose-dependently. HGF also increased the rate of proliferation of osteogenic cells and chondrocytes. Addition of c-met antisense oligodeoxyribonucleotide partially inhibited the HGF-induced enhancement of bone and cartilage formation, whereas addition of c-met sense oligodeoxyribonucleotide had no effect. These results revealed that exogenous HGF enhances bone and cartilage morphogenesis in the cultured mandibles, suggesting physiological roles for intrinsic HGF in the early development of mouse mandible.
Collapse
Affiliation(s)
- O Amano
- Department of Anatomy, School of Medicine, Kanazawa University, Takara-machi, Japan.
| | | | | | | |
Collapse
|
45
|
Sakakura S, Saito S, Morikawa H. Stimulation of DNA synthesis in trophoblasts and human umbilical vein endothelial cells by hepatocyte growth factor bound to extracellular matrix. Placenta 1999; 20:683-93. [PMID: 10527823 DOI: 10.1053/plac.1999.0433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hepatocyte growth factor (HGF) promotes the growth not only of hepatocytes but also of several other types of cells such as cytotrophoblasts and endothelial cells. Recent studies have revealed that HGF is trapped in the extracellular (ECM) matrix through heparan sulphate in vivo, thereby acting as a mitogen for hepatocytes in cooperation with heparan sulphate. In this study, we detected HGF protein in chorionic tissue and placental tissue extracts, and found that HGF and heparan sulphate were co-distributed in the endothelial basement membrane and trophoblast basement membrane on immunohistochemical examination. The rates of DNA synthesis in primary cultured cytotrophoblasts and human umbilical vein endothelial cells (HUVEC) cultured on HGF-bound Matrigeltrade mark were 6-8 times those of control cytotrophoblasts and HUVEC. When Matrigeltrade mark dishes were pretreated with heparinase and heparitinase prior to binding of HGF, stimulation of DNA synthesis was markedly decreased. A considerable decrease in stimulation of DNA synthesis was observed following washing of HGF-bound Matrigeltrade mark with 1 m acetic acid, 1 m NaCl and 0.1 per cent trypsin, but not following treatment with chondroitinase ABC. These observations suggest that HGF can be trapped in ECM in vivo, thereby acting as a mitogen for cytotrophoblasts and placental vein endothelial cells in cooperation with heparan sulphate.
Collapse
Affiliation(s)
- S Sakakura
- Department of Obstetrics and Gynecology, Tondabayashi Hospital, 36-3-1 Koyodai, Tondabayashi-shi, Osaka, 584-0082, Japan
| | | | | |
Collapse
|
46
|
Ohnishi Y, Yamashiro C, Yanagihara T, Hata T. Hepatocyte growth factor concentration in the early second-trimester amniotic fluid does not predict fetal growth at birth. Hum Reprod 1999; 14:2625-8. [PMID: 10527998 DOI: 10.1093/humrep/14.10.2625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to evaluate whether hepatocyte growth factor (HGF) concentrations in the early second-trimester amniotic fluid predict fetal growth at birth. HGF and insulin-like growth factor-I (IGF-I) concentrations in the early second-trimester amniotic fluid were measured in 12 pregnancies with small for gestational age (SGA) infants, 84 pregnancies with appropriate for gestational age (AGA) infants, and eight pregnancies with large for gestational age (LGA) infants. HGF concentrations were measured from the early second-trimester amniotic fluid samples using an enzyme-linked immunosorbent assay. IGF-I concentrations were measured from the early second-trimester amniotic fluid samples using an immunoradiometric assay. Maternal age in AGA group (34.2 +/- 5.5 years) was significantly lower than in SGA (37.9 +/- 3.0 years) and LGA (37.6 +/- 3.3 years) groups (P < 0.05). There were no significant differences for parity or gestational age at amniocentesis among the groups. There were significant differences for birth age, birth weight, neonatal height, and placental weight among the groups (P < 0.05). HGF concentrations in SGA, AGA and LGA groups were 16.9 +/- 6.6, 16.7 +/- 9.0 and 20.2 +/- 14.8 ng/ml respectively (not significant). There was no correlation between amniotic fluid HGF concentrations and birth weight, height or placental weight. There were also no significant differences for amniotic fluid IGF-I concentrations among the three groups. These results suggest that differences in HGF concentrations in the early second-trimester amniotic fluid do not predict fetal growth at birth. Further study is needed to clarify the role of high HGF concentrations in early second-trimester amniotic fluid during pregnancy.
