1
|
Goto M, Yoshino S, Hiroshima K, Kawakami T, Murota K, Shimamoto S, Hidaka Y. The Molecular Basis of Heat-Stable Enterotoxin for Vaccine Development and Cancer Cell Detection. Molecules 2023; 28:molecules28031128. [PMID: 36770798 PMCID: PMC9920858 DOI: 10.3390/molecules28031128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Heat-stable enterotoxin (STa) produced by Enterotoxigenic E. coli is responsible for causing acute diarrhea in infants in developing countries. However, the chemical synthesis of STa peptides with the native conformation and the correct intra-molecular disulfide bonds is a major hurdle for vaccine development. To address this issue, we herein report on the design and preparation of STa analogs and a convenient chemical method for obtaining STa molecules with the correct conformation. To develop an STa vaccine, we focused on a structure in a type II β-turn in the STa molecule and introduced a D-Lys residue as a conjugation site for carrier proteins. In addition, the -Glu-Leu- sequence in the STa molecule was replaced with a -Asp-Val- sequence to decrease the toxic activity of the peptide to make it more amenable for use in vaccinations. To solve several issues associated with the synthesis of STa, such as the formation of non-native disulfide isomers, the native disulfide pairings were regioselectively formed in a stepwise manner. A native form or topological isomer of the designed STa peptide, which possesses a right-handed or a left-handed spiral structure, respectively, were synthesized in high synthetic yields. The conformation of the synthetic STa peptide was also confirmed by CD and NMR spectroscopy. To further utilize the designed STa peptide, it was labeled with fluorescein for fluorescent detection, since recent studies have also focused on the use of STa for detecting cancer cells, such as Caco-2 and T84. The labeled STa peptide was able to specifically and efficiently detect 293T cells expressing the recombinant STa receptor (GC-C) protein and Caco-2 cells. The findings reported here provide an outline of the molecular basis for using STa for vaccine development and in the detection of cancer cells.
Collapse
Affiliation(s)
- Masaya Goto
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shinya Yoshino
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kyona Hiroshima
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaeko Murota
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shimamoto
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Correspondence: (S.S.); (Y.H.); Tel.: +81-6-6721-2332 (S.S.)
| | - Yuji Hidaka
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Correspondence: (S.S.); (Y.H.); Tel.: +81-6-6721-2332 (S.S.)
| |
Collapse
|
2
|
He Y, Liu S, Newburg DS. Musarin, a novel protein with tyrosine kinase inhibitory activity from Trametes versicolor, inhibits colorectal cancer stem cell growth. Biomed Pharmacother 2021; 144:112339. [PMID: 34656057 DOI: 10.1016/j.biopha.2021.112339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is the second deadly cancer in the world. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Trametes versicolor mushroom extract demonstrates strongly cell growth inhibitory activity on human colorectal tumor cells. In this study, we characterized a novel 12-kDa protein that named musarin, which was purified from Trametes versicolor mushroom extract and showed significant growth inhibition on multiple human colorectal cancer cell lines in vitro. The protein sequence of musarin was determined through enzyme digestion and MS/MS analysis. Furthermore, Musarin, in particular, strongly inhibits aggressive human colorectal cancer stem cell-like CD24+CD44+ HT29 proliferation in vitro and in a NOD/SCID murine xenograft model. Through whole transcription profile and gene enrichment analysis of musarin-treated CSCs-like cells, major signaling pathways and network modulated by musarin have been enriched, including the bioprocess of the Epithelial-Mesenchymal Transition, the EGFR-Ras signaling pathway and enzyme inhibitor activity. Musarin demonstrated tyrosine kinase inhibitory activity in vitro. Musarin strongly attenuated EGFR expression and down-regulated phosphorylation level, thereby slowing cancer cells proliferation. In addition, oral ingestion of musarin significantly inhibited CD24+CD44+ HT29 generated tumor development in SCID/NOD mice with less side effects in microgram doses. Targeting self-renewal aggressive stem-cell like cancer cell proliferation, with higher water solubility and lower cytotoxicity, musarin has shown strong potence to be developed as a promising novel therapeutic drug candidate against colorectal cancers, especially those that acquire chemo-resistance.
Collapse
Affiliation(s)
- YingYing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of Chemical Science & Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - David S Newburg
- University of Cincinnati College of Medicine, 130 Panzeca Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin. Molecules 2020; 25:molecules25204798. [PMID: 33096591 PMCID: PMC7587965 DOI: 10.3390/molecules25204798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Heat-stable enterotoxin (STa) produced by enterotoxigenic E. coli causes acute diarrhea and also can be used as a specific probe for colorectal cancer cells. STa contains three intra-molecular disulfide bonds (C1–C4, C2–C5, and C3–C6 connectivity). The chemical synthesis of STa provided not only the native type of STa but also a topological isomer that had the native disulfide pairings. Interestingly, the activity of the topological isomer was approximately 1/10–1/2 that of the native STa. To further investigate the bioactive conformation of this molecule and the regulation of disulfide-coupled folding during its chemical syntheses, we examined the folding mechanism of STa that occurs during its chemical synthesis. The folding intermediate of STa with two disulfide bonds (C1–C4 and C3–C6) and two Cys(Acm) residues, the precursor peptide, was treated with iodine to produce a third disulfide bond under several conditions. The topological isomer was predominantly produced under all conditions tested, along with trace amounts of the native type of STa. In addition, NMR measurements indicated that the topological isomer has a left-handed spiral structure similar to that of the precursor peptide, while the native type of STa had a right-handed spiral structure. These results indicate that the order of the regioselective formation of disulfide bonds is important for the regulation of the final conformation of disulfide-rich peptides in chemical synthesis.
Collapse
|
4
|
He R, Pan J, Mayer JP, Liu F. Stepwise Construction of Disulfides in Peptides. Chembiochem 2020; 21:1101-1111. [PMID: 31886929 DOI: 10.1002/cbic.201900717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The disulfide bond plays an important role in biological systems. It defines global conformation, and ultimately the biological activity and stability of the peptide or protein. It is frequently present, singly or multiply, in biologically important peptide hormones and toxins. Numerous disulfide-containing peptides have been approved by the regulatory agencies as marketed drugs. Chemical synthesis is one of the prerequisite tools needed to gain deep insights into the structure-function relationships of these biomolecules. Along with the development of solid-phase peptide synthesis, a number of methods of disulfide construction have been established. This minireview will focus on the regiospecific, stepwise construction of multiple disulfides used in the chemical synthesis of peptides. We intend for this article to serve a reference for peptide chemists conducting complex peptide syntheses and also hope to stimulate the future development of disulfide methodologies.
Collapse
Affiliation(s)
- Rongjun He
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| | - Jia Pan
- Novo Nordisk Research Center China, 20 Life Science Road, Beijing, 102206, P. R. China
| | - John P Mayer
- Department of Molecular, Developmental & Cell Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle, 530 Fairview Avenue North, Seattle, WA, 98109, USA
| |
Collapse
|
5
|
Brancale A, Shailubhai K, Ferla S, Ricci A, Bassetto M, Jacob GS. Therapeutically targeting guanylate cyclase-C: computational modeling of plecanatide, a uroguanylin analog. Pharmacol Res Perspect 2017; 5:e00295. [PMID: 28357122 PMCID: PMC5368960 DOI: 10.1002/prp2.295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
Plecanatide is a recently developed guanylate cyclase-C (GC-C) agonist and the first uroguanylin analog designed to treat chronic idiopathic constipation (CIC) and irritable bowel syndrome with constipation (IBS-C). GC-C receptors are found across the length of the intestines and are thought to play a key role in fluid regulation and electrolyte balance. Ligands of the GC-C receptor include endogenous agonists, uroguanylin and guanylin, as well as diarrheagenic, Escherichia coli heat-stable enterotoxins (ST). Plecanatide mimics uroguanylin in its 2 disulfide-bond structure and in its ability to activate GC-Cs in a pH-dependent manner, a feature associated with the presence of acid-sensing residues (Asp2 and Glu3). Linaclotide, a synthetic analog of STh (a 19 amino acid member of ST family), contains the enterotoxin's key structural elements, including the presence of three disulfide bonds. Linaclotide, like STh, activates GC-Cs in a pH-independent manner due to the absence of pH-sensing residues. In this study, molecular dynamics simulations compared the stability of plecanatide and linaclotide to STh. Three-dimensional structures of plecanatide at various protonation states (pH 2.0, 5.0, and 7.0) were simulated with GROMACS software. Deviations from ideal binding conformations were quantified using root mean square deviation values. Simulations of linaclotide revealed a rigid conformer most similar to STh. Plecanatide simulations retained the flexible, pH-dependent structure of uroguanylin. The most active conformers of plecanatide were found at pH 5.0, which is the pH found in the proximal small intestine. GC-C receptor activation in this region would stimulate intraluminal fluid secretion, potentially relieving symptoms associated with CIC and IBS-C.
