1
|
Tang Y, Yu H, Jiang X, Bao E, Wang D, Lu H. Genetic characterization of a novel pheasant-origin orthoreovirus using Next-Generation Sequencing. PLoS One 2022; 17:e0277411. [PMID: 36409667 PMCID: PMC9678273 DOI: 10.1371/journal.pone.0277411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
A field isolate (Reo/SDWF /Pheasant/17608/20) of avian orthoreovirus (ARV), isolated from a flock of game-pheasants in Weifang, Shandong Province, was genetically characterized being a field variant or novel strain in our recent research studies in conducting whole genome sequencing by using Next-Generation Sequencing (NGS) technique on Illumina MiSeq platform. Among a total of 870,197 35-151-mer sequencing reads, 297,711 reads (34.21%) were identified as ARV sequences. The de novo assembly of the ARV reads resulted in generation of 10 ARV-related contigs with the average sequencing coverage from 1390× to 1977× according to 10 ARV genome segments. The complete genomes of this pheasant-origin ARV (Reo/SDWF /Pheasant/17608/20) were 23,495 bp in length and consist of 10 dsRNA segments ranged from 1192 bp (S4) to 3958 bp (L1) encoding 12 viral proteins. Sequence comparison between the SDWF17608 and classic ARV reference strains revealed that 58.1-100% nucleotide (nt) identities and 51.4-100% amino acid (aa) identities were in genome segment coding genes. The 10 RNA segments had conversed termini at 5' (5'-GCUUUU) and 3' (UCAUC-3') side, which were identical to the most published ARV strains. Phylogenetic analysis revealed that this pheasant ARV field variant was closely related with chicken ARV strains in 7 genome segment genes, but it possessed significant sequence divergence in M1, M3 and S2 segments. These findings suggested that this pheasant-origin field variant was a divergent ARV strain and was likely originated from reassortments between different chicken ARV strains.
Collapse
Affiliation(s)
- Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Haiyang Yu
- Tianjin Ringpu Bio-Technology Co, Ltd., Tianjin, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Endong Bao
- Tianjin Ringpu Bio-Technology Co, Ltd., Tianjin, China
| | - Dong Wang
- Tianjin Ringpu Bio-Technology Co, Ltd., Tianjin, China
| | - Huaguang Lu
- Wiley Lab / Avian Virology, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Ortega-Gonzalez P, Taylor G, Jangra RK, Tenorio R, Fernandez de Castro I, Mainou BA, Orchard RC, Wilen CB, Brigleb PH, Sojati J, Chandran K, Sachse M, Risco C, Dermody TS. Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathog 2022; 18:e1010322. [PMID: 35263388 PMCID: PMC8906592 DOI: 10.1371/journal.ppat.1010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-β-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.
Collapse
Affiliation(s)
- Paula Ortega-Gonzalez
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
- PhD Program in Molecular Biosciences, Autonoma de Madrid University, Madrid, Spain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gwen Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Isabel Fernandez de Castro
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Bernardo A. Mainou
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Martin Sachse
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, campus UAM, Cantoblanco, Madrid, Spain
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Arnold MM, Dijk A, López S. Double‐stranded RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Reovirus Core Proteins λ1 and σ2 Promote Stability of Disassembly Intermediates and Influence Early Replication Events. J Virol 2020; 94:JVI.00491-20. [PMID: 32581098 DOI: 10.1128/jvi.00491-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The capsids of mammalian reovirus contain two concentric protein shells, the core and the outer capsid. The outer capsid is composed of μ1-σ3 heterohexamers which surround the core. The core is composed of λ1 decamers held in place by σ2. After entry into the endosome, σ3 is proteolytically degraded and μ1 is cleaved and exposed to form infectious subvirion particles (ISVPs). ISVPs undergo further conformational changes to form ISVP*s, resulting in the release of μ1 peptides, which facilitate the penetration of the endosomal membrane to release transcriptionally active core particles into the cytoplasm. Previous work identified regions or specific residues within reovirus outer capsid proteins that impact the efficiency of cell entry. We examined the functions of the core proteins λ1 and σ2. We generated a reovirus T3D reassortant that carries strain T1L-derived σ2 and λ1 proteins (T3D/T1L L3S2). This virus displays lower ISVP stability and therefore converts to ISVP*s more readily. To identify the molecular basis for lability of T3D/T1L L3S2, we screened for hyperstable mutants of T3D/T1L L3S2 and identified three point mutations in μ1 that stabilize ISVPs. Two of these mutations are located in the C-terminal ϕ region of μ1, which has not previously been implicated in controlling ISVP stability. Independent of compromised ISVP stability, we also found that T3D/T1L L3S2 launches replication more efficiently and produces higher yields in infected cells than T3D. In addition to identifying a new role for the core proteins in disassembly events, these data highlight the possibility that core proteins may influence multiple stages of infection.IMPORTANCE Protein shells of viruses (capsids) have evolved to undergo specific changes to ensure the timely delivery of genetic material to host cells. The 2-layer capsid of reovirus provides a model system to study the interactions between capsid proteins and the changes they undergo during entry. We tested a virus in which the core proteins were derived from a different strain than the outer capsid. In comparison to the parental T3D strain, we found that this mismatched virus was less stable and completed conformational changes required for entry prematurely. Capsid stability was restored by introduction of specific changes to the outer capsid, indicating that an optimal fit between inner and outer shells maintains capsid function. Separate from this property, mismatch between these protein layers also impacted the capacity of the virus to initiate infection and produce progeny. This study reveals new insights into the roles of capsid proteins and their multiple functions during viral replication.
