1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 PMCID: PMC11759015 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S. Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Wu C, Yuan J, Tian Y, Wang Y, He X, Zhao K, Huang J, Jiang R. Tauopathy after long-term cervical lymphadenectomy. Alzheimers Dement 2025; 21:e70136. [PMID: 40189841 PMCID: PMC11973124 DOI: 10.1002/alz.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION This study examined the effects of long-term cervical lymphadenectomy (cLE) on cognitive and Alzheimer's disease (AD)-like tauopathy changes. METHODS Male C57BL/6 mice were used to assess cLE impacts on sleep, brain pathways, and pathologies. RNA sequencing and proteomics analyzed gene/protein changes, with results verified by western blotting and immunofluorescence. RESULTS CLE led to sleep and psychiatric disorders, linked to mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway activation. Activation of ERK may interfere with autophagy and is associated with phosphorylated tau accumulation. Peripheral blood analysis shows decreased brain waste in the peripheral blood post-cLE, implicating impaired lymphatic drainage and brain waste build-up. DISCUSSION These findings suggest a potential connection between cLE and AD-like tauopathy, potentially influencing surgical decisions. HIGHLIGHTS Cervical lymphadenectomy (cLE) is the cornerstone of head and neck cancers, affecting millions of people each year. We provide the first evidence of mildly impaired cognitive functioning with significant anxiety-depressive disorders in mice after long-term cLE. Long-term cLE not only directly impairs brain wastes (amyloid beta, phosphorylated tau [p-tau]) drainage, but also activates the Erk1/2 signaling pathway leading to attenuation of autophagy. We found for the first time that long-term cLE accelerated the deposition of p-tau in young mice. Patients after clinical cervical lymph node dissection showed reduced brain waste in peripheral blood consistent with mouse models. This study suggests the need for further evaluation of the neurologic effects of cervical lymph node dissection, a procedure that affects millions of people each year.
Collapse
Affiliation(s)
- Chenrui Wu
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jiangyuan Yuan
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Yu Tian
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Youlin Wang
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Xianghui He
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Ke Zhao
- Department of General SurgeryTianjin Medical University General HospitalTianjinChina
| | - Jinhao Huang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
| | - Rongcai Jiang
- Department of NeurosurgeryTianjin Neurological InstituteState Key Laboratory of Experimental HematologyLaboratory of Post‐Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of EducationTianjin Medical University General HospitalTianjinChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
McDermott KE, Barnes CA. Stability of locus coeruleus cell counts despite volume loss in cognitively impaired aged rhesus macaques. Neurobiol Aging 2025; 148:41-49. [PMID: 39908645 DOI: 10.1016/j.neurobiolaging.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The locus coeruleus (LC) is a brainstem nucleus that provides the primary source of noradrenaline (NA) in the nervous system and optimizes behavioral performance in mammals. In humans, the LC shows Alzheimer's disease (AD)-like pathology at its earliest stages, but little is known about LC integrity in normative, non-pathological aging. The present research addresses these gaps by investigating neuron numbers, densities of glia and vasculature, and volume of the LC itself in cognitively assessed adult and aged rhesus macaques. These primates do not spontaneously exhibit AD, and thus are an excellent model for normative human aging. Immunohistochemical methods were used to quantify noradrenaline-producing cells, total cells, and vascular and glial density in the LC, and use a recently developed alignment protocol to incorporate Nissl- and immunohistochemically stained tissue with previously collected magnetic resonance images to generate precise volumes of the LC and its' subcompartments. The medial LC subcompartment alone (not the lateral or compact regions) in aged animals showed significantly smaller volume than did the adult monkeys, however, there was no difference in NA-containing cell numbers, vascular or glial densities observed in any compartment between age groups. Additionally, volumes and cell counts were not significantly associated with performance on memory tasks, indicating that cell populations within the locus coeruleus nucleus itself are highly resistant to age-related change.
Collapse
Affiliation(s)
- Kelsey E McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
4
|
Vergani AA, Mazzeo S, Moschini V, Burali R, Lassi M, Amato LG, Carpaneto J, Salvestrini G, Fabbiani C, Giacomucci G, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Sorbi S, Bessi V, Grippo A, Mazzoni A. Event-related potential markers of subjective cognitive decline and mild cognitive impairment during a sustained visuo-attentive task. Neuroimage Clin 2025; 45:103760. [PMID: 40023055 PMCID: PMC11919406 DOI: 10.1016/j.nicl.2025.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease stages lack well-defined electrophysiological correlates, creating a critical gap in the identification of robust biomarkers for early diagnosis and intervention. In this study, we analysed event-related potentials (ERPs) recorded during a sustained visual attention task in a cohort of 178 individuals (119 SCD, 40 MCI, and 19 healthy subjects, HS) to investigate sensory and cognitive processing alterations associated with these conditions. SCD patients exhibited significant attenuation in both sensory (P1, N1, P2) and cognitive (P300, P600, P900) components compared to HS, with cognitive components showing performance-related gains. In contrast, MCI patients did not show a further decrease in any ERP component compared to SCD. Instead, they exhibited compensatory enhancements, reversing the downward trend observed in SCD. This compensation resulted in a non-monotonic pattern of ERP alterations across clinical conditions, suggesting that MCI patients engage neural mechanisms to counterbalance sensory and cognitive deficits. These findings support the use of electrophysiological markers in support of medical decision-making, enhancing personalized prognosis and guiding targeted interventions in cognitive decline.
Collapse
Affiliation(s)
- A A Vergani
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - S Mazzeo
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, Italy; IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - V Moschini
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - R Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - M Lassi
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - L G Amato
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - J Carpaneto
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - G Salvestrini
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - C Fabbiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - G Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - C Morinelli
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - F Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - B Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Padiglioni
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - S Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - V Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy.