Collapse
Affiliation(s)
- Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff United Kingdom
| | | | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff United Kingdom
| | - Antonio Ricci
- School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff United Kingdom
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff United Kingdom
| | | |
Collapse
|
6
|
Fischer S, Lamping M, Gold M, Röttger Y, Brödje D, Dodel R, Frantz R, Mraheil MA, Chakraborty T, Geyer A. Synthesis of a biological active β-hairpin peptide by addition of two structural motifs. Bioorg Med Chem 2016; 25:603-608. [PMID: 27887962 DOI: 10.1016/j.bmc.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 12/18/2022]
Abstract
The idea of privileged scaffolds - that there seem to be more bioactive compounds found around some structures than others - is well established for small drug molecules, but has little significance for standalone peptide secondary structures whose adaptable shapes escape the definition of a 3D motif in the absence of a protein scaffold. Here, we joined two independent biological functions in a single highly restricted peptide to support the hypothesis that the β-hairpin shape is the common basis of two otherwise unrelated biological recognition processes. To achieve this, the hydrophobic cluster HWX4LV from the decapeptide cyclic hairpin model peptide C1-C10cyclo-CHWEGNKLVC was included in the bicyclic peptide 2. The designed β-hairpin peptide C4-C17, C8-C13bicyclo-KHQCHWECTZGRCRLVCGRSGS (2, Z=citrulline), serves, on the one hand, as a specific epitope for rheumatoid autoantibodies and, on the other hand, shows a not negligible antibiotic effect against the bacterial strain E. coli AS19.
Collapse
Affiliation(s)
- Sabrina Fischer
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Matthias Lamping
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Maike Gold
- Department of Neurology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Yvonne Röttger
- Department of Neurology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Dörte Brödje
- Institute for Medical Microbiology and Hospital Hygiene, University Hospital Giessen and Marburg, Hans-Meerwein-Straße, 35033 Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Renate Frantz
- Institute for Medical Microbiology, Justus-Liebig University, Biomedical Research Facility Seltersberg, Schubertstraße 81, 35392 Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Biomedical Research Facility Seltersberg, Schubertstraße 81, 35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Biomedical Research Facility Seltersberg, Schubertstraße 81, 35392 Giessen, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
7
|
Shimamoto S, Katayama H, Okumura M, Hidaka Y. Chemical methods and approaches to the regioselective formation of multiple disulfide bonds. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2014; 76:28.8.1-28.8.28. [PMID: 24692017 DOI: 10.1002/0471140864.ps2808s76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Disulfide-bond formation plays an important role in the stabilization of the native conformation of peptides and proteins. In the case of multidisulfide-containing peptides and proteins, numerous folding intermediates are produced, including molecules that contain non-native and native disulfide bonds during in vitro folding. These intermediates can frequently be trapped covalently during folding and subsequently analyzed. The structural characterization of these kinetically trapped disulfide intermediates provides a clue to understanding the oxidative folding pathway. To investigate the folding of disulfide-containing peptides and proteins, in this unit, chemical methods are described for regulating regioselective disulfide formation (1) by using a combination of several types of thiol protecting groups, (2) by incorporating unique SeCys residues into a protein or peptide molecule, and (3) by combining with post-translational modification.
Collapse
Affiliation(s)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | - Yuji Hidaka
- Faculty of Science and Engineering, Kinki University, Osaka, Japan
| |
Collapse
|
8
|
Okumura M, Shimamoto S, Hidaka Y. A chemical method for investigating disulfide-coupled peptide and protein folding. FEBS J 2012; 279:2283-95. [PMID: 22487262 DOI: 10.1111/j.1742-4658.2012.08596.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations of protein folding have largely involved studies using disulfide-containing proteins, as disulfide-coupled folding of proteins permits the folding intermediates to be trapped and their conformations determined. Over the last decade, a combination of new biotechnical and chemical methodology has resulted in a remarkable acceleration in our understanding of the mechanism of disulfide-coupled protein folding. In particular, expressed protein ligation, a combination of native chemical ligation and an intein-based approach, permits specifically labeled proteins to be easily produced for studies of protein folding using biophysical methods, such as NMR spectroscopy and X-ray crystallography. A method for regio-selective formation of disulfide bonds using chemical procedures has also been established. This strategy is particularly relevant for the study of disulfide-coupled protein folding, and provides us not only with the native conformation, but also the kinetically trapped topological isomer with native disulfide bonds. Here we review recent developments and applications of biotechnical and chemical methods to investigations of disulfide-coupled peptide and protein folding. Chemical additives designed to accelerate correct protein folding and to avoid non-specific aggregation are also discussed.
Collapse
Affiliation(s)
- Masaki Okumura
- Faculty of Science and Engineering, Kinki University, Higashi-osaka, Osaka, Japan
| | | | | |
Collapse
|
9
|
Zeng W, Horrocks KJ, Robevska G, Wong CY, Azzopardi K, Tauschek M, Robins-Browne RM, Jackson DC. A modular approach to assembly of totally synthetic self-adjuvanting lipopeptide-based vaccines allows conformational epitope building. J Biol Chem 2011; 286:12944-51. [PMID: 21321114 DOI: 10.1074/jbc.m111.227744] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The technology described here allows the chemical synthesis of vaccines requiring correctly folded epitopes and that contain difficult or long peptide sequences. The final self-adjuvanting product promotes strong humoral and/or cell-mediated immunity. A module containing common components of the vaccine (T helper cell epitope and the adjuvanting lipid moiety S-[2,3-bis(palmitoyloxy)propyl]cysteine) was assembled to enable a plug and play approach to vaccine assembly. The inclusion within the module of a chemical group with chemical properties complementary and orthogonal to a chemical group present in the target epitope allowed chemoselective ligation of the two vaccine components. The heat-stable enterotoxin of enterotoxigenic Escherichia coli that requires strict conformational integrity for biological activity and the reproductive hormone luteinizing hormone-releasing hormone were used as the target epitopes for the antibody vaccines. An epitope from the acid polymerase of influenza virus was used to assemble a CD8(+) T cell vaccine. Evaluation of each vaccine candidate in animals demonstrated the feasibility of the approach and that the type of immune response required, viz. antibody or cytotoxic T lymphocyte, dictates the nature of the chemical linkage between the module and target epitope. The use of a thioether bond between the module and target epitope had little or no adverse effect on antibody responses, whereas the use of a disulfide bond between the module and target epitope almost completely abrogated the antibody response. In contrast, better cytotoxic T lymphocyte responses were obtained when a disulfide bond was used.
Collapse
Affiliation(s)
- Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gupta K, Kumar M, Balaram P. Disulfide Bond Assignments by Mass Spectrometry of Native Natural Peptides: Cysteine Pairing in Disulfide Bonded Conotoxins. Anal Chem 2010; 82:8313-9. [DOI: 10.1021/ac101867e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Mukesh Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India, and National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India
| |
Collapse
|
11
|
Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins (Basel) 2010; 2:2213-29. [PMID: 22069681 PMCID: PMC3153297 DOI: 10.3390/toxins2092213] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 12/27/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) associated diarrhea is responsible for roughly half a million deaths per year, the majority taking place in developing countries. The main agent responsible for these diseases is the bacterial heat-stable enterotoxin STa. STa is secreted by ETEC and after secretion binds to the intestinal receptor guanylyl cyclase C (GC-C), thus triggering a signaling cascade that eventually leads to the release of electrolytes and water in the intestine. Additionally, GC-C is a specific marker for colorectal carcinoma and STa is suggested to have an inhibitory effect on intestinal carcinogenesis. To understand the conformational events involved in ligand binding to GC-C and to devise therapeutic strategies to treat both diarrheal diseases and colorectal cancer, it is paramount to obtain structural information on the receptor ligand system. Here we summarize the currently available structural data and report on physiological consequences of STa binding to GC-C in intestinal epithelia and colorectal carcinoma cells.