Collapse
|
5
|
Cui Y, Zhang Y, Zhou K, Sun J, Zhou ZH. Conservative transcription in three steps visualized in a double-stranded RNA virus. Nat Struct Mol Biol 2019; 26:1023-1034. [PMID: 31695188 DOI: 10.1038/s41594-019-0320-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 01/28/2023]
Abstract
Endogenous RNA transcription characterizes double-stranded RNA (dsRNA) viruses in the Reoviridae, a family that is exemplified by its simple, single-shelled member cytoplasmic polyhedrosis virus (CPV). Because of the lack of in situ structures of the intermediate stages of RNA-dependent RNA polymerase (RdRp) during transcription, it is poorly understood how RdRp detects environmental cues and internal transcriptional states to initiate and coordinate repeated cycles of transcript production inside the capsid. Here, we captured five high-resolution (2.8-3.5 Å) RdRp-RNA in situ structures-representing quiescent, initiation, early elongation, elongation and abortive states-under seven experimental conditions of CPV. We observed the 'Y'-form initial RNA fork in the initiation state and the complete transcription bubble in the elongation state. These structures reveal that de novo RNA transcription involves three major conformational changes during state transitions. Our results support an ouroboros model for endogenous conservative transcription in dsRNA viruses.
Collapse
Affiliation(s)
- Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yinong Zhang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jingchen Sun
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA. .,Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
In situ structures of RNA-dependent RNA polymerase inside bluetongue virus before and after uncoating. Proc Natl Acad Sci U S A 2019; 116:16535-16540. [PMID: 31350350 DOI: 10.1073/pnas.1905849116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV), a major threat to livestock, is a multilayered, nonturreted member of the Reoviridae, a family of segmented dsRNA viruses characterized by endogenous RNA transcription through an RNA-dependent RNA polymerase (RdRp). To date, the structure of BTV RdRp has been unknown, limiting our mechanistic understanding of BTV transcription and hindering rational drug design effort targeting this essential enzyme. Here, we report the in situ structures of BTV RdRp VP1 in both the triple-layered virion and double-layered core, as determined by cryo-electron microscopy (cryoEM) and subparticle reconstruction. BTV RdRp has 2 unique motifs not found in other viral RdRps: a fingernail, attached to the conserved fingers subdomain, and a bundle of 3 helices: 1 from the palm subdomain and 2 from the N-terminal domain. BTV RdRp VP1 is anchored to the inner surface of the capsid shell via 5 asymmetrically arranged N termini of the inner capsid shell protein VP3A around the 5-fold axis. The structural changes of RdRp VP1 and associated capsid shell proteins between BTV virions and cores suggest that the detachment of the outer capsid proteins VP2 and VP5 during viral entry induces both global movements of the inner capsid shell and local conformational changes of the N-terminal latch helix (residues 34 to 51) of 1 inner capsid shell protein VP3A, priming RdRp VP1 within the capsid for transcription. Understanding this mechanism in BTV also provides general insights into RdRp activation and regulation during viral entry of other multilayered, nonturreted dsRNA viruses.