| | - A Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - A Mazzoni
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| |
Collapse
|
5
|
Galgani A, Scotto M, Faraguna U, Giorgi FS. Fading Blue: Exploring the Causes of Locus Coeruleus Damage Across the Lifespan. Antioxidants (Basel) 2025; 14:255. [PMID: 40227216 PMCID: PMC11939699 DOI: 10.3390/antiox14030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Locus Coeruleus (LC) is a brain nucleus that is involved in a variety of key functions (ranging from attention modulation to sleep-wake cycle regulation, to memory encoding); its proper function is necessary both during brain development and for brain integrity maintenance, and both at the microscale and macroscale level. Due to their specific intrinsic and extrinsic features, LC cells are considered particularly susceptible to damage concerning a variety of insults. This explains LC involvement in degenerative diseases not only in adults (in the context of neurodegenerative disease, mainly), but also in children (in relation to early hypoxic damage and Down's Syndrome, among others). In this narrative review, we dissect the potential mechanisms through which LC is affected in different diseases, with a special emphasis on the high rate of activity it is subjected to and the oxidative stress associated with it. Further research aimed at deepening our understanding of these mechanisms is needed to enable the development of potential strategies in the future that could slow down LC degeneration in subjects predisposed to specific brain disorders.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
- I.R.C.C.S. Stella Maris, Calambrone, 56128 Pisa, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56125 Pisa, Italy
- I.R.C.C.S. Stella Maris, Calambrone, 56128 Pisa, Italy
| |
Collapse
|
6
|
Laguna A, Peñuelas N, Gonzalez-Sepulveda M, Nicolau A, Arthaud S, Guillard-Sirieix C, Lorente-Picón M, Compte J, Miquel-Rio L, Xicoy H, Liu J, Parent A, Cuadros T, Romero-Giménez J, Pujol G, Giménez-Llort L, Fort P, Bortolozzi A, Carballo-Carbajal I, Vila M. Modelling human neuronal catecholaminergic pigmentation in rodents recapitulates age-related neurodegenerative deficits. Nat Commun 2024; 15:8819. [PMID: 39394193 PMCID: PMC11470033 DOI: 10.1038/s41467-024-53168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
One key limitation in developing effective treatments for neurodegenerative diseases is the lack of models accurately mimicking the complex physiopathology of the human disease. Humans accumulate with age the pigment neuromelanin inside neurons that synthesize catecholamines. Neurons reaching the highest neuromelanin levels preferentially degenerate in Parkinson's, Alzheimer's and apparently healthy aging individuals. However, this brain pigment is not taken into consideration in current animal models because common laboratory species, such as rodents, do not produce neuromelanin. Here we generate a tissue-specific transgenic mouse, termed tgNM, that mimics the human age-dependent brain-wide distribution of neuromelanin within catecholaminergic regions, based on the constitutive catecholamine-specific expression of human melanin-producing enzyme tyrosinase. We show that, in parallel to progressive human-like neuromelanin pigmentation, these animals display age-related neuronal dysfunction and degeneration affecting numerous brain circuits and body tissues, linked to motor and non-motor deficits, reminiscent of early neurodegenerative stages. This model could help explore new research avenues in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Sébastien Arthaud
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lluís Miquel-Rio
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jiong Liu
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Gemma Pujol
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
- Department of Psychiatry and Forensic Medicine-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain
| | - Patrice Fort
- CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Centre (CRNL), SLEEP team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Claude Bernard, Lyon 1, Lyon, France
| | - Analia Bortolozzi
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC); Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
- Systems Neuropharmacology Research Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036, Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), 08193, Cerdanyola del Vallès, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
8
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147:337-351. [PMID: 37669320 PMCID: PMC10834262 DOI: 10.1093/brain/awad300] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
10
|
Bolshakov AP, Gerasimov K, Dobryakova YV. Alzheimer's Disease: An Attempt of Total Recall. J Alzheimers Dis 2024; 101:1043-1061. [PMID: 39269841 DOI: 10.3233/jad-240620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This review is an attempt to compile existing hypotheses on the mechanisms underlying the initiation and progression of Alzheimer's disease (AD), starting from sensory impairments observed in AD and concluding with molecular events that are typically associated with the disease. These events include spreading of amyloid plaques and tangles of hyperphosphorylated tau and formation of Hirano and Biondi bodies as well as the development of oxidative stress. We have detailed the degenerative changes that occur in several neuronal populations, including the cholinergic neurons in the nucleus basalis of Meynert, the histaminergic neurons in the tuberomammillary nucleus, the serotonergic neurons in the raphe nuclei, and the noradrenergic neurons in the locus coeruleus. Furthermore, we discuss the potential role of iron accumulation in the brains of subjects with AD in the disease progression which served as a basis for the idea that iron chelation in the brain may mitigate oxidative stress and decelerate disease development. We also draw attention to possible role of sympathetic system and, more specifically, noradrenergic neurons of the superior cervical ganglion in triggering of the disease. We also explore the alternative possibility of compensatory protective changes that may occur in these neurons to support cholinergic function in the forebrain of subjects with AD.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Gerasimov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Russian National Research Medical University, Moscow, Russia
| | - Yulia V Dobryakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Iannitelli AF, Weinshenker D. Riddles in the dark: Decoding the relationship between neuromelanin and neurodegeneration in locus coeruleus neurons. Neurosci Biobehav Rev 2023; 152:105287. [PMID: 37327835 PMCID: PMC10523397 DOI: 10.1016/j.neubiorev.2023.105287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The noradrenergic locus coeruleus (LC) is among the first regions of the brain affected by pathology in both Alzheimer's disease (AD) and Parkinson's disease (PD), but the reasons for this selective vulnerability are not completely understood. Several features of LC neurons have been proposed as contributing factors to this dysfunction and degeneration, and this review will focus on the presence of neuromelanin (NM). NM is a dark pigment unique to catecholaminergic cells that is formed of norepinephrine (NE) and dopamine (DA) metabolites, heavy metals, protein aggregates, and oxidated lipids. We cover what is currently known about NM and the limitations of historical approaches, then discuss the new human tyrosinase (hTyr) model of NM production in rodent catecholamine cells in vivo that offers unique opportunities for studying its neurobiology, neurotoxicity, and potential of NM-based therapeutics for treating neurodegenerative disease.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
14
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
15
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Locus Coeruleus Dysfunction and Trigeminal Mesencephalic Nucleus Degeneration: A Cue for Periodontal Infection Mediated Damage in Alzheimer's Disease? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1007. [PMID: 36673763 PMCID: PMC9858796 DOI: 10.3390/ijerph20021007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disease with deteriorating cognition as its main clinical sign. In addition to the clinical history, it is characterized by the presence of two neuropathological hallmark lesions; amyloid-beta (Aβ) and neurofibrillary tangles (NFTs), identified in the brain at post-mortem in specific anatomical areas. Recently, it was discovered that NFTs occur initially in the subcortical nuclei, such as the locus coeruleus in the pons, and are said to spread from there to the cerebral cortices and the hippocampus. This contrasts with the prior acceptance of their neuropathology in the enthorinal cortex and the hippocampus. The Braak staging system places the accumulation of phosphorylated tau (p-tau) binding to NFTs in the locus coeruleus and other subcortical nuclei to precede stages I-IV. The locus coeruleus plays diverse psychological and physiological roles within the human body including rapid eye movement sleep disorder, schizophrenia, anxiety, and depression, regulation of sleep-wake cycles, attention, memory, mood, and behavior, which correlates with AD clinical behavior. In addition, the locus coeruleus regulates cardiovascular, respiratory, and gastrointestinal activities, which have only recently been associated with AD by modern day research enabling the wider understanding of AD development via comorbidities and microbial dysbiosis. The focus of this narrative review is to explore the modes of neurodegeneration taking place in the locus coeruleus during the natural aging process of the trigeminal nerve connections from the teeth and microbial dysbiosis, and to postulate a pathogenetic mechanism due to periodontal damage and/or infection focused on Treponema denticola.
Collapse
Affiliation(s)
- Flavio Pisani
- Programme Lead, MSc/MClinDent in Clinical Periodontology, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- I.R.C.C.S. “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department-Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sim K. Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
16
|
Knopper RW, Hansen B. Locus coeruleus and the defensive activation theory of rapid eye movement sleep: A mechanistic perspective. Front Neurosci 2023; 17:1094812. [PMID: 36908790 PMCID: PMC9995765 DOI: 10.3389/fnins.2023.1094812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
The defensive activation theory (DAT) was recently proposed to explain the biological function of dreaming. Briefly, DAT states that dreams are primarily visual to prevent plastic take-over of an otherwise inactive visual cortex during sleep. Evidence to support the DAT revolve around the interplay between dream activity (REM%) and cortical plasticity found in evolutionary history, primate studies, and coinciding decline in human cortical plasticity and REM% with age. As the DAT may prove difficult to test experimentally, we investigate whether further support for the DAT can be found in the literature. Plasticity and REM sleep are closely linked to functions of the Locus Coeruleus (LC). We therefore review existing knowledge about the LC covering LC stability with age, and the role of the LC in the plasticity of the visual cortex. Recent studies show the LC to be more stable than previously believed and therefore, the LC likely supports the REM% and plasticity in the same manner throughout life. Based on this finding, we review the effect of aging on REM% and visual cortex plasticity. Here, we find that recent, weighty studies are not in complete agreement with the data originally provided as support for DAT. Results from these studies, however, are not in themselves irreconcilable with the DAT. Our findings therefore do not disprove the DAT. Importantly, we show that the LC is involved in all mechanisms central to the DAT. The LC may therefore provide an experimental window to further explore and test the DAT.