Collapse
|
12
|
Góngora-Benítez M, Tulla-Puche J, Paradís-Bas M, Werbitzky O, Giraud M, Albericio F. Optimized Fmoc solid-phase synthesis of the cysteine-rich peptide linaclotide. Biopolymers 2010; 96:69-80. [DOI: 10.1002/bip.21480] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/27/2010] [Accepted: 04/19/2010] [Indexed: 11/11/2022]
|
13
|
Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem 2009; 334:67-80. [PMID: 19960363 DOI: 10.1007/s11010-009-0324-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022]
Abstract
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Nirmalya Basu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
14
|
Ruth N, Quinting B, Mainil J, Hallet B, Frère JM, Huygen K, Galleni M. Creating hybrid proteins by insertion of exogenous peptides into permissive sites of a class A beta-lactamase. FEBS J 2008; 275:5150-60. [PMID: 18793326 DOI: 10.1111/j.1742-4658.2008.06646.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of heterologous peptide sequences into a protein carrier may impose structural constraints that could help the peptide to adopt a proper fold. This concept could be the starting point for the development of a new generation of safe subunit vaccines based on the expression of poorly immunogenic epitopes. In the present study, we characterized the tolerance of the TEM-1 class A beta-lactamase to the insertion of two different peptides, the V3 loop of the gp120 protein of HIV, and the thermostable STa enterotoxin produced by enterotoxic Escherichia coli. Insertion of the V3 loop of the HIV gp120 protein into the TEM-1 scaffold yielded insoluble and poorly produced proteins. By contrast, four hybrid beta-lactamases carrying the STa peptide were efficiently produced and purified. Immunization of BALB/c mice with these hybrid proteins produced high levels of TEM-1-specific antibodies, together with significant levels of neutralizing antibodies against STa.
Collapse
Affiliation(s)
- Nadia Ruth
- Biological Macromolecules and Laboratory of Enzymology, Centre d'Ingénierie des Protéines, University of Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Giblin MF, Gali H, Sieckman GL, Owen NK, Hoffman TJ, Volkert WA, Forte LR. In vitro and in vivo Evaluation of 111In-labeled E. coli Heat-Stable Enterotoxin Analogs for Specific Targeting of Human Breast Cancers. Breast Cancer Res Treat 2006; 98:7-15. [PMID: 16724166 DOI: 10.1007/s10549-005-9040-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 07/27/2005] [Indexed: 01/10/2023]
Abstract
Research into the interaction between the E. coli heat-stable enterotoxin (STh) and the guanylin receptor guanylate cyclase C (GC-C) has generated >100 synthetic analogs of the peptide, several of which have been investigated as imaging or therapeutic agents for colorectal cancers. The evidence presented here suggests that in addition to STh binding to GC-C expressing cell lines derived from human colon, STh also specifically binds to an as yet unidentified receptor expressed in high densities on the surface of cell lines derived from human breast cancers. In vitro whole-cell crosslinking studies using 125I-labeled F19-STh(1-19) demonstrate that the putative STh binding protein migrates as an approximately 120-125 kDa species by SDS-PAGE, significantly smaller than the glycosylated GC-C molecule found in the T84 human colon cancer cell line. RT-PCR using total RNA isolated from breast and colon cancer cell lines indicates that GC-C transcripts are undetectable in human breast cancer cell lines and abundant in human colon cancer cell lines. In vitro competitive binding studies using STh analogs and the estrogen receptor positive (ER+) T-47D cell line demonstrated IC50 values between 2.6 and 8.5 nM. Similar studies on the estrogen receptor negative (ER-) cell line MDA-MB-231 showed IC50's between 5.6 and 9.9 nM. Saturation binding analysis revealed receptor expression to fall between 40,000 and 120,000 sites per cell in these cell lines, receptor abundances equal to or greater than the abundance of GC-C in colorectal cancer cell lines. STh binding to these cells, although of similar affinity to STh binding to GC-C, is distinguishable from it on the basis of its ligand specificity. The characteristics of STh analogs as radiopharmaceutical agents were tested in an in vivo model utilizing T-47D human breast cancer cell xenografts in SCID mice. Clearance of STh analogs was rapid, primarily via renal excretion into the urine, with >85% ID excreted into the urine at 1 h p.i. Tumor uptake at 1 h p.i. in T-47D tumor cell xenografts was 0.67+/-0.23% ID/g, and was significantly decreased (p<0.05) upon co-administration of 4 mg/kg unlabeled STh. These results suggest that STh may find application for the imaging and treatment of breast cancer.
Collapse
Affiliation(s)
- Michael F Giblin
- Department of Radiology, University of Missouri-Columbia, and Research Service, Harry S. Truman Memorial Veterans' Administration Hospital, Columbia, MO 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Giblin MF, Sieckman GL, Shelton TD, Hoffman TJ, Forte LR, Volkert WA. In vitro and in vivo evaluation of 177Lu- and 90Y-labeled E. coli heat-stable enterotoxin for specific targeting of uroguanylin receptors on human colon cancers. Nucl Med Biol 2006; 33:481-8. [PMID: 16720239 DOI: 10.1016/j.nucmedbio.2006.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/12/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
The human E. coli heat-stable enterotoxin (ST(h), amino acid sequence N1SSNYCCELCCNPACTGCY19) binds specifically to the guanylate cyclase C (GC-C) receptor, which is present in high density on the apical surface of normal intestinal epithelial cells as well as on the surface of human colon cancer cells. Analogs of ST(h) are currently being used as vectors targeting human colon cancers. Previous studies in our laboratory have focused on development of 111Indium-labeled ST(h) analogs for in vivo imaging applications. Here, we extend the scope of this work to include targeting of the therapeutic radionuclides 90Y and 177Lu. The peptide DOTA-F19-ST(h)(1-19) was synthesized using conventional Fmoc-based solid-phase techniques and refolded in dilute aqueous solution. The peptide was purified by RP-HPLC and characterized by MALDI-TOF MS and in vitro receptor binding assay. The DOTA-conjugate was metallated with nonradioactive Lu(III)Cl3 and Y(III)Cl3, and IC50 values of 2.6+/-0.1 and 4.2+/-0.9 nM were determined for the Lu- and Y-labeled peptides, respectively. 177Lu(III)Cl3 and 90Y(III)Cl3 labeling yielded tracer preparations that were inseparable by C18 RP-HPLC, indicating that putative differences between Lu-, Y- and In coordination spheres are not observed in the context of labeled ST(h) peptides. In vivo biodistribution studies of the 177Lu-labeled peptide in severe combined immunodeficient (SCID) mice bearing T-84 human cancer tumor xenografts showed rapid clearance from the bloodstream, with >90 %ID in the urine at 1 h pi. Localization of the tracer within tumor xenografts was 1.86+/-0.91 %ID/g at 1 h pi, a value higher than for all other tissues with the exception of kidney (2.74+/-0.24 %ID/g). At 24 h pi, >98 %ID was excreted into the urine, and 0.35+/-0.23 %ID/g remained in tumor, again higher than in all other tissues except kidney (0.91+/-0.46 %ID/g). Biodistribution results at 24 h pi for the 90Y-labeled peptide mirrored those for the 177Lu analog, in agreement with the identical behavior of the labeled analogs by C18 RP-HPLC. These results demonstrate the ability of 177Lu- and 90Y-labeled ST(h) molecules to specifically target GC-C receptors expressed on T-84 human colon cancer cells.
Collapse
Affiliation(s)
- Michael F Giblin
- Research Service, Harry S. Truman Memorial Veterans Administration Hospital, Columbia, MO 65201, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Arita K, Shimizu T, Hashimoto H, Hidaka Y, Yamada M, Sato M. Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. Proc Natl Acad Sci U S A 2006; 103:5291-6. [PMID: 16567635 PMCID: PMC1459348 DOI: 10.1073/pnas.0509639103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone arginine methylation is a posttranslational modification linked to the regulation of gene transcription. Unlike other posttranslational modifications, methylation has generally been regarded as stable, and enzymes that demethylate histone arginine residues have not been identified. However, it has recently been shown that human peptidylarginine deiminase 4 (PAD4), a Ca(2+)-dependent enzyme previously known to convert arginine residues to citrulline in histones, can also convert monomethylated arginine residues to citrulline both in vivo and in vitro. Citrullination of histone arginine residues by the enzyme antagonizes methylation by histone arginine methyltransferases and is thus a novel posttranslational modification that regulates the level of histone arginine methylation and gene activity. Here we present the crystal structures of a Ca(2+)-bound PAD4 mutant in complex with three histone N-terminal peptides, each consisting of 10 amino acid residues that include one target arginine residue for the enzyme (H3/Arg-8, H3/Arg-17, and H4/Arg-3). To each histone N-terminal peptide, the enzyme induces a beta-turn-like bent conformation composed of five successive residues at the molecular surface near the active site cleft. The remaining five residues are highly disordered. The enzyme recognizes each peptide through backbone atoms of the peptide with a possible consensus recognition motif. The sequence specificity of the peptide recognized by this enzyme is thought to be fairly broad. These observations provide structural insights into target protein recognition by histone modification enzymes and illustrate how PAD4 can target multiple arginine sites in the histone N-terminal tails.