Collapse
|
7
|
Selection and Characterization of a Reovirus Mutant with Increased Thermostability. J Virol 2019; 93:JVI.00247-19. [PMID: 30787157 DOI: 10.1128/jvi.00247-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
The environment represents a significant barrier to infection. Physical stressors (heat) or chemical agents (ethanol) can render virions noninfectious. As such, discrete proteins are necessary to stabilize the dual-layered structure of mammalian orthoreovirus (reovirus). The outer capsid participates in cell entry: (i) σ3 is degraded to generate the infectious subviral particle, and (ii) μ1 facilitates membrane penetration and subsequent core delivery. μ1-σ3 interactions also prevent inactivation; however, this activity is not fully characterized. Using forward and reverse genetic approaches, we identified two mutations (μ1 M258I and σ3 S344P) within heat-resistant strains. σ3 S344P was sufficient to enhance capsid integrity and to reduce protease sensitivity. Moreover, these changes impaired replicative fitness in a reassortant background. This work reveals new details regarding the determinants of reovirus stability.IMPORTANCE Nonenveloped viruses rely on protein-protein interactions to shield their genomes from the environment. The capsid, or protective shell, must also disassemble during cell entry. In this work, we identified a determinant within mammalian orthoreovirus that regulates heat resistance, disassembly kinetics, and replicative fitness. Together, these findings show capsid function is balanced for optimal replication and for spread to a new host.
Collapse
|
8
|
Components of the Reovirus Capsid Differentially Contribute to Stability. J Virol 2019; 93:JVI.01894-18. [PMID: 30381491 DOI: 10.1128/jvi.01894-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid is composed of 200 μ1-σ3 heterohexamers and a maximum of 12 σ1 trimers. During cell entry, σ3 is degraded by luminal or intracellular proteases to generate the infectious subviral particle (ISVP). When ISVP formation is prevented, reovirus fails to establish a productive infection, suggesting proteolytic priming is required for entry. ISVPs are then converted to ISVP*s, which is accompanied by μ1 rearrangements. The μ1 and σ3 proteins confer resistance to inactivating agents; however, neither the impact on capsid properties nor the mechanism (or basis) of inactivation is fully understood. Here, we utilized T1L/T3D M2 and T3D/T1L S4 to investigate the determinants of reovirus stability. Both reassortants encode mismatched subunits. When μ1-σ3 were derived from different strains, virions resembled wild-type particles in structure and protease sensitivity. T1L/T3D M2 and T3D/T1L S4 ISVPs were less thermostable than wild-type ISVPs. In contrast, virions were equally susceptible to heating. Virion associated μ1 adopted an ISVP*-like conformation concurrent with inactivation; σ3 preserves infectivity by preventing μ1 rearrangements. Moreover, thermostability was enhanced by a hyperstable variant of μ1. Unlike the outer capsid, the inner capsid (core) was highly resistant to elevated temperatures. The dual layered architecture allowed for differential sensitivity to inactivating agents.IMPORTANCE Nonenveloped and enveloped viruses are exposed to the environment during transmission to a new host. Protein-protein and/or protein-lipid interactions stabilize the particle and protect the viral genome. Mammalian orthoreovirus (reovirus) is composed of two concentric, protein shells. The μ1 and σ3 proteins form the outer capsid; contacts between neighboring subunits are thought to confer resistance to inactivating agents. We further investigated the determinants of reovirus stability. The outer capsid was disrupted concurrent with the loss of infectivity; virion associated μ1 rearranged into an altered conformation. Heat sensitivity was controlled by σ3; however, particle integrity was enhanced by a single μ1 mutation. In contrast, the inner capsid (core) displayed superior resistance to heating. These findings reveal structural components that differentially contribute to reovirus stability.
Collapse
|
9
|
Zhang Y, Zhu L, Cao G, Sahib Zar M, Hu X, Wei Y, Xue R, Gong C. Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 2018; 121:1-7. [PMID: 30554639 DOI: 10.1016/j.enzmictec.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 11/15/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a non-enveloped dsRNA virus, which specifically infect the midgut epithelium of B. mori. BmCPV enters permissive cells via clathrin-dependent endocytosis employing β1 integrin mediated internalization. Until now, the cell entry mechanism of BmCPV has not been known clearly. Here, we investigated whether tyrosine-protein kinase Src64B-like is involved in the cell entry of BmCPV. The Src64B-like gene was cloned and expressed in Escherichia coli (E. coli), and the recombinant protein Src64B-like was used to immunize mouse for preparation of anti-Src64B-like polyclonal antibody (pAb). After Src64B-like gene was silenced by RNAi, the infection of BmCPV was reduced by 59.48% ± 2.18% and 92.22% ± 1.12% in vitro and in vivo autonomously. Contrary to it, BmCPV infection could be enhanced by increasing the expression of Src64B-like. In addition, immunofluorescence assay showed that Src64B-like protein did not co-localize with BmCPV in the cultured BmN cells during viral infection. These results indicate that Src64B-like protein participates and plays an important role in the cell entry of BmCPV, but not contacting directly with BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; Institute of Synthetic Biology (iSynBio), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xuevuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Yang J, Tian J, Chen L, Tang Y, Diao Y. Isolation and genomic characterization of a novel chicken-orign orthoreovirus causing goslings hepatitis. Vet Microbiol 2018; 227:69-77. [PMID: 30473354 DOI: 10.1016/j.vetmic.2018.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
A severe infectious disease characterized by nephritis, hepatitis and splenitis has attacked goslings around Shandong province in China since 2016. A novel chicken-origin avian orthoreovirus (ARV) was isolated with LMH cells from affected goslings named Reo/Goose/SDPY/1116/17 (SDPY-ARV) strain, and the infection was successfully reproduced experimentally. The ARV-SDPY full genome sequencing was conducted using Next-Generation Sequencing (NGS) technique on Illumina HiSeq platform. The complete genome of SDPY-ARV was 23,427 bp in length and consist of 10 dsRNA segments ranged from 1192 bp (S4) to 3958 bp (L1) which encoding 12 viral proteins. Genomic sequence analysis showed that the SDPY-ARV strain is in the same branch with broiler, pheasant-origin ARV isolates, and shares 51.8-96.2% of nucleotide identity of σC gene with them; while only 49.3-50.3% with waterfowl isolates. In addition, the occurrence of 10 segments genetic reassortment of SDPY strain is confirmed among the PA15511, the 1733 and the PA13649 strains from America. In conclusion, the causative agent of gosling hemorrhagic necrotic hepatitis and nephritis occurring in China is a novel chicken-origin goose orthoreovirus.