Collapse
Affiliation(s)
- Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
de Leo G, Gulino R, Coradazzi M, Leanza G. Acetylcholine and noradrenaline differentially regulate hippocampus-dependent spatial learning and memory. Brain Commun 2022; 5:fcac338. [PMID: 36632183 PMCID: PMC9825812 DOI: 10.1093/braincomms/fcac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Severe loss of cholinergic neurons in the basal forebrain nuclei and of noradrenergic neurons in the locus coeruleus are almost invariant histopathological hallmarks of Alzheimer's disease. However, the role of these transmitter systems in the spectrum of cognitive dysfunctions typical of the disease is still unclear, nor is it yet fully known whether do these systems interact and how. Selective ablation of either neuronal population, or both of them combined, were produced in developing animals to investigate their respective and/or concurrent contribution to spatial learning and memory, known to be severely affected in Alzheimer's disease. Single or double lesions were created in 4-8 days old rats by bilateral intraventricular infusion of two selective immunotoxins. At about 16 weeks of age, the animals underwent behavioural tests specifically designed to evaluate reference and working memory abilities, and their brains were later processed for quantitative morphological analyses. Animals with lesion to either system alone showed no significant reference memory deficits which, by contrast, were evident in the double-lesioned subjects. These animals could not adopt an efficient search strategy on a given testing day and were unable to transfer all relevant information to the next day, suggesting deficits in acquisition, storage and/or recall. Only animals with single noradrenergic or double lesions exhibited impaired working memory. Interestingly, ablation of cholinergic afferents to the hippocampus stimulated a robust ingrowth of thick fibres from the superior cervical ganglion which, however, did not appear to have contributed to the observed cognitive performance. Ascending cholinergic and noradrenergic afferents to the hippocampus and neocortex appear to be primarily involved in the regulation of different cognitive domains, but they may functionally interact, mainly at hippocampal level, for sustaining normal learning and memory. Moreover, these transmitter systems are likely to compensate for each other, but apparently not via ingrowing sympathetic fibres.
Collapse
Affiliation(s)
| | | | - Marino Coradazzi
- Neurogenesis and Repair Lab., B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Via Fleming 2, 34127 Trieste, Italy
| | - Giampiero Leanza
- Correspondence to: Giampiero Leanza Department of Drug and Health Sciences, University of Catania Via S. Sofia 64, 95125 Catania, Italy E-mail:
| |
Collapse
|
18
|
Liebe T, Dordevic M, Kaufmann J, Avetisyan A, Skalej M, Müller N. Investigation of the functional pathogenesis of mild cognitive impairment by localisation-based locus coeruleus resting-state fMRI. Hum Brain Mapp 2022; 43:5630-5642. [PMID: 36441846 PMCID: PMC9704796 DOI: 10.1002/hbm.26039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 01/15/2023] Open
Abstract
Dementia as one of the most prevalent diseases urges for a better understanding of the central mechanisms responsible for clinical symptoms, and necessitates improvement of actual diagnostic capabilities. The brainstem nucleus locus coeruleus (LC) is a promising target for early diagnosis because of its early structural alterations and its relationship to the functional disturbances in the patients. In this study, we applied our improved method of localisation-based LC resting-state fMRI to investigate the differences in central sensory signal processing when comparing functional connectivity (fc) of a patient group with mild cognitive impairment (MCI, n = 28) and an age-matched healthy control group (n = 29). MCI and control participants could be differentiated in their Mini-Mental-State-Examination (MMSE) scores (p < .001) and LC intensity ratio (p = .010). In the fMRI, LC fc to anterior cingulate cortex (FDR p < .001) and left anterior insula (FDR p = .012) was elevated, and LC fc to right temporoparietal junction (rTPJ, FDR p = .012) and posterior cingulate cortex (PCC, FDR p = .021) was decreased in the patient group. Importantly, LC to rTPJ connectivity was also positively correlated to MMSE scores in MCI patients (p = .017). Furthermore, we found a hyperactivation of the left-insula salience network in the MCI patients. Our results and our proposed disease model shed new light on the functional pathogenesis of MCI by directing to attentional network disturbances, which could aid new therapeutic strategies and provide a marker for diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Thomas Liebe
- Department of PsychiatryMedical University of ViennaViennaAustria
- Department of RadiologyUniversity Hospital JenaJenaGermany
- Department of PsychiatryUniversity Hospital JenaJenaGermany
- Clinical Affective Neuroimaging LaboratoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Milos Dordevic
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| | - Jörn Kaufmann
- Department of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Araks Avetisyan
- Neuroprotection LabGerman Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin Skalej
- Department of Neuroradiology, Clinic and Policlinic of RadiologyUniversity Hospital HalleHalleGermany
| | - Notger Müller
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| |
Collapse
|
19
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
20
|
David MCB, Del Giovane M, Liu KY, Gostick B, Rowe JB, Oboh I, Howard R, Malhotra PA. Cognitive and neuropsychiatric effects of noradrenergic treatment in Alzheimer's disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329136. [PMID: 35790417 PMCID: PMC9484390 DOI: 10.1136/jnnp-2022-329136] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dysfunction of the locus coeruleus-noradrenergic system occurs early in Alzheimer's disease, contributing to cognitive and neuropsychiatric symptoms in some patients. This system offers a potential therapeutic target, although noradrenergic treatments are not currently used in clinical practice. OBJECTIVE To assess the efficacy of drugs with principally noradrenergic action in improving cognitive and neuropsychiatric symptoms in Alzheimer's disease. METHODS The MEDLINE, Embase and ClinicalTrials.gov databases were searched from 1980 to December 2021. We generated pooled estimates using random effects meta-analyses. RESULTS We included 19 randomised controlled trials (1811 patients), of which six were judged as 'good' quality, seven as 'fair' and six 'poor'. Meta-analysis of 10 of these studies (1300 patients) showed a significant small positive effect of noradrenergic drugs on global cognition, measured using the Mini-Mental State Examination or Alzheimer's Disease Assessment Scale-Cognitive Subscale (standardised mean difference (SMD): 0.14, 95% CI: 0.03 to 0.25, p=0.01; I2=0%). No significant effect was seen on measures of attention (SMD: 0.01, 95% CI: -0.17 to 0.19, p=0.91; I2=0). The apathy meta-analysis included eight trials (425 patients) and detected a large positive effect of noradrenergic drugs (SMD: 0.45, 95% CI: 0.16 to 0.73, p=0.002; I2=58%). This positive effect was still present following removal of outliers to account for heterogeneity across studies. DISCUSSION Repurposing of established noradrenergic drugs is most likely to offer effective treatment in Alzheimer's disease for general cognition and apathy. However, several factors should be considered before designing future clinical trials. These include targeting of appropriate patient subgroups and understanding the dose effects of individual drugs and their interactions with other treatments to minimise risks and maximise therapeutic effects. PROSPERO REGISTERATION NUMBER CRD42021277500.