Collapse
Affiliation(s)
- Kyouhei Arita
- *Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; and
| | - Toshiyuki Shimizu
- *Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; and
| | - Hiroshi Hashimoto
- *Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; and
| | - Yuji Hidaka
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Michiyuki Yamada
- *Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; and
| | - Mamoru Sato
- *Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Giblin MF, Gali H, Sieckman GL, Owen NK, Hoffman TJ, Forte LR, Volkert WA. In Vitro and in Vivo Comparison of Human Escherichia coli Heat-Stable Peptide Analogues Incorporating the 111In-DOTA Group and Distinct Linker Moieties. Bioconjug Chem 2004; 15:872-80. [PMID: 15264876 DOI: 10.1021/bc049974x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three human Escherichia coli heat-stable peptide (STh) analogues, each containing a DOTA chelating group, were synthesized by SPPS and oxidative refolding and compared in in vitro and in vivo systems. One analogue, DOTA-F19-STh(1-19), contains an N-terminal DOTA group attached via an amide bond linkage to an STh moiety which is essentially wild-type except for a Tyr to Phe alteration at position 19 of the molecule. A second analogue, DOTA-R1,4,F19-STh(1-19), differs from the first in that asparagine residues in positions 1 and 4 have been altered to arginine residues in order to examine the effect of positively charged groups in the linker domain. A third analogue, DOTA-11AUN-F19-STh(1-19), differs from the first in that it incorporates an 11-aminoundecanoic acid spacer group between the DOTA group and the first asparagine residue. In vitro competitive binding assays utilizing T-84 human colon cancer cells demonstrated that significant alterations to the N-terminal region of the STh molecule were well tolerated and did not significantly affect binding affinity of STh for the guanylyl cyclase C (GC-C) receptor. Internalization and efflux studies of the indium-labeled species demonstrated that inclusion of positive charge in the linker moiety inhibits internalization of the compound within tumor cells. The characteristics of the three analogues were compared in an in vivo model utilizing T-84 human colon cancer cell xenografts in SCID mice. Clearance of all analogues was rapid, primarily via renal excretion into the urine, with >89% ID excreted into the urine at 1 h pi for all analogues. The 111In-DOTA-R1,4,F19-STh(1-19) and 111In-DOTA-11AUN-F19-STh(1-19) analogues both had longer residence times in the blood than did the 111In-DOTA-F19-STh(1-19) analogue, probably accounting for increased %ID/g values for tumors and nontarget tissues at 1 h pi. At 4 h pi, significant differences between analogues were only seen with respect to metabolic routes of excretion, indicating that increased blood residence time did not result in increased tumor residualization. Reduction of hepatic uptake of these compounds, however, could have significance in the development of agents for the imaging of hepatic metastases. The ability to manipulate in vivo pharmacodynamics and tumor uptake of radiolabeled STh peptides through modification of linker moieties is under continuing investigation in order to produce optimal imaging and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Michael F Giblin
- Research Service, Harry S. Truman Memorial Veterans' Administration Hospital, Columbia, Missouri 65201, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Wolfe HR, Waldman SA. A comparative molecular field analysis (COMFA) of the structural determinants of heat-stable enterotoxins mediating activation of guanylyl cyclase C. J Med Chem 2002; 45:1731-4. [PMID: 11931628 DOI: 10.1021/jm010208a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat-stable enterotoxin binds to and activates guanylyl cyclase C (GC-C), regulating fluid and electrolyte secretion in intestinal epithelial cells. A COMFA model was developed to predict the primary interactions between GC-C agonists and their receptor. This model predicts that the amide backbone of Cys(5)-Cys(6)-Glu(7)-Leu(8), the beta carbon atoms of Cys(5)-Cys(6), and the side chains of Pro(12), Ala(13), and Ala(15) comprise the primary interactions of GC-C agonists with the receptor surface.
Collapse
Affiliation(s)
- Henry R Wolfe
- Targeted Diagnostics and Therapeutics, Inc., 1045 Andrew Drive, West Chester, Pennsylvania 19380, USA.
| | | |
Collapse
|
20
|
Pereira CM, Cabilio Guth BE, Sbrogio-Almeida ME, Castilho BA. Antibody response against Escherichia coli heat-stable enterotoxin expressed as fusions to flagellin. MICROBIOLOGY (READING, ENGLAND) 2001; 147:861-867. [PMID: 11283282 DOI: 10.1099/00221287-147-4-861] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heat-stable toxin (ST) produced by enterotoxigenic Escherichia coli strains causes diarrhoea by altering the fluid secretion in intestinal epithelial cells. Here, the effectiveness of a flagellin fusion protein of Salmonella containing a 19-amino-acid sequence derived from the ST sequence (FLA--ST) in generating antibodies capable of neutralizing the toxic activity of ST was evaluated. This fusion protein, and an alternative construction where two cysteine residues in the ST sequence were substituted by alanines (ST(mt)), were delivered to the immune system by three distinct strategies: (i) orally, using an attenuated Salmonella strain expressing FLA--ST; (ii) intraperitoneally, by injection of purified FLA--ST; (iii) orally, using attenuated Salmonella carrying a eukaryotic expression plasmid (pCDNA3) with the gene encoding FLA-ST. The results showed that the flagellin system can be used as a carrier to generate ST-neutralizing antibodies. However, it should be mentioned that humoral immune response against ST was only obtained when the mutated ST sequence was employed. FLA-ST was found to be non-immunogenic when delivered via the oral route with attenuated Salmonella strains. However, a flagellin antibody response was obtained by immunizing mice with Salmonella carrying pCDNA3/FLA-ST(mt). Oral immunization with Salmonella carrying the eukaryotic expression plasmid (pCDNA3/FLA--ST(mt)) seems to be a promising method to elicit an appropriate response against fusions to flagellin.
Collapse
Affiliation(s)
- Cátia M Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil1
| | - Beatriz E Cabilio Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil1
| | - Maria Elisabete Sbrogio-Almeida
- Divisão de Desenvolvimento Tecnológico e Produção, Instituto Butantan, Avenida Vital Brasil 1500, CEP 05503-900, São Paulo, Brazil2
| | - Beatriz A Castilho
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil1
| |
Collapse
|
21
|
Marx UC, Klodt J, Meyer M, Gerlach H, Rösch P, Forssmann WG, Adermann K. One peptide, two topologies: structure and interconversion dynamics of human uroguanylin isomers. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:229-40. [PMID: 9774236 DOI: 10.1111/j.1399-3011.1998.tb01480.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The peptide hormone uroguanylin stimulates chloride secretion via activation of intestinal guanylyl cyclase C (GC-C). It is characterized by two disulfide bonds in a 1-3/2-4 pattern that causes the existence of two topological stereoisomers of which only one induces intracellular cGMP elevation. To obtain an unambiguous structure-function relationship of the isomers, we determined the solution structure of the separated uroguanylin isoforms using NMR spectroscopy. Both isomers adopt well-defined structures that correspond to those of the isomers of the related peptide guanylin. Furthermore, the structure of the GC-C-activating uroguanylin isomer A closely resembles the structure of the agonistic Escherichia coli heat-stable enterotoxin. Compared with guanylin isomers, the conformational interconversion of uroguanylin isomers is retarded significantly. As judged from chromatography and NMR spectroscopy, both uroguanylin isoforms are stable at low temperatures, but are subject to a slow pH-dependent mutual isomerization at 37 degrees C with an equilibrium isomer ratio of approximately 1:1. The conformational exchange is most likely under the sterical control of the carboxy-terminal leucine. These results imply that GC-C is activated by ligands exhibiting the molecular framework corresponding to the structure of uroguanylin isomer A.