Collapse
Affiliation(s)
- Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Jiajun Tian
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Lin Chen
- Animal Health Inspection of DaLian Free Trade Zone, Dalian, Liaoning, 116100, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
11
|
Cleavage of the C-Terminal Fragment of Reovirus μ1 Is Required for Optimal Infectivity. J Virol 2018; 92:JVI.01848-17. [PMID: 29298891 DOI: 10.1128/jvi.01848-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid, which is composed of 200 μ1/σ3 heterohexamers and a maximum of 12 σ1 trimers, contains all of the proteins that are necessary for attaching to and entering host cells. Following attachment, reovirus is internalized by receptor-mediated endocytosis and acid-dependent cathepsin proteases degrade the σ3 protein. This process generates a metastable intermediate, called infectious subviral particle (ISVP), in which the μ1 membrane penetration protein is exposed. ISVPs undergo a second structural rearrangement to deposit the genome-containing core into the host cytoplasm. The conformationally altered particle is called ISVP*. ISVP-to-ISVP* conversion culminates in the release of μ1 N- and C-terminal fragments, μ1N and Φ, respectively. Released μ1N is thought to facilitate core delivery by generating size-selective pores within the endosomal membrane, whereas the precise role of Φ, particularly in the context of viral entry, is undefined. In this report, we characterize a recombinant reovirus that fails to cleave Φ from μ1 in vitro Φ cleavage, which is not required for ISVP-to-ISVP* conversion, enhances the disruption of liposomal membranes and facilitates the recruitment of ISVP*s to the site of pore formation. Moreover, the Φ cleavage-deficient strain initiates infection of host cells less efficiently than the parental strain. These results indicate that μ1N and Φ contribute to reovirus pore forming activity.IMPORTANCE Host membranes represent a physical barrier that prevents infection. To overcome this barrier, viruses utilize diverse strategies, such as membrane fusion or membrane disruption, to access internal components of the cell. These strategies are characterized by discrete protein-protein and protein-lipid interactions. The mammalian orthoreovirus (reovirus) outer capsid undergoes a series of well-defined conformational changes, which conclude with pore formation and delivery of the viral genetic material. In this report, we characterize the role of the small, reovirus-derived Φ peptide in pore formation. Φ cleavage from the outer capsid enhances membrane disruption and facilitates the recruitment of virions to membrane-associated pores. Moreover, Φ cleavage promotes the initiation of infection. Together, these results reveal an additional component of the reovirus pore forming apparatus and highlight a strategy for penetrating host membranes.
Collapse
|
12
|
Snyder AJ, Danthi P. Infectious Subviral Particle to Membrane Penetration Active Particle (ISVP-to-ISVP*) Conversion Assay for Mammalian Orthoreovirus. Bio Protoc 2018; 8:e2700. [PMID: 29399600 DOI: 10.21769/bioprotoc.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid undergoes a series of conformational changes prior to or during viral entry. These transitions are necessary for delivering the genome-containing core across host cell membranes. This protocol describes an in vitro assay for monitoring the transition into a membrane penetration-active form (i.e., ISVP*).
Collapse
Affiliation(s)
- Anthony J Snyder
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
13
|
Snyder AJ, Danthi P. Infectious Subviral Particle-induced Hemolysis Assay for Mammalian Orthoreovirus. Bio Protoc 2018; 8:e2701. [PMID: 29552594 DOI: 10.21769/bioprotoc.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) utilizes pore forming peptides to penetrate host cell membranes. This step is essential for delivering its genome containing core particle during viral entry. This protocol describes an in vitro assay for measuring reovirus-induced pore formation.