Collapse
Affiliation(s)
- Michael C B David
- Imperial College London and the University of Surrey, UK Dementia Research Institute Care Research and Technology Centre, London, UK
- Brain Sciences, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Clinical Neurosciences, Charing Cross Hospital, London, UK
| | - Martina Del Giovane
- Imperial College London and the University of Surrey, UK Dementia Research Institute Care Research and Technology Centre, London, UK
- Brain Sciences, Imperial College London, London, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | | | - James Benedict Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Imafidon Oboh
- South West London and St George's Mental Health NHS Trust, London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Paresh A Malhotra
- Imperial College London and the University of Surrey, UK Dementia Research Institute Care Research and Technology Centre, London, UK
- Brain Sciences, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Clinical Neurosciences, Charing Cross Hospital, London, UK
| |
Collapse
|
21
|
Behl T, Kaur I, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. The Locus Coeruleus - Noradrenaline system: Looking into Alzheimer's therapeutics with rose coloured glasses. Biomed Pharmacother 2022; 151:113179. [PMID: 35676784 DOI: 10.1016/j.biopha.2022.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Owing to the challenging ethos of global healthcare system, the Alzheimer's Disease (AD) researchers are consistently striving for a suitable target for disease amelioration. Besides the neurotransmitter release by neurons, the cells release tau proteins and amyloid peptides, within the extracellular vacancies, aggregating into tangles and plaques (AD pathological hallmarks). During neuro-stimulation, release of neuromodulator noradrenaline (NA), contained in the locus coeruleus (LC), exerts a significant impact on the neurons and microglia. The production of amyloid-β (Aβ) and hyperphosphorylation of tau proteins are affected by the α2A and β adrenoreceptors, parallel to influencing their clearance. The manuscript entails a detailed understanding of the LC-NA system, as a possible avenue in AD management. The authors provide a comprehensive data on AD pathology and its link with LC neuroanatomical projections, followed by the pathogenic implications of LC-NA system in AD. The data also integrates numerous studies from online databases, evidently supporting the loss of the system integrity in AD patients, and the impact of the sympathetic system on specific AD hallmarks. Thus, the objective of this review is to compile a wide compendium of studies, for the convenience of the neuro-researchers, aiding in the establishment of a suitable therapeutic regimen for AD treatment.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, India; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
22
|
Gutiérrez IL, Dello Russo C, Novellino F, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Noradrenaline in Alzheimer's Disease: A New Potential Therapeutic Target. Int J Mol Sci 2022; 23:ijms23116143. [PMID: 35682822 PMCID: PMC9181823 DOI: 10.3390/ijms23116143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer’s disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer’s disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer’s disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer’s disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer’s disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer’s disease.
Collapse
Affiliation(s)
- Irene L. Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3GL, UK
| | - Fabiana Novellino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council, 88100 Catanzaro, Italy
| | - Javier R. Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
| | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (IUINQ-UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040 Madrid, Spain; (I.L.G.); (F.N.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Correspondence: ; Tel.: +34-91-394-1463
| |
Collapse
|
23
|
Solders SK, Galinsky VL, Clark AL, Sorg SF, Weigand AJ, Bondi MW, Frank LR. Diffusion MRI tractography of the locus coeruleus-transentorhinal cortex connections using GO-ESP. Magn Reson Med 2022; 87:1816-1831. [PMID: 34792198 PMCID: PMC8810611 DOI: 10.1002/mrm.29088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE The locus coeruleus (LC) is implicated as an early site of protein pathogenesis in Alzheimer's disease (AD). Tau pathology is hypothesized to propagate in a prion-like manner along the LC-transentorhinal cortex (TEC) white matter (WM) pathway, leading to atrophy of the entorhinal cortex and adjacent cortical regions in a progressive and stereotypical manner. However, WM damage along the LC-TEC pathway may be an earlier observable change that can improve detection of preclinical AD. THEORY AND METHODS Diffusion-weighted MRI (dMRI) allows reconstruction of WM pathways in vivo, offering promising potential to examine this pathway and enhance our understanding of neural mechanisms underlying the preclinical phase of AD. However, standard dMRI analysis tools have generally been unable to reliably reconstruct this pathway. We apply a novel method, geometric-optics based entropy spectrum pathways (GO-ESP) and produce a new measure of connectivity: the equilibrium probability (EP). RESULTS We demonstrated reliable reconstruction of LC-TEC pathways in 50 cognitively normal older adults and showed a negative association between LC-TEC EP and cerebrospinal fluid tau. Using Human Connectome Project data, we demonstrated replicability of the method across acquisition schemes and scanners. Finally, we compared our findings with the only other existing LC-TEC tractography template, and replicated their pathway as well as investigated the source of these discrepant findings. CONCLUSIONS AD-related tau pathology may be detectable within GO-ESP-identified LC-TEC pathways. Furthermore, there may be multiple possible routes from LC to TEC, raising important questions for future research on the LC-TEC connectome and its role in AD pathogenesis.
Collapse
Affiliation(s)
- Seraphina K. Solders
- Neuroscience Graduate ProgramUniversity of California at San DiegoLa JollaCaliforniaUSA
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | - Vitaly L. Galinsky
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | | | - Scott F. Sorg
- Department of PsychiatrySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Research and Psychology ServicesVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Alexandra J. Weigand
- San Diego State University/University of California at San Diego Joint Doctoral Program in Clinical PsychologySan DiegoCaliforniaUSA
| | - Mark W. Bondi
- Department of PsychiatrySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Research and Psychology ServicesVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Lawrence R. Frank
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
24
|
David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:582-596. [PMID: 35293158 PMCID: PMC8994981 DOI: 10.1002/acn3.51539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
There is clear, early noradrenergic dysfunction in Alzheimer's disease. This is likely secondary to pathological tau deposition in the locus coeruleus, the pontine nucleus that produces and releases noradrenaline, prior to involvement of cortical brain regions. Disruption of noradrenergic pathways affects cognition, especially attention, impacting memory and broader functioning. Additionally, it leads to autonomic and neuropsychiatric symptoms. Despite the strong evidence of noradrenergic involvement in Alzheimer's, there are no clear trial data supporting the clinical use of any noradrenergic treatments. Several approaches have been tried, including proof-of-principle studies and (mostly small scale) randomised controlled trials. Treatments have included pharmacotherapies as well as stimulation. The lack of clear positive findings is likely secondary to limitations in gauging locus coeruleus integrity and dysfunction at an individual level. However, the recent development of several novel biomarkers holds potential and should allow quantification of dysfunction. This may then inform inclusion criteria and stratification for future trials. Imaging approaches have improved greatly following the development of neuromelanin-sensitive sequences, enabling the use of structural MRI to estimate locus coeruleus integrity. Additionally, functional MRI scanning has the potential to quantify network dysfunction. As well as neuroimaging, EEG, fluid biomarkers and pupillometry techniques may prove useful in assessing noradrenergic tone. Here, we review the development of these biomarkers and how they might augment clinical studies, particularly randomised trials, through identification of patients most likely to benefit from treatment. We outline the biomarkers with most potential, and how they may transform symptomatic therapy for people living with Alzheimer's disease.
Collapse
Affiliation(s)
- Michael David
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| | - Paresh A. Malhotra
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| |
Collapse
|
25
|
Liebe T, Kaufmann J, Hämmerer D, Betts M, Walter M. In vivo tractography of human locus coeruleus-relation to 7T resting state fMRI, psychological measures and single subject validity. Mol Psychiatry 2022; 27:4984-4993. [PMID: 36117208 PMCID: PMC9763100 DOI: 10.1038/s41380-022-01761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
The locus coeruleus (LC) in the brainstem as the main regulator of brain noradrenaline gains increasing attention because of its involvement in neurologic and psychiatric diseases and its relevance in general to brain function. In this study, we created a structural connectome of the LC nerve fibers based on in vivo MRI tractography to gain an understanding into LC connectivity and its impact on LC-related psychological measures. We combined our structural results with ultra-high field resting-state functional MRI to learn about the relationship between in vivo LC structural and functional connections. Importantly, we reveal that LC brain fibers are strongly associated with psychological measures of anxiety and alertness indicating that LC-noradrenergic connectivity may have an important role on brain function. Lastly, since we analyzed all our data in subject-specific space, we point out the potential of structural LC connectivity to reveal individual characteristics of LC-noradrenergic function on the single-subject level.