Collapse
Affiliation(s)
- U C Marx
- Niedersächsisches Institut für Peptid-Forschung, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Hidaka Y, Ohno M, Hemmasi B, Hill O, Forssmann WG, Shimonishi Y. In vitro disulfide-coupled folding of guanylyl cyclase-activating peptide and its precursor protein. Biochemistry 1998; 37:8498-507. [PMID: 9622502 DOI: 10.1021/bi9731246] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guanylyl cyclase-activating peptide II (GCAP-II), an endogenous ligand of particulate guanylyl cyclase C (GC-C), is processed from the precursor protein and circulates in human blood. GCAP-II consists of 24 amino acid residues and contains two disulfide bridges. The correct disulfide paring of GCAP-II is an absolute requirement for its biological activity. This study shows that the folding of the peptide from the reduced form yields a peptide with the native disulfide paring as a minor product and with non-native ones as major products, regardless of the presence or absence of reduced and oxidized glutathione. The results suggest that GCAP-II does not possess sufficient information to permit the adoption of the native conformation and to effectively form the correct disulfide pairing and, as a result, that GCAP-II is correctly folded by assistance of a factor(s) such as an intra- or intermolecular chaperone. We studied whether a peptide in the pro-leader sequence of the precursor protein (proGCAP-II) contains sufficient information to facilitate the folding of GCAP-II. For this purpose, we prepared proGCAP-II in Escherichia coli by a recombinant technique and examined the disulfide-coupled folding of proGCAP-II from the reduced form. proGCAP-II was quantitatively recovered with the correctly folded structure from the reduced form both in the presence and in the absence of reduced and oxidized glutathione. The protein contains only disulfide linkages at the same positions as the mature form of proGCAP-II, GCAP-II, and the biologically active isomer of GCAP-II in the molecule. These results provide evidence that the propeptide of proGCAP-II is a critical factor in the formation of the correct disulfide paring in the folding of the protein.
Collapse
Affiliation(s)
- Y Hidaka
- Institute for Protein Research, Osaka University, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Yamanaka H, Nomura T, Okamoto K. Involvement of glutamic acid residue at position 7 in the formation of the intramolecular disulfide bond of Escherichia coli heat-stable enterotoxin Ip in vivo. Microb Pathog 1998; 24:145-54. [PMID: 9514636 DOI: 10.1006/mpat.1997.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-stable enterotoxin Ip (STIp) is a small peptide toxin composed of 18 amino acid residues containing three intramolecular disulfide bonds. We found previously that the bonds are formed by the catalysis of DsbA (a oxidoreductase) in periplasm [1]. To interact with DsbA, the STIp in periplasm must have a structure suitable as substrate. However, the amino acid residues contributing to the construction of this structure have not been elucidated. We mutated the codon for the glutamic acid at position 7 of STIp by oligonucleotide site-specific mutagenesis in vivo and analysed the STIp produced from the mutant gene. The intramolecular disulfide bonds were not formed in mutant STIp (Glu-7-->Ala), but were formed in mutant STIp (Glu-7-->Asp). Furthermore, we found that replacing the asparagine residue at position 11 and the proline residue at position 12 did not affect the disulfide bond formation of STIp. The results indicate that a negative charge at position 7 in the sequence of STIp is necessary for STIp to interact with DsbA in periplasm.
Collapse
Affiliation(s)
- H Yamanaka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, 770-8514, Japan
| | | | | |
Collapse
|
24
|
Affiliation(s)
- G B Nair
- National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Box-177, Calcutta-700010, India
| | | |
Collapse
|
25
|
Klodt J, Kuhn M, Marx UC, Martin S, Rösch P, Forssmann WG, Adermann K. Synthesis, biological activity and isomerism of guanylate cyclase C-activating peptides guanylin and uroguanylin. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 50:222-30. [PMID: 9309586 DOI: 10.1111/j.1399-3011.1997.tb01188.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, the peptides guanylin and uroguanylin were identified as endogenous ligands of the membrane-bound guanylate cyclase C (GC-C) that is mainly expressed in the intestinal epithelium. In the present study, bioactive guanylin and uroguanylin have been prepared by solid-phase methodology using Fmoc/HBTU chemistry. The two disulfide bonds with relative 1/3 and 2/4 connectivity have been introduced selectively by air oxidation of thiol groups and iodine treatment of Cys(Acm) residues. Using this strategy, several sequential derivatives were prepared. Temperature-dependent HPLC characterization of the bioactive products revealed that guanylin-related peptides exist as a mixture of two compounds. The isoforms are interconverted within approximately 90 min, which prevents their separate characterization. This effect was not detected for uroguanylin-like peptides. Synthetic peptides were tested for their potential to activate GC-C in cultured human colon carcinoma cells (T84), known to express high levels of GC-C. The results obtained show that both disulfide bonds are necessary for GC-C activation. The presence of the amino-terminally neighboring residues of Cys104 for guanylin and Cys100 for uroguanylin has been found to be essential for GC-C stimulation. Unexpectedly, a hybrid peptide obtained from substitution of the central tripeptide AYA of guanylin by the tripeptide VNV of uroguanylin was not bioactive.
Collapse
Affiliation(s)
- J Klodt
- Niedersächsisches Institut für Peptid-Forschung (IPF), Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Garrett BM, Visweswariah SS. A conformational epitope in the N-terminus of the Escherichia coli heat-stable enterotoxins is involved in receptor-ligand interactions. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1317:149-54. [PMID: 8950201 DOI: 10.1016/s0925-4439(96)00047-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The heat-stable enterotoxins are a family of low molecular weight, cysteine rich peptide toxins which are one of the major causes of watery diarrhea in children and adults. These toxins bind to a cell surface receptor in intestinal cells and mediate their action through elevation of intracellular cyclic GMP. We have generated a monoclonal antibody to these peptide toxins which is able to neutralise the activity of the peptides in a human colonic cell line, the T84 cell line. The monoclonal antibody, ST:G8, appears to be directed to an epitope distinct from antibodies previously generated, and prior incubation of this antibody, or Fab generated from this antibody, with full length STh and STp peptides prevents cGMP accumulation in T84 cells. This inhibition is a direct result of the antibody preventing binding of the peptides to the receptor. ST:G8 Mab does not recognize a 13-mer biologically active analog of STp, comprising the core sequence of STp peptide, suggesting that it is directed to a region in the N-terminus of the peptides, which may modulate receptor interaction/activation. The antibody recognizes a conformational epitope in the ST peptides, since reduction and carboxyamidation of ST abolishes antibody cross-reactivity. Differential cross-reactivity of the Mab with STh and STp peptides which differ markedly only in their N-termini, suggests that this antibody recognizes a distinct conformation in the two peptides, which is essential for receptor interaction.
Collapse
Affiliation(s)
- B M Garrett
- Centre for Reproductive Biology and Molecular Endocrinology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
27
|
Arriaga YL, Harville BA, Dreyfus LA. Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun 1995; 63:4715-20. [PMID: 7591127 PMCID: PMC173676 DOI: 10.1128/iai.63.12.4715-4720.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heat-stable enterotoxins (STs) of Escherichia coli are peptides which alter normal gut physiology by stimulating the loss of water and electrolytes. The action of heat-stable toxin B (STb) is associated with an increase in levels of lumenal 5-hydroxytryptamine and prostaglandin E2, known mediators of intestinal secretion. In addition, the toxin is responsible for elevation of cytosolic calcium ion levels in cultured cells. STb is a 48-amino-acid basic peptide containing four cysteine residues and two disulfide bonds. Previous work indicates that disulfide bonds are required for intestinal secretory activity, and yet the relative contribution of the two bonds to toxin stability and action is presently unclear. Site-directed mutagenesis was used to alter the cysteine residues of STb to assess the role of the individual disulfide bonds in toxin activity. Our results indicate that loss of a single disulfide bond was sufficient to abolish the intestinal secretory and G protein-coupled calcium ion influx activities associated with STb toxicity. Loss of toxin action was not a function of increased sensitivity of STb mutants to proteolysis, since mutant toxins displayed proteolytic decay rates equivalent to that of wild-type STb. Circular dichroism spectroscopy of mutant STb toxins indicated that single-disulfide-bond elimination did not apparently affect the toxin secondary structure of one mutant, STbC33S,C71S. In contrast, the alpha-helical content of the other disulfide bond mutant, STbC44S,C59G, was significantly altered, as was that of reduced and alkylated authentic STb. Since both Cys-Cys mutant STbs were completely nontoxic, the absence of biological activity cannot be explained by dramatic secondary structural changes alone; keys to the conformational requirements for STb toxicity undoubtedly reside in the three-dimensional structure of this peptide.