Collapse
Affiliation(s)
- Anthony J Snyder
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
The Loop Formed by Residues 340 to 343 of Reovirus μ1 Controls Entry-Related Conformational Changes. J Virol 2017; 91:JVI.00898-17. [PMID: 28794028 DOI: 10.1128/jvi.00898-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Reovirus particles are covered with 200 μ1/σ3 heterohexamers. Following attachment to cell surface receptors, reovirus is internalized by receptor-mediated endocytosis. Within the endosome, particles undergo a series of stepwise disassembly events. First, the σ3 protector protein is degraded by cellular proteases to generate infectious subviral particles (ISVPs). Second, the μ1 protein rearranges into a protease-sensitive conformation to generate ISVP*s and releases two virus-encoded peptides, μ1N and Φ. The released peptides promote delivery of the genome-containing core by perforating the endosomal membrane. Thus, to establish a productive infection, virions must be stable in the environment but flexible to disassemble in response to the appropriate cellular cue. The reovirus outer capsid is stabilized by μ1 intratrimer, intertrimer, and trimer-core interactions. As a consequence of ISVP-to-ISVP* conversion, neighboring μ1 trimers unwind and separate. Located within the μ1 jelly roll β barrel domain, which is a known regulator of ISVP* formation, residues 340 to 343 form a loop and have been proposed to facilitate viral entry. To test this idea, we generated recombinant reoviruses that encoded deletions within this loop (Δ341 and Δ342). Both deletions destabilized the outer capsid. Notably, Δ342 impaired the viral life cycle; however, replicative fitness was restored by an additional change (V403A) within the μ1 jelly roll β barrel domain. In the Δ341 and Δ342 backgrounds, V403A also rescued defects in ISVP-to-ISVP* conversion. Together, these findings reveal a new region that regulates reovirus disassembly and how perturbing a metastable capsid can compromise replicative fitness.IMPORTANCE Capsids of nonenveloped viruses are composed of protein complexes that encapsulate, or form a shell around, nucleic acid. The protein-protein interactions that form this shell must be stable to protect the viral genome but also sufficiently flexible to disassemble during cell entry. Thus, capsids adopt conformations that undergo rapid disassembly in response to a specific cellular cue. In this work, we identify a new region within the mammalian orthoreovirus outer capsid that regulates particle stability. Amino acid deletions that destabilize this region impair the viral replication cycle. Nonetheless, replicative fitness is restored by a compensatory mutation that restores particle stability. Together, this work demonstrates the critical balance between assembling virions that are stable and maintaining conformational flexibility. Any factor that perturbs this balance has the potential to block a productive infection.
Collapse
|
15
|
African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. J Virol 2017; 91:JVI.02416-16. [PMID: 28298603 DOI: 10.1128/jvi.02416-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation.IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure.
Collapse
|
16
|
Snyder AJ, Danthi P. Lipids Cooperate with the Reovirus Membrane Penetration Peptide to Facilitate Particle Uncoating. J Biol Chem 2016; 291:26773-26785. [PMID: 27875299 DOI: 10.1074/jbc.m116.747477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Virus-host interactions play a role in many stages of the viral lifecycle, including entry. Reovirus, a model system for studying the entry mechanisms of nonenveloped viruses, undergoes a series of regulated structural transitions that culminate in delivery of the viral genetic material. Lipids can trigger one of these conformational changes, infectious subviral particle (ISVP)-to-ISVP* conversion. ISVP* formation releases two virally encoded peptides, myristoylated μ1N (myr-μ1N) and Φ. Among these, myr-μ1N is sufficient to form pores within membranes. Released myr-μ1N can also promote ISVP* formation in trans Using thermal inactivation as a readout for ISVP-to-ISVP* conversion, we demonstrate that lipids render ISVPs less thermostable in a virus concentration-dependent manner. Under conditions in which neither lipids alone nor myr-μ1N alone promotes ISVP-to-ISVP* conversion, myr-μ1N induces particle uncoating when lipids are present. These data suggest that the pore-forming activity and the ISVP*-promoting activity of myr-μ1N are linked. Lipid-associated myr-μ1N interacts with ISVPs and triggers efficient ISVP* formation. The cooperativity between a reovirus component and lipids reveals a distinct virus-host interaction in which membranes can facilitate nonenveloped virus entry.