Collapse
Affiliation(s)
- Thomas Liebe
- grid.9613.d0000 0001 1939 2794Department of Psychiatry and Psychotherapy, University of Jena, D-07743 Jena, Germany ,grid.9613.d0000 0001 1939 2794Department of Radiology, University of Jena, D-07743 Jena, Germany ,Clinical Affective Neuroimaging Laboratory (CANLAB), D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | - Jörn Kaufmann
- grid.5807.a0000 0001 1018 4307Department of Neurology, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Dorothea Hämmerer
- grid.5771.40000 0001 2151 8122Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria ,grid.83440.3b0000000121901201Institute of Cognitive Neuroscience, University College London, London, UK-WC1E 6BT UK ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265CBBS Center for Behavioral Brain Sciences, D-39120 Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany
| | - Matthew Betts
- grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265CBBS Center for Behavioral Brain Sciences, D-39120 Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Jena, D-07743, Jena, Germany. .,Clinical Affective Neuroimaging Laboratory (CANLAB), D-39120, Magdeburg, Germany. .,Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany. .,Department of Psychiatry and Psychotherapy, University Tuebingen, D-72076, Tuebingen, Germany. .,Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), D-07743 Jena, Germany. .,German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, D-07743 Jena, Germany.
| |
Collapse
|
26
|
Sakakibara Y, Hirota Y, Ibaraki K, Takei K, Chikamatsu S, Tsubokawa Y, Saito T, Saido TC, Sekiya M, Iijima KM. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis 2021; 82:1513-1530. [PMID: 34180416 PMCID: PMC8461671 DOI: 10.3233/jad-210385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The locus coeruleus (LC), a brainstem nucleus comprising noradrenergic neurons, is one of the earliest regions affected by Alzheimer's disease (AD). Amyloid-β (Aβ) pathology in the cortex in AD is thought to exacerbate the age-related loss of LC neurons, which may lead to cortical tau pathology. However, mechanisms underlying LC neurodegeneration remain elusive. OBJECTIVE Here, we aimed to examine how noradrenergic neurons are affected by cortical Aβ pathology in AppNL-G-F/NL-G-F knock-in mice. METHODS The density of noradrenergic axons in LC-innervated regions and the LC neuron number were analyzed by an immunohistochemical method. To explore the potential mechanisms for LC degeneration, we also examined the occurrence of tau pathology in LC neurons, the association of reactive gliosis with LC neurons, and impaired trophic support in the brains of AppNL-G-F/NL-G-F mice. RESULTS We observed a significant reduction in the density of noradrenergic axons from the LC in aged AppNL-G-F/NL-G-F mice without neuron loss or tau pathology, which was not limited to areas near Aβ plaques. However, none of the factors known to be related to the maintenance of LC neurons (i.e., somatostatin/somatostatin receptor 2, brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) were significantly reduced in AppNL-G-F/NL-G-F mice. CONCLUSION This study demonstrates that cortical Aβ pathology induces noradrenergic neurodegeneration, and further elucidation of the underlying mechanisms will reveal effective therapeutics to halt AD progression.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kyoko Ibaraki
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
27
|
Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021; 60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Disturbances of the sleep/wake cycle in Alzheimer's disease (AD) are common, frequently precede cognitive decline, and tend to worsen with disease progression. Sleep is critical to the maintenance of homeostatic and circadian function, and chronic sleep disturbances have significant cognitive and physical health consequences that likely exacerbate disease severity. Sleep-wake cycles are regulated by neuromodulatory centers located in the brainstem, the hypothalamus, and the basal forebrain, many of which are vulnerable to the accumulation of abnormal protein deposits associated with neurodegenerative conditions. In AD, while sleep disturbances are commonly attributed to the accumulation of amyloid beta, patients often first experience sleep issues prior to the appearance of amyloid beta plaques, on a timeline that more closely corresponds to the first appearance of abnormal tau neurofibrillary tangles in sleep/wake regulating areas of the brainstem. Sleep disturbances also occur in pure tauopathies, providing further support that tau is a major contributor. Here, we provide an overview of the neuroanatomy of sleep/wake centers discovered in animal models, and review the evidence that tau-driven neuropathology is a primary driver of sleep disturbance in AD.
Collapse
|
28
|
Owen JE, Zhu Y, Fenik P, Zhan G, Bell P, Liu C, Veasey S. Late-in-life neurodegeneration after chronic sleep loss in young adult mice. Sleep 2021; 44:zsab057. [PMID: 33768250 PMCID: PMC8361366 DOI: 10.1093/sleep/zsab057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic short sleep (CSS) is prevalent in modern societies and has been proposed as a risk factor for Alzheimer's disease (AD). In support, short-term sleep loss acutely increases levels of amyloid β (Aβ) and tau in wild type (WT) mice and humans, and sleep disturbances predict cognitive decline in older adults. We have shown that CSS induces injury to and loss of locus coeruleus neurons (LCn), neurons with heightened susceptibility in AD. Yet whether CSS during young adulthood drives lasting Aβ and/or tau changes and/or neural injury later in life in the absence of genetic risk for AD has not been established. Here, we examined the impact of CSS exposure in young adult WT mice on late-in-life Aβ and tau changes and neural responses in two AD-vulnerable neuronal groups, LCn and hippocampal CA1 neurons. Twelve months following CSS exposure, CSS-exposed mice evidenced reductions in CA1 neuron counts and volume, spatial memory deficits, CA1 glial activation, and loss of LCn. Aβ 42 and hyperphosphorylated tau were increased in the CA1; however, amyloid plaques and tau tangles were not observed. Collectively the findings demonstrate that CSS exposure in the young adult mouse imparts late-in-life neurodegeneration and persistent derangements in amyloid and tau homeostasis. These findings occur in the absence of a genetic predisposition to neurodegeneration and demonstrate for the first time that CSS can induce lasting, significant neural injury consistent with some, but not all, features of late-onset AD.
Collapse
Affiliation(s)
- Jessica E Owen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Yan Zhu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Polina Fenik
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Guanxia Zhan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Patrick Bell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Cathy Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Sigrid Veasey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Luckey AM, Robertson IH, Lawlor B, Mohan A, Vanneste S. Sex Differences in Locus Coeruleus: A Heuristic Approach That May Explain the Increased Risk of Alzheimer's Disease in Females. J Alzheimers Dis 2021; 83:505-522. [PMID: 34334399 DOI: 10.3233/jad-210404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article aims to reevaluate our approach to female vulnerability to Alzheimer's disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOEɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Ian H Robertson
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Anusha Mohan
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland.,Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
32
|
Elevated norepinephrine metabolism is linked to cortical thickness in the context of Alzheimer's disease pathology. Neurobiol Aging 2021; 102:17-22. [PMID: 33667876 DOI: 10.1016/j.neurobiolaging.2021.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Advanced Alzheimer's disease (AD) is characterized by higher noradrenaline metabolite levels that may be associated with AD pathology. The locus coeruleus (LC) is the main site for cerebral noradrenaline synthesis and LC volume loss occurs as early as Braak stage 1. This study investigates the association between noradrenergic turnover and brain morphology, and the modifying effect of AD pathology. The study sample included 77 memory clinic patients (37 cognitively unimpaired and 40 cognitively impaired (mild cognitive impairment or AD dementia)). Cortical thickness and volumetric analyses were performed using FreeSurfer. Cerebrospinal fluid was analyzed for noradrenergic metabolite 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), Aβ42 and phosphorylated tau. Higher MHPG was associated with lower cortical thickness and hippocampal volume at lower, but subthreshold, levels of Aβ42 and at higher p-tau levels. These associations remained significant after adding APOE-E4 or cognitive status as covariates. Our results suggest that greater MHPG together with worse AD pathology contributes to neurodegeneration, possibly before significant amyloidosis. The noradrenergic system may play an important role in early detection of AD-related processes.
Collapse
|
33
|
Matchett BJ, Grinberg LT, Theofilas P, Murray ME. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2021; 141:631-650. [PMID: 33427939 PMCID: PMC8043919 DOI: 10.1007/s00401-020-02248-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau and the extracellular deposition of amyloid-β plaques, which affect certain brain regions in a progressive manner. The locus coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the LC-NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. We summarize how preservation of the LC-NE system could be used in the treatment of AD and other neurodegenerative diseases affected by LC degeneration.