Collapse
Affiliation(s)
- Y L Arriaga
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City 64110, USA
| | | | | |
Collapse
|
28
|
Sukumar M, Rizo J, Wall M, Dreyfus LA, Kupersztoch YM, Gierasch LM. The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. Protein Sci 1995; 4:1718-29. [PMID: 8528070 PMCID: PMC2143221 DOI: 10.1002/pro.5560040907] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The heat-stable enterotoxin b (STb) is secreted by enterotoxigenic Escherichia coli that cause secretory diarrhea in animals and humans. It is a 48-amino acid peptide containing two disulfide bridges, between residues 10 and 48 and 21 and 36, which are crucial for its biological activity. Here, we report the solution structure of STb determined by two- and three-dimensional NMR methods. Approximate interproton distances derived from NOE data were used to construct structures of STb using distance-geometry and simulated annealing procedures. The NMR-derived structure shows that STb is helical between residues 10 and 22 and residues 38 and 44. The helical structure in the region 10-22 is amphipathic and exposes several polar residues to the solvent, some of which have been shown to be important in determining the toxicity of STb. The hydrophobic residues on the opposite face of this helix make contacts with the hydrophobic residues of the C-terminal helix. The loop region between residues 21 and 36 has another cluster of hydrophobic residues and exposes Arg 29 and Asp 30, which have been shown to be important for intestinal secretory activity. CD studies show that reduction of disulfide bridges results in a dramatic loss of structure, which correlates with loss of function. Reduced STb adopts a predominantly random-coil conformation. Chromatographic measurements of concentrations of native, fully reduced, and single-disulfide species in equilibrium mixtures of STb in redox buffers indicate that the formation of the two disulfide bonds in STb is only moderately cooperative. Similar measurements in the presence of 8 M urea suggest that the native secondary structure significantly stabilizes the disulfide bonds.
Collapse
Affiliation(s)
- M Sukumar
- Department of Chemistry, University of Massachusetts, Amherst 01003, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yoshino KI, Xiaozhe H, Miyachi M, Hong YM, Takao T, Nakao H, Takeda T, Shimonishi Y. Amino acid sequence of a novel heat-stable enterotoxin produced by a yst gene-negative strain of Yersinia enterocolitica. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf00126279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Tsujishita H, Moriguchi I, Hirono S. Modeling of the three-dimensional structure of polypeptides in solution using potential-scaled/hot-solute molecular dynamics. Biophys J 1994; 66:1815-22. [PMID: 8075320 PMCID: PMC1275907 DOI: 10.1016/s0006-3495(94)80975-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We present here an efficient and accurate procedure for modeling of the three-dimensional structures of polypeptides in the explicit solvent water based on molecular dynamics calculations. Using the toxic domain analog of heat-stable enterotoxin as a model peptide, we examined the utilities of two molecular dynamics techniques with the system containing the explicit solvent. One is the potential-scaled molecular dynamics that had been designed for effective conformational analyses of biomolecules with the explicit solvent water by partially scaling down the potential energies involved in the solute molecules. The other is the variation of Berendsen's weak coupling method (referred to as "hot-solute" method), in which only the solute of the system is heated to a high temperature while the solvent is kept at a normal temperature. Each method successfully increased the rate of folding of the peptides, and the most effective was a combination of the two methods. Moreover, the final structure obtained via cooling process successfully reproduced the experimentally known structure from the extended amino acid sequence using only the distance restraints representing three disulfide bonds in the peptide. Additional distance restraints derived from some of the NOE cross peaks accelerated the folding of the peptide, but gave almost the same structure as in the case without these additional restraints. Because a similar calculation without the explicit solvent could not reproduce the known structure, it is suggested that the explicit solvent water could play an important role in the modeling. The methods presented here have the potential for accurate modeling even when less experimental information was available.
Collapse
Affiliation(s)
- H Tsujishita
- New Drug Research Laboratories, Kanebo Ltd., Osaka, Japan
| | | | | |
Collapse
|
31
|
Yamanaka H, Kameyama M, Baba T, Fujii Y, Okamoto K. Maturation pathway of Escherichia coli heat-stable enterotoxin I: requirement of DsbA for disulfide bond formation. J Bacteriol 1994; 176:2906-13. [PMID: 8188592 PMCID: PMC205446 DOI: 10.1128/jb.176.10.2906-2913.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Escherichia coli heat-stable enterotoxin STp is synthesized as a precursor consisting of pre, pro and mature regions. Mature STp is released into the culture supernatant and is composed of 18-amino-acid resides which contain three intramolecular disulfide bonds. The involvement of DsbA in the formation of the disulfide bonds of STp was examined in this study. A dsbA mutant was transformed with a plasmid harboring the STp gene, and the ST activity was significantly lower than that of the parent strain harboring the same plasmid. Furthermore, purified DsbA induced the conversion of synthetic STp peptide (inactive form) to the active form and increased the ST activity of the culture supernatant derived from the dsbA transformants. These results showed that DsbA directly catalyzes the formation of the disulfide bonds of STp. DsbA is located in periplasmic space, where STp is released as an intermediate form consisting of pro and mature regions. To examine the effect of the pro region on the action of DsbA, we replaced the cysteine residue at position 39 and tested the effect in vivo. The substitution caused a significant decrease of ST activity in the culture supernatant, the accumulation of inactive ST in periplasmic space, and an alteration in the cleavage site of the intermediate of STp. We conclude that Cys-39 is important for recognition by the processing enzymes required for the maturation of STp.
Collapse
Affiliation(s)
- H Yamanaka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | | | | | | | | |
Collapse
|
32
|
Carpick BW, Gariépy J. The Escherichia coli heat-stable enterotoxin is a long-lived superagonist of guanylin. Infect Immun 1993; 61:4710-5. [PMID: 8104900 PMCID: PMC281225 DOI: 10.1128/iai.61.11.4710-4715.1993] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanism by which bacterial heat-stable enterotoxins (ST I STA) cause diarrhea in humans and animals has been linked to the activation of an intestinal membrane-bound guanylate cyclase. Guanylin, a recently discovered rat intestinal peptide, is homologous in structure to ST I and can activate guanylate cyclase present on the human colonic carcinoma cell line T84. To directly test the mechanistic association of guanylate cyclase activation with diarrhea, we synthesized guanylin and a guanylin analog termed N9P10 guanylin and compared their biological activities with those of a synthetic ST I analog, termed ST Ib(6-18). We report that guanylin is able to inhibit the binding of a radiolabeled ST I analog to rat intestinal cells but causes diarrhea in infant mice only at doses at least 4 orders of magnitude higher than that of ST Ib(6-18). In contrast, N9P10 guanylin was enterotoxic in mice at much lower doses than guanylin but proved to be a weaker inhibitor of radiolabeled ST I than guanylin in the receptor binding assay. The pattern of guanylate cyclase activation observed for ST Ib(6-18) and the two guanylin analogs parallels the results observed in the receptor binding assay rather than those observed in the diarrheal assay. Treatment of guanylin with chymotrypsin or lumenal fluid derived from newborn mouse intestines resulted in a rapid loss of binding activity. Together, these results suggest that ST I enterotoxins may represent a class of long-lived superagonists of guanylin.
Collapse
Affiliation(s)
- B W Carpick
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Abstract
A new approach is described for analyzing disulfide linkage patterns in peptides containing tightly clustered cystines. Such peptides are very difficult to analyze with traditional strategies, which require that the peptide chain be split between close or adjacent Cys residues. The water-soluble tris-(2-carboxyethyl)-phosphine (TCEP) reduced disulfides at pH 3, and partially reduced peptides were purified by high performance liquid chromatography with minimal thiol-disulfide exchange. Alkylation of free thiols, followed by sequencer analysis, provided explicit assignment of disulfides that had been reduced. Thiol-disulfide exchange occurred during alkylation of some peptides, but correct deductions were still possible. Alkylation competed best with exchange when peptide solution was added with rapid mixing to 2.2 M iodoacetamide. Variants were developed in which up to three alkylating agents were used to label different pairs of thiols, allowing a full assignment in one sequencer analysis. Model peptides used included insulin (three bridges, intra- and interchain disulfides; -Cys.Cys- pair), endothelin and apamin (two disulfides; -Cys.x.Cys- pair), conotoxin GI and isomers (two disulfides; -Cys.Cys- pair), and bacterial enterotoxin (three bridges within 13 residues; two -Cys.Cys- pairs). With insulin, all intermediates in the reduction pathway were identified; with conotoxin GI, analysis was carried out successfully for all three disulfide isomers. In addition to these known structures, the method has been applied successfully to the analysis of several previously unsolved structures of similar complexity. Rates of reduction of disulfide bonds varied widely, but most peptides did not show a strongly preferred route for reduction.