Collapse
Affiliation(s)
- Anthony J Snyder
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Pranav Danthi
- From the Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
17
|
Tang Y, Lin L, Sebastian A, Lu H. Detection and characterization of two co-infection variant strains of avian orthoreovirus (ARV) in young layer chickens using next-generation sequencing (NGS). Sci Rep 2016; 6:24519. [PMID: 27089943 PMCID: PMC4835796 DOI: 10.1038/srep24519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Using next-generation sequencing (NGS) for full genomic characterization studies of the newly emerging avian orthoreovirus (ARV) field strains isolated in Pennsylvania poultry, we identified two co-infection ARV variant strains from one ARV isolate obtained from ARV-affected young layer chickens. The de novo assembly of the ARV reads generated 19 contigs of two different ARV variant strains according to 10 genome segments of each ARV strain. The two variants had the same M2 segment. The complete genomes of each of the two variant strains were 23,493 bp in length, and 10 dsRNA segments ranged from 1192 bp (S4) to 3958 bp (L1), encoding 12 viral proteins. Sequence comparison of nucleotide (nt) and amino acid (aa) sequences of all 10 genome segments revealed 58.1–100% and 51.4–100% aa identity between the two variant strains, and 54.3–89.4% and 49.5–98.1% aa identity between the two variants and classic vaccine strains. Phylogenetic analysis revealed a moderate to significant nt sequence divergence between the two variant and ARV reference strains. These findings have demonstrated the first naturally occurring co-infection of two ARV variants in commercial young layer chickens, providing scientific evidence that multiple ARV strains can be simultaneously present in one host species of chickens.
Collapse
Affiliation(s)
- Yi Tang
- Wiley Lab/Avian Virology, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Lin Lin
- Wiley Lab/Avian Virology, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Huaguang Lu
- Wiley Lab/Avian Virology, Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
18
|
Lipid Membranes Facilitate Conformational Changes Required for Reovirus Cell Entry. J Virol 2015; 90:2628-38. [PMID: 26699639 DOI: 10.1128/jvi.02997-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Cellular entry of nonenveloped and enveloped viruses is often accompanied by dramatic conformational changes within viral structural proteins. These rearrangements are triggered by a variety of mechanisms, such as low pH, virus-receptor interactions, and virus-host chaperone interactions. Reoviruses, a model system for entry of nonenveloped viruses, undergo a series of disassembly steps within the host endosome. One of these steps, infectious subviral particle (ISVP)-to-ISVP* conversion, is necessary for delivering the genome-containing viral core into host cells, but the physiological trigger that mediates ISVP-to-ISVP* conversion during cell entry is unknown. Structural studies of the reovirus membrane penetration protein, μ1, predict that interactions between μ1 and negatively charged lipid head groups may promote ISVP* formation; however, experimental evidence for this idea is lacking. Here, we show that the presence of polyanions (SO4(2-) and HPO4(2-)) or lipids in the form of liposomes facilitates ISVP-to-ISVP* conversion. The requirement for charged lipids appears to be selective, since phosphatidylcholine and phosphatidylethanolamine promoted ISVP* formation, whereas other lipids, such as sphingomyelin and sulfatide, either did not affect ISVP* formation or prevented ISVP* formation. Thus, our work provides evidence that interactions with membranes can function as a trigger for a nonenveloped virus to gain entry into host cells. IMPORTANCE Cell entry, a critical stage in the virus life cycle, concludes with the delivery of the viral genetic material across host membranes. Regulated structural transitions within nonenveloped and enveloped viruses are necessary for accomplishing this step; these conformational changes are predominantly triggered by low pH and/or interactions with host proteins. In this work, we describe a previously unknown trigger, interactions with lipid membranes, which can induce the structural rearrangements required for cell entry. This mechanism operates during entry of mammalian orthoreoviruses. We show that interactions between reovirus entry intermediates and lipid membranes devoid of host proteins promote conformational changes within the viral outer capsid that lead to membrane penetration. Thus, this work illustrates a novel strategy that nonenveloped viruses can use to gain access into cells and how viruses usurp disparate host factors to initiate infection.
Collapse
|
19
|
Mohamed A, Johnston RN, Shmulevitz M. Potential for Improving Potency and Specificity of Reovirus Oncolysis with Next-Generation Reovirus Variants. Viruses 2015; 7:6251-78. [PMID: 26633466 PMCID: PMC4690860 DOI: 10.3390/v7122936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
Viruses that specifically replicate in tumor over normal cells offer promising cancer therapies. Oncolytic viruses (OV) not only kill the tumor cells directly; they also promote anti-tumor immunotherapeutic responses. Other major advantages of OVs are that they dose-escalate in tumors and can be genetically engineered to enhance potency and specificity. Unmodified wild type reovirus is a propitious OV currently in phase I–III clinical trials. This review summarizes modifications to reovirus that may improve potency and/or specificity during oncolysis. Classical genetics approaches have revealed reovirus variants with improved adaptation towards tumors or with enhanced ability to establish specific steps of virus replication and cell killing among transformed cells. The recent emergence of a reverse genetics system for reovirus has provided novel strategies to fine-tune reovirus proteins or introduce exogenous genes that could promote oncolytic activity. Over the next decade, these findings are likely to generate better-optimized second-generation reovirus vectors and improve the efficacy of oncolytic reotherapy.