Collapse
Affiliation(s)
- Billie J. Matchett
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
| | - Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| | - Melissa E. Murray
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
34
|
Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The Locus Coeruleus in Aging and Alzheimer's Disease: A Postmortem and Brain Imaging Review. J Alzheimers Dis 2021; 83:5-22. [PMID: 34219717 PMCID: PMC8461706 DOI: 10.3233/jad-210191] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
The locus coeruleus (LC), a tiny nucleus in the brainstem and the principal site of noradrenaline synthesis, has a major role in regulating autonomic function, arousal, attention, and neuroinflammation. LC dysfunction has been linked to a range of disorders; however particular interest is given to the role it plays in Alzheimer's disease (AD). The LC undergoes significant neuronal loss in AD, thought to occur early in the disease process. While neuronal loss in the LC has also been suggested to occur in aging, this relationship is less clear as the findings have been contradictory. LC density has been suggested to be indicative of cognitive reserve and the evidence for these claims will be discussed. Recent imaging techniques allowing visualization of the LC in vivo using neuromelanin-sensitive MRI are developing our understanding of the role of LC in aging and AD. Tau pathology within the LC is evident at an early age in most individuals; however, the relationship between tau accumulation and neuronal loss and why some individuals then develop AD is not understood. Neuromelanin pigment accumulates within LC cells with age and is proposed to be toxic and inflammatory when released into the extracellular environment. This review will explore our current knowledge of the LC changes in both aging and AD from postmortem, imaging, and experimental studies. We will discuss the reasons behind the susceptibility of the LC to neuronal loss, with a focus on the role of extracellular neuromelanin and neuroinflammation caused by the dysfunction of the LC-noradrenaline pathway.
Collapse
Affiliation(s)
- Rebecca Beardmore
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Ruihua Hou
- Clinical and Experimental Sciences, Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clive Holmes
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
35
|
Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. Int J Mol Sci 2020; 21:ijms21228630. [PMID: 33207731 PMCID: PMC7697920 DOI: 10.3390/ijms21228630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.
Collapse
|
36
|
Lamerand S, Shahidehpour R, Ayala I, Gefen T, Mesulam MM, Bigio E, Geula C. Calbindin-D 28K, parvalbumin, and calretinin in young and aged human locus coeruleus. Neurobiol Aging 2020; 94:243-249. [PMID: 32663717 PMCID: PMC7483964 DOI: 10.1016/j.neurobiolaging.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
Certain neuronal populations, including basal forebrain cholinergic neurons (BFCN) and noradrenergic neurons of the locus coeruleus (LC), are selectively vulnerable to pathology and loss early in the course of aging and Alzheimer's disease (AD). Human BFCN show substantial loss of the calcium-binding protein (CBP), calbindin-D28K (CB), during normal aging, which is associated with formation of neurofibrillary tangles and BFCN loss in AD. Here we determined if, similar to the BFCN, LC neurons contain CB or the other 2 ubiquitous CBPs parvalbumin and calretinin, and whether these proteins display an age-related loss from LC neurons. Immunostaining for CBP and tyrosine hydroxylase, a marker of catecholaminergic neurons, was used in sections from the LC of young and aged human brains. Parvalbumin and calretinin immunoreactivities were completely absent from human LC neurons. A subpopulation of LC neurons (~10%) contained CB immunoreactivity. Quantitative analysis revealed no age-related loss of CB from LC neurons. Thus, unlike the BFCN, age-related loss of CB does not figure prominently in the selective vulnerability of LC neurons to degeneration in AD.
Collapse
Affiliation(s)
- Sydney Lamerand
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Shahidehpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eileen Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
37
|
Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. J Neurosci Res 2020; 98:2406-2434. [PMID: 32875628 DOI: 10.1002/jnr.24718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood-brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Neurology Unit, Pisa University Hospital, Pisa, Italy
| | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S. I.N.M. Neuromed, Pozzilli, Italy
| |
Collapse
|
38
|
Pamphlett R, Mak R, Lee J, Buckland ME, Harding AJ, Kum Jew S, Paterson DJ, Jones MWM, Lay PA. Concentrations of toxic metals and essential trace elements vary among individual neurons in the human locus ceruleus. PLoS One 2020; 15:e0233300. [PMID: 32428015 PMCID: PMC7237016 DOI: 10.1371/journal.pone.0233300] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Damage to locus ceruleus neurons could play a part in the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis because of impairment of the blood-brain barrier and enhanced neuroinflammation. The locus ceruleus has connections throughout the brain and spinal cord, so the characteristic widespread multifocal pathology in these disorders could be due to damage to different subsets of locus ceruleus neurons. Previous studies have shown that only certain locus ceruleus neurons accumulate the neurotoxic metal mercury. To find out if concentrations of other toxic metals or of essential trace elements also vary between individual locus ceruleus neurons, we used synchrotron X-ray fluorescence microscopy on frozen sections of locus ceruleus neurons taken from people with multiple sclerosis, in whom the locus ceruleus is structurally intact. Materials and methods Paraffin embedded sections containing the locus ceruleus from seven people with multiple sclerosis were stained with autometallography that demonstrates accumulations of mercury, silver and bismuth. These were compared to maps of multiple elements obtained from frozen sections of locus ceruleus neurons from the same people using X-ray fluorescence microscopy. Neurons in the anterior pons from three of these donors were used as internal controls. Results Autometallography staining was observed in scattered locus ceruleus neurons from three of the seven donors. X-ray fluorescence microscopy showed variations among individual locus ceruleus neurons in levels of mercury, selenium, iron, copper, lead, bromine, and rubidium. Variations between donors of locus ceruleus neuronal average levels of mercury, iron, copper, and bromine were also detected. Anterior pons neurons contained no mercury, had varied levels of iron, and had lower copper levels than locus ceruleus neurons. Conclusions Individual human locus ceruleus neurons contain varying levels of toxic metals and essential trace elements. In contrast, most toxic metals are absent or at low levels in nearby anterior pons neurons. The locus ceruleus plays a role in numerous central nervous system functions, including maintaining the blood-brain-barrier and limiting neuroinflammation. Toxic metals, or alterations in essential trace metals within individual locus ceruleus neurons, could be one factor determining the non-random destruction of locus ceruleus neurons in normal aging and neurodegenerative diseases, and subsequently the sites of the widespread multifocal central nervous system pathology in these disorders.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Sydney, New South Wales, Australia
- * E-mail:
| | - Rachel Mak
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, New South Wales, Australia
| | - Joonsup Lee
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael E. Buckland
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Antony J. Harding
- Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Stephen Kum Jew
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Peter A. Lay
- School of Chemistry and Sydney Analytical, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Liebe T, Kaufmann J, Li M, Skalej M, Wagner G, Walter M. In vivo anatomical mapping of human locus coeruleus functional connectivity at 3 T MRI. Hum Brain Mapp 2020; 41:2136-2151. [PMID: 31994319 PMCID: PMC7267980 DOI: 10.1002/hbm.24935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is involved in numerous crucial brain functions and several disorders like depression and Alzheimer's disease. Recently, the LC resting‐state functional connectivity (rs‐fc) has been investigated in functional MRI by calculating the blood oxygen level–dependent (BOLD) response extracted using Montreal Neurological Institute (MNI) space masks. To corroborate these results, we aimed to investigate the LC rs‐fc at native space by improving the identification of the LC location using a neuromelanin sensitive sequence. Twenty‐five healthy male participants (mean age 24.8 ± 4.2) were examined in a Siemens MAGNETOM Prisma 3 T MRT applying a neuromelanin sensitive T1TSE sequence and functional MRI. We compared the rs‐fc of LC calculated by a MNI‐based approach with extraction of the BOLD signal at the exact individual location of the LC after applying CompCor and field map correction. As a measure of advance, a marked increase of regional homogeneity (ReHo) of time series within LC could be achieved with the subject‐specific approach. Furthermore, the methods differed in the rs‐fc to the right temporoparietal junction, which showed stronger connectivity to the LC in the MNI‐based method. Nevertheless, both methods comparably revealed LC rs‐fc to multiple brain regions including ACC, bilateral thalamus, and cerebellum. Our results are relevant for further research assessing and interpreting LC function, especially in patient populations examined at 3 T MRI.