Collapse
Affiliation(s)
- W R Gray
- Department of Biology, University of Utah, Salt Lake City 84112
| |
Collapse
|
34
|
Dohi S, Kasuga H, Nakao H, Ogawa A, Nair GB, Takeda T. Heterogeneity in the molecular species of heat-stable enterotoxin of Vibrio cholerae non-O1 expressed by Escherichia coli carrying the cloned toxin gene. FEMS Microbiol Lett 1993; 106:223-7. [PMID: 8454187 DOI: 10.1111/j.1574-6968.1993.tb05963.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biological activity of the heat-stable enterotoxin of Vibrio cholerae non-O1 (NAG-ST) was found to be predominantly associated with the periplasmic extract (about four-fold higher than the culture supernatant) of a recombinant E. coli (JM109) strain carrying the NAG-ST toxin gene. Four molecular species of NAG-ST, two each from the periplasmic extract and culture supernatant of JM109, were purified. Amino acid sequence analysis of the four NAG-ST peptides isolated by HPLC revealed that they all differed from that of the mature 17-amino acid residue NAG-ST released by V. cholerae non-O1. The M(r)-values of the peptides obtained from the periplasmic extract were 4331 and 2785, while those recovered from the culture supernatant were 3154 and 2785. It thus appears that V. cholerae NAG-ST is synthesized as larger molecules in the recombinant E. coli strain. The differences in sizes of the exported NAG-ST molecule could relate to differences in the enzyme cleavage system between E. coli and V. cholerae.
Collapse
Affiliation(s)
- S Dohi
- Department of Infectious Diseases Research, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Takeda T, Nair GB, Suzuki K, Zhe HX, Yokoo Y, De Mol P, Hemelhof W, Butzler JP, Takeda Y, Shimonishi Y. Epitope mapping and characterization of antigenic determinants of heat-stable enterotoxin (STh) of enterotoxigenic Escherichia coli by using monoclonal antibodies. Infect Immun 1993; 61:289-94. [PMID: 7678100 PMCID: PMC302717 DOI: 10.1128/iai.61.1.289-294.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A panel of monoclonal antibodies (MAbs) specific for the heat-stable enterotoxin (STh) of enterotoxigenic Escherichia coli was produced. All four MAbs (8G7, 53-4, 11C, and SH1) bound to native STh in an enzyme-linked immunosorbent assay to various degrees, with clone SH1 showing the best affinity. The MAbs were screened for neutralizing and guanylate cyclase-inhibiting activities by the suckling mouse assay and the cyclic GMP assay using T84 cells, respectively. The contact amino acid residues governing the reactivity of the four MAbs were precisely determined by using several chemically synthesized analogs of the various heat-stable enterotoxins (STa's). Three distinct antigenic sites of STh sufficiently removed from each other, one near the N terminus, another in the core functional region of the toxin, and the third in the C-terminal region, were recognized by the different MAbs. MAb SH1, which recognized Asn at position 4 and Tyr at position 5 from the N terminus was 100 times more potent in neutralizing the bioactivity of STh in the suckling mouse assay than was MAb 11C, which recognized Thr at position 16 and Tyr at position 19 from the N terminus of the STh molecule. The MAbs which recognized Leu at position 9 from the N terminus (MAb 53-4) and Tyr at position 19 from the N terminus (MAb 8G7) showed intermediate activities in the neutralization assay. The guanylate cyclase-inhibiting activities of SH1 and 11C essentially paralleled the results for the neutralization of bioactivity, while MAbs 53-4 and 8G7 exhibited reverse activity. These results indicate that MAbs that recognize the N-terminal residues which have been shown not to be essential for toxic activity have a potent protective capacity. None of the MAbs reacted with reduced and carboxy-methylated native STh. This suggests that all of the MAbs mediate their effect by reacting with conformation-dependent antigenic determinants.
Collapse
Affiliation(s)
- T Takeda
- National Institute of Cholera and Enteric Diseases, Calcutta, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hitotsubashi S, Fujii Y, Yamanaka H, Okamoto K. Some properties of purified Escherichia coli heat-stable enterotoxin II. Infect Immun 1992; 60:4468-74. [PMID: 1398961 PMCID: PMC258190 DOI: 10.1128/iai.60.11.4468-4474.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We examined the biological properties of purified Escherichia coli heat-stable enterotoxin II (STII) using mouse intestinal loop assays and compared these properties with those of heat-stable enterotoxin I (STI) and cholera toxin (CT). The action of STII over time differed from those of STI and CT. STII did not alter cyclic GMP or cyclic AMP levels in intestinal mucosal cells. Our results supported the idea that the mechanism of action of STII in inducing fluid secretion is different from the mechanisms of action of STI and CT. This hypothesis was further supported by the fact that an anti-STII neutralizing serum did not neutralize the activities of STI and CT. Subsequently, we examined the involvement of prostaglandins in the action of STII. The level of prostaglandin E2 in the fluid accumulated as a result of the action of STII increased, and the prostaglandin synthesis inhibitors aspirin and indomethacin significantly reduced the response to STII. These results implicate prostaglandin E2 in the mechanism of action of STII.
Collapse
Affiliation(s)
- S Hitotsubashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | | | | | | |
Collapse
|
37
|
Hirayama T, Wada A, Iwata N, Takasaki S, Shimonishi Y, Takeda Y. Glycoprotein receptors for a heat-stable enterotoxin (STh) produced by enterotoxigenic Escherichia coli. Infect Immun 1992; 60:4213-20. [PMID: 1328055 PMCID: PMC257455 DOI: 10.1128/iai.60.10.4213-4220.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glycoprotein receptors for heat-stable enterotoxin STh of enterotoxigenic Escherichia coli in the rat intestinal cell membrane were identified and characterized. Incubation of rat intestinal cell membranes with radioiodinated N-5-azidonitrobenzoyl-STh[5-19] (125I-ANB-STh[5-19]) followed by photolysis resulted in specific radiolabeling of two distinct proteins with M(r)s of 200,000 (designated STR-200A and STR-200B). STR-200A was found to be composed of two molecules of a protein with an M(r) of 70,000 (70-kDa protein), whereas STR-200B was composed of two different protein molecules with M(r)s of 53,000 (53-kDa protein) and 77,000 (77-kDa protein). These proteins showed no guanylate cyclase activity. The 70-kDa protein was labeled most with 125I-ANB-STh[5-19], suggesting that STR-200A is the main receptor protein in the rat intestinal cell membrane. The carbohydrate moieties of STR-200A and STR-200B were examined by enzymatic deglycosylation. The 70-kDa protein of STR-200A was found to contain N-linked high-mannose-type and/or hybrid-type oligosaccharides, and results suggested that it possesses at least three N glycosylation sites. The 53-kDa protein of STR-200B was found to have an N-linked complex-type oligosaccharide side chain. The deglycosylated 70-kDa protein retained activity for binding to STh, suggesting that the carbohydrate moieties of these receptor proteins are not important for binding with STh.
Collapse
Affiliation(s)
- T Hirayama
- Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Sato T, Ito H, Takeda Y, Shimonishi Y. Semi-preparative Purification and Crystallization of Synthetic Analogs of Heat-stable Enterotoxins of EnterotoxigenicEscherichia coli. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1992. [DOI: 10.1246/bcsj.65.938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
New diastereoselective synthesis of protected meso-lanthionine with discrimination of the chiral centers. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0957-4166(00)82315-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ishizuka N, Fukushima Y, Urayama O, Akera T. Na+,K(+)-ATPase inhibition by an endogenous peptide, SPAI-1, isolated from porcine duodenum. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1069:259-66. [PMID: 1657169 DOI: 10.1016/0005-2736(91)90133-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SPAI-1, a peptide isolated from porcine duodenum, has been shown to inhibit Na+,K(+)-ATPase in vitro (Araki et al. (1989) Biochem. Biophys. Res. Commun. 164, 496-502). The characteristics of ATPase inhibition by this novel peptide were examined. SPAI-1 inhibited Na+,K(+)-ATPase preparations isolated from various organs of dog or rat or from sheep kidney with similar potency. Three isoforms of rat Na+,K(+)-ATPase had similar sensitivity to inhibition by SPAI-1 although these isoforms had remarkable differences in their sensitivity to the inhibitory effect of ouabain. Ca(2+)-ATPase isolated from the sarcoplasmic reticulum of rabbit skeletal muscle was insensitive to inhibition by SPAI-1. Ouabain-insensitive Mg(2+)-ATPase activity was unaffected by low concentrations of SPAI-1, but was stimulated at high concentrations. SPAI-1 inhibited H+,K(+)-ATPase from hog stomach in concentrations similar to that required for Na+,K(+)-ATPase inhibition. These results indicate that SPAI-1 is a specific inhibitor for monovalent cation transporting ATPases.