Collapse
Affiliation(s)
- Y Ohnishi
- Department of Perinatology, Kagawa Medical University, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
47
|
Koochekpour S, Jeffers M, Wang PH, Gong C, Taylor GA, Roessler LM, Stearman R, Vasselli JR, Stetler-Stevenson WG, Kaelin WG, Linehan WM, Klausner RD, Gnarra JR, Vande Woude GF. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 1999; 19:5902-12. [PMID: 10454537 PMCID: PMC84441 DOI: 10.1128/mcb.19.9.5902] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 06/03/1999] [Indexed: 11/20/2022] Open
Abstract
Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These studies also demonstrate a synergy between the loss of VHL function and Met signaling.
Collapse
Affiliation(s)
- S Koochekpour
- ABL Basic Research Program, NCI Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bowes RC, Lightfoot RT, Van De Water B, Stevens JL. Hepatocyte growth factor induces tubulogenesis of primary renal proximal tubular epithelial cells. J Cell Physiol 1999; 180:81-90. [PMID: 10362020 DOI: 10.1002/(sici)1097-4652(199907)180:1<81::aid-jcp9>3.0.co;2-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-beta1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-beta1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response.
Collapse
Affiliation(s)
- R C Bowes
- Campbell University School of Pharmacy, Department of Pharmaceutical Sciences, Buies Creek, North Carolina 27506, USA.
| | | | | | | |
Collapse
|
49
|
Nakadai T, Kishimoto T, Miyazawa Y, Okada N, Makino Y, Obinata T, Tamura T. HP33: hepatocellular carcinoma-enriched 33-kDa protein with similarity to mitochondrial N-acyltransferase but localized in a microtubule-dependent manner at the centrosome. J Cell Sci 1999; 112 ( Pt 9):1353-64. [PMID: 10194414 DOI: 10.1242/jcs.112.9.1353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a new subtraction method and chemically induced rat hepatocellular carcinomas, we identified a hepatocellular carcinogenesis and hepatocyte proliferation-related gene designated hp33 that encoded a 33-kDa protein. The predicted protein was similar to the bovine aralkyl N-acyltransferase and arylacetyl N-acyltransferase. HP33 was restrictively expressed in the liver and kidney, and its gene expression was stimulated in the regenerating liver as well as in hepatocellular carcinoma. Interestingly, it was demonstrated in various hepatic cells that HP33 was localized in regions surrounding the centrosome, where mitochondria were not concentrated. Moreover, its centrosomal localization was evident in the interphase but not in the mitotic phase of the cell cycle. The centrosomal localization of HP33 was dependent on microtubules, and ectopically expressed HP33 was seen at centrosomes even in fibroblasts, which do not exhibit a typical staining pattern of HP33. The centrosomal localization of HP33 became invisible by nocodazole treatment, whereas the mitochondrial staining pattern was not affected by it. In vitro cosedimentation experiments using purified microtubules indicated that HP33 bound to MTs directly and that its MT-binding ability was dependent on the C-terminal basic domain of the protein. These results suggest that, different from early predictions based on its primary structure, HP33 has a growth- and carcinogenesis-related function that may be independent of mitochondrial function.
Collapse
Affiliation(s)
- T Nakadai
- Department of Biology, Faculty of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Kinosaki M, Yamaguchi K, Yamashita Y, Uematsu Y, Aihara H, Masunaga H, Morinaga T, Higashio K. A mutant of deleted variant of hepatocyte growth factor (dHGF) with alanine substitution in the N-terminal basic region has higher activity in vivo. Biochem Biophys Res Commun 1999; 254:363-7. [PMID: 9918843 DOI: 10.1006/bbrc.1998.9950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study, we generated a mutant of dHGF (deleted variant of hepatocyte growth factor), termed #2, with higher specific activity than dHGF in assays of mitogenic activity on rat hepatocytes and America opossum kidney epithelial cells (OK). In the present study, we examine in vivo hepatotropic and renotropic activities of #2 and its distribution to target tissues, liver and kidney. Administration of #2 to normal rats significantly increased serum levels of total protein, albumin, free-cholesterol, and HDL-cholesterol and liver weight in a dose-dependent manner. Analysis of these parameters suggests that #2 is more potent than dHGF as a hepatotropic factor in vivo. In addition, #2 reduced mortality of mercuric chloride-administered mice and the effect was stronger than that of dHGF. When injected to mice, a larger amount of #2 than dHGF was rapidly distributed to the liver. Sixty minutes after injection, the concentrations of #2 in plasma, liver, and kidney were higher than those of dHGF. These distribution properties and the higher mitogenic activity in vitro may explain why #2 exerts more potent in vivo biological activity than dHGF.
Collapse
Affiliation(s)
- M Kinosaki
- Research Institute of Life Science, Snow Brand Milk Products Co. Ltd. , Ishibashi-machi, Tochigi, Shimotsuga-gun, Japan.
| | | | | | | | | | | | | | | |
Collapse
|