Collapse
Affiliation(s)
- Adil Mohamed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
20
|
Yu X, Jiang J, Sun J, Zhou ZH. A putative ATPase mediates RNA transcription and capping in a dsRNA virus. eLife 2015; 4:e07901. [PMID: 26240998 PMCID: PMC4522710 DOI: 10.7554/elife.07901] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/19/2015] [Indexed: 11/13/2022] Open
Abstract
mRNA transcription in dsRNA viruses is a highly regulated process but the mechanism of this regulation is not known. Here, by nucleoside triphosphatase (NTPase) assay and comparisons of six high-resolution (2.9-3.1 Å) cryo-electron microscopy structures of cytoplasmic polyhedrosis virus with bound ligands, we show that the large sub-domain of the guanylyltransferase (GTase) domain of the turret protein (TP) also has an ATP-binding site and is likely an ATPase. S-adenosyl-L-methionine (SAM) acts as a signal and binds the methylase-2 domain of TP to induce conformational change of the viral capsid, which in turn activates the putative ATPase. ATP binding/hydrolysis leads to an enlarged capsid for efficient mRNA synthesis, an open GTase domain for His217-mediated guanylyl transfer, and an open methylase-1 domain for SAM binding and methyl transfer. Taken together, our data support a role of the putative ATPase in mediating the activation of mRNA transcription and capping within the confines of the virus.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Jingchen Sun
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
21
|
Proteolytic disassembly of viral outer capsid proteins is crucial for reovirus-mediated type-I interferon induction in both reovirus-susceptible and reovirus-refractory tumor cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:468457. [PMID: 25866783 PMCID: PMC4383355 DOI: 10.1155/2015/468457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
Abstract
Oncolytic reovirus induces innate immune responses, which contribute to the antitumor activity of reovirus, following in vivo application. Reovirus-induced innate immune responses have been relatively well characterized in immune cells and mouse embryonic fibroblasts cells; however, the mechanisms and profiles of reovirus-induced innate immune responses in human tumor cells have not been well understood. In particular, differences in reovirus-induced innate immune responses between reovirus-susceptible and reovirus-refractory tumor cells remain unknown, although the intracellular trafficking of reovirus differs between these tumor cells. In this study, we examined reovirus-induced upregulation of interferon- (IFN-) β and of the proapoptotic gene, Noxa, in reovirus-susceptible and -refractory tumor cells. IFN-β and Noxa were significantly induced by reovirus via the IFN-β promoter stimulator-1 (IPS-1) signaling in both types of tumor cells. Inhibition of cathepsins B and L, which are important for disassembly of reovirus outer capsid proteins and escape into cytoplasm, largely suppressed reovirus-induced upregulation of IFN-β and Noxa expression in not only reovirus-susceptible but also reovirus-refractory tumor cells. These results indicated that in both reovirus-susceptible and reovirus-refractory tumor cells, disassembly of the outer capsid proteins by cathepsins and the escape into the cytoplasm were crucial steps for reovirus-induced innate immunity.
Collapse
|
22
|
Diminished reovirus capsid stability alters disease pathogenesis and littermate transmission. PLoS Pathog 2015; 11:e1004693. [PMID: 25738608 PMCID: PMC4349883 DOI: 10.1371/journal.ppat.1004693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023] Open
Abstract
Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses. Following attachment and internalization, viruses disassemble to complete the entry process, establish infection, and cause disease. Viral capsid stability balances on a fulcrum, as viruses must be sufficiently stable in the environment to reach the host yet also uncoat efficiently once the target cell barrier has been breached. Reoviruses are useful models to understand the relationship between viral entry and pathogenesis. Residues within reovirus outer-capsid protein σ3 influence capsid stability, but the function of capsid stability in disease pathogenesis was not known. We found that serotype 1 and serotype 3 reovirus variants with diminished capsid stability attributable to a single amino change in σ3 displayed enhanced lethality in newborn mice following peroral and intramuscular inoculation, respectively. In the serotype 1 background, this variant caused increased damage to cardiac tissue and increased elaboration of inflammatory mediators in comparison to wild-type virus. Remarkably, diminished capsid stability also enhanced the spread of virus between inoculated and uninoculated littermates. Taken together, these findings define a new virulence determinant for reovirus and shed light on general principles of viral pathogenesis for nonenveloped viruses.