Collapse
Affiliation(s)
- Thomas Liebe
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Clinic for Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Skalej
- Clinic for Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
40
|
Giorgi FS, Saccaro LF, Galgani A, Busceti CL, Biagioni F, Frati A, Fornai F. The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer’s disease. Brain Res Bull 2019; 153:47-58. [DOI: 10.1016/j.brainresbull.2019.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
|
41
|
Urquhart MA, Ross JA, Reyes BAS, Nitikman M, Thomas SA, Mackie K, Van Bockstaele EJ. Noradrenergic depletion causes sex specific alterations in the endocannabinoid system in the Murine prefrontal cortex. Neurobiol Stress 2019; 10:100164. [PMID: 31193575 PMCID: PMC6535650 DOI: 10.1016/j.ynstr.2019.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 04/06/2019] [Indexed: 01/27/2023] Open
Abstract
Brain endocannabinoids (eCB), acting primarily via the cannabinoid type 1 receptor (CB1r), are involved in the regulation of many physiological processes, including behavioral responses to stress. A significant neural target of eCB action is the stress-responsive norepinephrine (NE) system, whose dysregulation is implicated in myriad psychiatric and neurodegenerative disorders. Using Western blot analysis, the protein expression levels of a key enzyme in the biosynthesis of the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol lipase-α (DGL-α), and two eCB degrading enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) were examined in a mouse model that lacks the NE-synthesizing enzyme, dopamine β-hydroxylase (DβH-knockout, KO) and in rats treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4). In the prefrontal cortex (PFC), DGL-α protein expression was significantly increased in male and female DβH-KO mice (P < 0.05) compared to wild-type (WT) mice. DβH-KO male mice showed significant decreases in FAAH protein expression compared to WT male mice. Consistent with the DβH-KO results, DGL-α protein expression was significantly increased in male DSP-4-treated rats (P < 0.05) when compared to saline-treated controls. MGL and FAAH protein expression levels were significantly increased in male DSP-4 treated rats compared to male saline controls. Finally, we investigated the anatomical distribution of MGL and FAAH in the NE containing axon terminals of the PFC using immunoelectron microscopy. MGL was predominantly within presynaptic terminals while FAAH was localized to postsynaptic sites. These results suggest that the eCB system may be more responsive in males than females under conditions of NE perturbation, thus having potential implications for sex-specific treatment strategies of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- M A Urquhart
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - J A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - B A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - M Nitikman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| | - S A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405-2204, USA
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, 19102, USA
| |
Collapse
|
42
|
Zahola P, Hanics J, Pintér A, Máté Z, Gáspárdy A, Hevesi Z, Echevarria D, Adori C, Barde S, Törőcsik B, Erdélyi F, Szabó G, Wagner L, Kovacs GG, Hökfelt T, Harkany T, Alpár A. Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Struct Funct 2019; 224:2061-2078. [PMID: 31144035 PMCID: PMC6591208 DOI: 10.1007/s00429-019-01886-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 12/04/2022]
Abstract
Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells. In adults, secretagogin-expressing neurons typically populate relay centres of special senses and vegetative regulatory centres of the medulla oblongata, pons and midbrain. Notably, secretagogin expression overlapped with the brainstem column of noradrenergic cell bodies, including the locus coeruleus (A6) and the A1, A5 and A7 fields. Secretagogin expression in avian, mouse, rat and human samples showed quasi-equivalent patterns, suggesting conservation throughout vertebrate phylogeny. We found reduced secretagogin expression in locus coeruleus from subjects with Alzheimer’s disease, and this reduction paralleled the loss of tyrosine hydroxylase, the enzyme rate limiting noradrenaline synthesis. Residual secretagogin immunoreactivity was confined to small submembrane domains associated with initial aberrant tau phosphorylation. In conclusion, we provide evidence that secretagogin is a useful marker to distinguish neuronal subsets in the brainstem, conserved throughout several species, and its altered expression may reflect cellular dysfunction of locus coeruleus neurons in Alzheimer’s disease.
Collapse
Affiliation(s)
- Péter Zahola
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Gáspárdy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Diego Echevarria
- Institute of Neuroscience, University of Miguel Hernandez de Elche, Alicante, Spain
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Beáta Törőcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Alán Alpár
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary. .,Department of Anatomy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
43
|
Chougule PS, Najjar RP, Finkelstein MT, Kandiah N, Milea D. Light-Induced Pupillary Responses in Alzheimer's Disease. Front Neurol 2019; 10:360. [PMID: 31031692 PMCID: PMC6473037 DOI: 10.3389/fneur.2019.00360] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
The impact of Alzheimer's disease (AD) on the pupillary light response (PLR) is controversial, being dependent on the stage of the disease and on the experimental pupillometric protocols. The main hypothesis driving pupillometry research in AD is based on the concept that the AD-related neurodegeneration affects both the parasympathetic and the sympathetic arms of the PLR (cholinergic and noradrenergic theory), combined with additional alterations of the afferent limb, involving the melanopsin expressing retinal ganglion cells (mRGCs), subserving the PLR. Only a few studies have evaluated the value of pupillometry as a potential biomarker in AD, providing various results compatible with parasympathetic dysfunction, displaying increased latency of pupillary constriction to light, decreased constriction amplitude, faster redilation after light offset, decreased maximum velocity of constriction (MCV) and maximum constriction acceleration (MCA) compared to controls. Decreased MCV and MCA appeared to be the most accurate of all PLR parameters allowing differentiation between AD and healthy controls while increased post-illumination pupillary response was the most consistent feature, however, these results could not be replicated by more recent studies, focusing on early and pre-clinical stages of the disease. Whether static or dynamic pupillometry yields useful biomarkers for AD screening or diagnosis remains unclear. In this review, we synopsize the current knowledge on pupillometric features in AD and other neurodegenerative diseases, and discuss potential roles of pupillometry in AD detection, diagnosis and monitoring, alone or in combination with additional biomarkers.
Collapse
Affiliation(s)
- Pratik S Chougule
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Raymond P Najjar
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Maxwell T Finkelstein
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-National University of Singapore (NUS), Singapore, Singapore
| | - Dan Milea
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
44
|
Roles of tau pathology in the locus coeruleus (LC) in age-associated pathophysiology and Alzheimer’s disease pathogenesis: Potential strategies to protect the LC against aging. Brain Res 2019; 1702:17-28. [DOI: 10.1016/j.brainres.2017.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/21/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
|
45
|
Wirth KJ. Role of Noradrenergic Brain Nuclei in the Regulation of Carotid Artery Blood Flow: Pharmacological Evidence from Anesthetized Pigs with Alpha-2 Adrenergic Receptor Modulator Drugs. J Alzheimers Dis 2018; 66:407-419. [DOI: 10.3233/jad-180340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Klaus J. Wirth
- Sanofi-Aventis Deutschland GmbH, R&D TA Immunology, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Farrar MJ, Kolkman KE, Fetcho JR. Features of the structure, development, and activity of the zebrafish noradrenergic system explored in new CRISPR transgenic lines. J Comp Neurol 2018; 526:2493-2508. [PMID: 30070695 DOI: 10.1002/cne.24508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/11/2022]
Abstract
The noradrenergic (NA) system of vertebrates is implicated in learning, memory, arousal, and neuroinflammatory responses, but is difficult to access experimentally. Small and optically transparent, larval zebrafish offer the prospect of exploration of NA structure and function in an intact animal. We made multiple transgenic zebrafish lines using the CRISPR/Cas9 system to insert fluorescent reporters upstream of slc6a2, the norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony, supporting the potential for targeted LC neuromodulation. Our observations and new transgenic lines set the stage for a deeper understanding of the NA system.