Collapse
Affiliation(s)
- N Ishizuka
- Department of Pediatric Pharmacology, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Fujii Y, Hayashi M, Hitotsubashi S, Fuke Y, Yamanaka H, Okamoto K. Purification and characterization of Escherichia coli heat-stable enterotoxin II. J Bacteriol 1991; 173:5516-22. [PMID: 1885528 PMCID: PMC208265 DOI: 10.1128/jb.173.17.5516-5522.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli heat-stable enterotoxin II (STII) was purified to homogeneity by successive column chromatographies from the culture supernatant of a strain harboring the plasmid encoding the STII gene. The purified STII evoked a secretory response in the suckling mouse assay and ligated rat intestinal loop assay in the presence of protease inhibitor, but the response was not observed in the absence of the inhibitor. Analyses of the peptide by the Edman degradation method and fast atom bombardment mass spectrometry revealed that purified STII is composed of 48 amino acid residues and that its amino acid sequence was identical to the 48 carboxy-terminal amino acids of STII predicted from the DNA sequence (C. H. Lee, S. L. Mosely, H. W. Moon, S. C. Whipp, C. L. Gyles, and M. So, Infect. Immun. 42:264-268, 1983). STII has four cysteine residues which form two intramolecular disulfide bonds. Two disulfide bonds were determined to be formed between Cys-10-Cys-48 and Cys-21-Cys-36 by analyzing tryptic hydrolysates of STII.
Collapse
Affiliation(s)
- Y Fujii
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Hidaka Y, Ohmori K, Wada A, Ozaki H, Ito H, Hirayama T, Takeda Y, Shimonishi Y. Synthesis and biological properties of carba-analogs of heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 1991; 176:958-65. [PMID: 1645548 DOI: 10.1016/0006-291x(91)90375-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Analogs of a heat-stable enterotoxin (ST) that have a CH2-S linkage instead of an S-S linkage in the molecule were synthesized by conventional methods. The synthetic peptides showed toxicity, assayed as induction of fluid secretion in suckling mice, although their toxicities were hundredth that of native ST. This finding implies that ST is not recognized by its receptor protein through an exchange reaction between its disulfide linkages and thiol-groups of its receptor protein(s), but through hydrophobic or electrostatic interactions.
Collapse
Affiliation(s)
- Y Hidaka
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ozaki H, Kubota H, Sato T, Hidaka Y, Tamaoki H, Kobayashi Y, Kyogoku Y, Sugimura T, Tai A, Shimonishi Y. Conformation in Solution of the Fully Toxic Domain of Heat-Stable Enterotoxin (ST p) Produced by Enterotoxigenic Escherichia coli. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1991. [DOI: 10.1246/bcsj.64.1136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Ozaki H, Sato T, Kubota H, Hata Y, Katsube Y, Shimonishi Y. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67688-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Warne NW, Laskowski M. All fifteen possible arrangements of three disulfide bridges in proteins are known. Biochem Biophys Res Commun 1990; 172:1364-70. [PMID: 2244917 DOI: 10.1016/0006-291x(90)91600-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- N W Warne
- Department of Chemistry, Purdue University West Lafayette, IN 47907
| | | |
Collapse
|
46
|
Okamoto K, Takahara M. Synthesis of Escherichia coli heat-stable enterotoxin STp as a pre-pro form and role of the pro sequence in secretion. J Bacteriol 1990; 172:5260-5. [PMID: 2203746 PMCID: PMC213188 DOI: 10.1128/jb.172.9.5260-5265.1990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli heat-stable enterotoxin STp is presumed from its DNA sequence to be synthesized in vivo as a 72-amino-acid residue precursor that is cleaved to generate mature STp consisting of the 18 carboxy-terminal amino acid residues. There are two methionine residues in the inferred STp sequence in addition to the methionine residue at position 1. In order to confirm production of the STp 72-amino-acid residue precursor, we substituted the additional methionine residues by oligonucleotide-directed site-specific mutagenesis. Since these substitutions did not cause a significant change in STp production, it can be concluded that STp is normally synthesized as the 72-amino-acid residue precursor. The length of the STp precursor indicated the existence of a pro sequence between the signal peptide and the mature protein. In order to identify the pro sequence and determine its role in protein secretion, deletion and fusion proteins were made. A deletion mutant in which the gene fragment encoding amino acid residues 22 to 53 of STp was removed was made. STp activity was found in the culture supernatant of cells. Amino acid sequence analysis of the purified STp deletion mutant revealed that the pro sequence encompasses amino acid residues 20 to 54. A hybrid protein consisting of STp amino acids 1 to 53 fused in frame from residue 53 to nuclease A was not secreted into the culture supernatant. These results indicate that the pro sequence does not function to guide periplasmic protein into the extracellular milieu.
Collapse
Affiliation(s)
- K Okamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | | |
Collapse
|
47
|
Yamasaki S, Sato T, Hidaka Y, Ozaki H, Ito H, Hirayama T, Takeda Y, Sugimura T, Tai A, Shimonishi Y. Structure-Activity Relationship ofEscherichia coliHeat-Stable Enterotoxin: Role of Ala Residue at Position 14 in Toxin-Receptor Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1990. [DOI: 10.1246/bcsj.63.2063] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Hidaka Y, Sato K, Nakamura H, Kobayashi J, Ohizumi Y, Shimonishi Y. Disulfide pairings in geographutoxin I, a peptide neurotoxin from Conus geographus. FEBS Lett 1990; 264:29-32. [PMID: 2338142 DOI: 10.1016/0014-5793(90)80756-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The three intramolecular disulfide linkages of geographutoxin I, a peptide neurotoxin isolated from the venom of the marine snail Conus geographus, were examined by a novel method for determination of the positions of disulfide linkages in peptides [(1989) Bull. Chem. Soc. Jp. 62, 1986-1994]. The disulfide bridges were found to be between Cys3 and Cys15, Cys4 and Cys20, and Cys21, indicating that geographutoxin I has a rigid conformation consisting of three loops stabilized by these three disulfide linkages.
Collapse
Affiliation(s)
- Y Hidaka
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Thompson MR, Giannella RA. Different crosslinking agents identify distinctly different putative Escherichia coli heat-stable enterotoxin rat intestinal cell receptor proteins. JOURNAL OF RECEPTOR RESEARCH 1990; 10:97-117. [PMID: 2175812 DOI: 10.3109/10799899009064660] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The receptor for heat-stable enterotoxins (ST) produced by Escherichia coli and related organisms is located in the brush border region of intestinal villus cells. Heterobifunctional and homobifunctional crosslinkers were used to covalently couple 125I-ST to rat intestinal cell brush border membrane proteins. Experimental conditions during ligand binding and subsequent crosslinking significantly influence the efficiency of crosslinking, and the number of peptides specifically crosslinked to the 125I-ST. Multiple proteins efficiently coupled to 125I-ST with agents that can couple through the ST amino terminus. The crosslinker 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC), which can react with the carboxy terminus of the ST, covalently crosslinked 125I-ST to a single protein with an apparent Mr of 125,000-130,000, larger than the proteins identified using longer crosslinkers. Each of the proteins identified by crosslinking migrate with the same retention time on gel filtration after solubilization, with an approximate molecular size of 150,000-200,000.
Collapse
Affiliation(s)
- M R Thompson
- Department of Internal Medicine, University of Cincinnati, Ohio
| | | |
Collapse
|
50
|
Zhang RM, Snyder GH. Dependence of formation of small disulfide loops in two-cysteine peptides on the number and types of intervening amino acids. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51490-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|