Collapse
Affiliation(s)
- Matthew J Farrar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York.,Department of Math, Physics and Statistics, Messiah College, Mechanicsburg, Pennsylvania
| | - Kristine E Kolkman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
47
|
Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci 2018; 11:254. [PMID: 30100866 PMCID: PMC6072880 DOI: 10.3389/fnmol.2018.00254] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the past, manipulation of the cholinergic system was seen as the most likely therapeutic for neurodegeneration-based cognitive decline in Alzheimer's disease (AD) (Whitehouse et al., 1982). However, targeting the noradrenergic system also seems a promising strategy, since more recent studies revealed that in post-mortem tissue from patients with AD and other neurodegenerative disorders there is a robust correlation between cognitive decline and loss of neurons from the Locus coeruleus (LC), a system with diffuse noradrenaline (NA) innervation in the central nervous system (CNS). Therefore, the hypothesis has been considered that increasing NA signaling in the CNS will prevent, or at least halt the progression of neurodegeneration and cognitive decline. A hallmark of the age- and neurodegeneration-related cognitive decline is reduced neurogenesis. We here discuss noradrenergic dysfunction in AD-related cognitive decline in humans and its potential involvement in AD pathology and disease progression. We also focus on animal models to allow the validation of the noradrenergic hypothesis of AD, including those based upon the immunotoxin-mediated ablation of LC based on saporin, a protein synthesis interfering agent, which offers selective and graded demise of LC neurons, Finally, we address how astrocytes, an abundant and functionally heterogeneous cell type of neuroglia maintaining homeostasis, may participate in the regulation of neurogenesis, a new strategy for preventing LC neuron loss.
Collapse
Affiliation(s)
- Giampiero Leanza
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
48
|
Peterson AC, Li CSR. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases-An Overview of Imaging Studies. Front Aging Neurosci 2018; 10:127. [PMID: 29765316 PMCID: PMC5938376 DOI: 10.3389/fnagi.2018.00127] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD) and Parkinson's Disease (PD). Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC) circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN). LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.
Collapse
Affiliation(s)
- Andrew C Peterson
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
49
|
Bharani KL, Derex R, Granholm AC, Ledreux A. A noradrenergic lesion aggravates the effects of systemic inflammation on the hippocampus of aged rats. PLoS One 2017; 12:e0189821. [PMID: 29261743 PMCID: PMC5736222 DOI: 10.1371/journal.pone.0189821] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation is potentiated by early degeneration of the locus coeruleus noradrenergic pathway (LC-NE) commonly seen in aging-related neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In animal models, lipopolysaccharide (LPS) induces strong peripheral immune responses that can cause cognitive changes secondary to neuroinflammation. The influence of the peripheral immune response on cognition might be exacerbated by LC-NE degeneration, but this has not been well characterized previously. In this study, we investigated how systemic inflammation affects neuroinflammation and cognition in aged rats that have had either normal or damaged LC-NE transmitter systems. Rats were first exposed to the selective noradrenergic (NE) neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) to induce degeneration of central NE pathways. Two weeks later, the rats received a low dose of LPS. This resulted in 3 treatment groups (Control, LPS-, and DSP4+LPS-treated rats) studied at 4 hours (short-term subgroup) and 7 days (long-term subgroup) following the LPS injection. DSP4+LPS-treated rats exhibited increased serum levels of several pro-inflammatory cytokines, increased astroglial and microglial activation in the hippocampus, and poorer performance in the novel object recognition task (NORT) compared to controls and LPS-treated rats. Additionally, serum and brain tissue levels of brain-derived neurotrophic factor (BDNF) were modulated over time in the DSP4+LPS group compared to the other two groups. Specifically, DSP4+LPS-treated rats in the short-term subgroup had lower hippocampal BDNF levels (~25%) than controls and LPS-treated rats, which negatively correlated with hippocampal astrogliosis and positively correlated with hippocampal IL-1β levels. Serum and hippocampal BDNF levels in the DSP4+LPS-treated rats in the long-term subgroup returned to levels similar to the control group. These results show that systemic inflammation in LC-NE-lesioned aged rats promotes an exacerbated systemic and central inflammatory response compared to LC-NE-intact rats and alters BDNF levels, indicating the important role of this neurotransmitter system in response to neuroinflammation.
Collapse
Affiliation(s)
- Krishna L. Bharani
- Department of Neurosciences, Medical University of South Carolina, BSB, Charleston, SC, United States of America
| | - Rebecca Derex
- Department of Neurosciences, Medical University of South Carolina, BSB, Charleston, SC, United States of America
| | - Ann-Charlotte Granholm
- Department of Neurosciences, Medical University of South Carolina, BSB, Charleston, SC, United States of America
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States of America
- * E-mail:
| |
Collapse
|
50
|
Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease. Brain 2017; 140:3023-3038. [PMID: 29053824 PMCID: PMC5841201 DOI: 10.1093/brain/awx232] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/17/2023] Open
Abstract
See Grinberg and Heinsen (doi:10.1093/brain/awx261) for a scientific commentary on this article. Clinical evidence suggests that aberrant tau accumulation in the locus coeruleus and noradrenergic dysfunction may be a critical early step in Alzheimer’s disease progression. Yet, an accurate preclinical model of these phenotypes that includes early pretangle tau accrual in the locus coeruleus, loss of locus coeruleus innervation and deficits locus coeruleus/norepinephrine modulated behaviours, does not exist, hampering the identification of underlying mechanisms and the development of locus coeruleus-based therapies. Here, a transgenic rat (TgF344-AD) expressing disease-causing mutant amyloid precursor protein (APPsw) and presenilin-1 (PS1ΔE9) was characterized for histological and behavioural signs of locus coeruleus dysfunction reminiscent of mild cognitive impairment/early Alzheimer’s disease. In TgF344-AD rats, hyperphosphorylated tau was detected in the locus coeruleus prior to accrual in the medial entorhinal cortex or hippocampus, and tau pathology in the locus coeruleus was negatively correlated with noradrenergic innervation in the medial entorhinal cortex. Likewise, TgF344-AD rats displayed progressive loss of hippocampal norepinephrine levels and locus coeruleus fibres in the medial entorhinal cortex and dentate gyrus, with no frank noradrenergic cell body loss. Cultured mouse locus coeruleus neurons expressing hyperphosphorylation-prone mutant human tau had shorter neurites than control neurons, but similar cell viability, suggesting a causal link between pretangle tau accrual and altered locus coeruleus fibre morphology. TgF344-AD rats had impaired reversal learning in the Morris water maze compared to their wild-type littermates, which was rescued by chemogenetic locus coeruleus activation via designer receptors exclusively activated by designer drugs (DREADDs). Our results indicate that TgF344-AD rats uniquely meet several key criteria for a suitable model of locus coeruleus pathology and dysfunction early in Alzheimer’s disease progression, and suggest that a substantial window of opportunity for locus coeruleus/ norepinephrine-based therapeutics exists.
Collapse
Affiliation(s)
- Jacki M Rorabaugh
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | | | - Christian A Botz-Zapp
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Vanessa M Fu
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Natalie A Lembeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Robert M Cohen
- Departments of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|