Collapse
|
23
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
Kopitar-Jerala N. The role of cysteine proteinases and their inhibitors in the host-pathogen cross talk. Curr Protein Pept Sci 2013; 13:767-75. [PMID: 23305363 PMCID: PMC3594739 DOI: 10.2174/138920312804871102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 01/12/2023]
Abstract
Proteinases and their inhibitors play essential functional roles in basic biological processes in both hosts and pathogens. Endo/lysosomal cathepsins participate in immune response in pathogen recognition and elimination. They are essential for both antigen processing and presentation (host adaptive immune response) and activation of endosomal Toll like receptors (innate immune response). Pathogens can produce proteases and also natural inhibitors to subvert the host immune response. Several pathogens are sensed through the intracellular pathogen recognition receptors, but only some of them use the host proteolytic system to escape into the cytosol. In this review, I provide an update on the most recent developments regarding the role of proteinases and their inhibitors in the initiation and regulation of immune responses.
Collapse
Affiliation(s)
- Natasa Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, ›Jozef Stefan‹ Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Apoptosis induction influences reovirus replication and virulence in newborn mice. J Virol 2013; 87:12980-9. [PMID: 24067960 DOI: 10.1128/jvi.01931-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apoptosis is a type of controlled cell death that is essential for development and tissue homeostasis. It also serves as a robust host response against infection by many viruses. The capacity of neurotropic viruses to induce apoptosis strongly correlates with virulence. However, the precise function of apoptosis in viral infection is not well understood. Reovirus is a neurotropic virus that induces apoptosis in a variety of cell types, including central nervous system neurons, leading to fatal encephalitis in newborn mice. To determine the effect of apoptosis on reovirus replication in the host, we generated two otherwise isogenic viruses that differ in a single amino acid in viral capsid protein μ1 that segregates with apoptotic capacity. Apoptosis-proficient and apoptosis-deficient viruses were compared for replication, dissemination, tropism, and tissue injury in newborn mice and for the capacity to spread to uninfected littermates. Our results indicate that apoptotic capacity enhances reovirus replication in the brain and consequent neurovirulence but reduces transmission efficiency. The replication advantage of the apoptosis-proficient strain is limited to the brain and correlates with enhanced infectivity of neurons. These studies reveal a new cell type-specific determinant of reovirus virulence.
Collapse
|
26
|
Boulant S, Stanifer M, Kural C, Cureton DK, Massol R, Nibert ML, Kirchhausen T. Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2013; 24:1196-207. [PMID: 23427267 PMCID: PMC3623640 DOI: 10.1091/mbc.e12-12-0852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 12/27/2022] Open
Abstract
Polarized epithelial cells that line the digestive, respiratory, and genitourinary tracts form a barrier that many viruses must breach to infect their hosts. Current understanding of cell entry by mammalian reovirus (MRV) virions and infectious subvirion particles (ISVPs), generated from MRV virions by extracellular proteolysis in the digestive tract, are mostly derived from in vitro studies with nonpolarized cells. Recent live-cell imaging advances allow us for the first time to visualize events at the apical surface of polarized cells. In this study, we used spinning-disk confocal fluorescence microscopy with high temporal and spatial resolution to follow the uptake and trafficking dynamics of single MRV virions and ISVPs at the apical surface of live polarized Madin-Darby canine kidney cells. Both types of particles were internalized by clathrin-mediated endocytosis, but virions and ISVPs exhibited strikingly different trafficking after uptake. While virions reached early and late endosomes, ISVPs did not and instead escaped the endocytic pathway from an earlier location. This study highlights the broad advantages of using live-cell imaging combined with single-particle tracking for identifying key steps in cell entry by viruses.
Collapse
Affiliation(s)
- Steeve Boulant
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Danthi P, Holm GH, Stehle T, Dermody TS. Reovirus receptors, cell entry, and proapoptotic signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:42-71. [PMID: 23884585 DOI: 10.1007/978-1-4614-7651-1_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) are members of the Reoviridae. Reoviruses contain 10 double-stranded (ds) RNA gene segments enclosed in two concentric protein shells, called outer capsid and core. These viruses serve as a versatile experimental system for studies of viral replication events at the virus-cell interface, including engagement of cell-surface receptors, internalization and disassembly, and activation of the innate immune response, including NF-κB-dependent cellular signaling pathways. Reoviruses also provide a model system for studies of virus-induced apoptosis and organ-specific disease in vivo.Reoviruses attach to host cells via the filamentous attachment protein, σ1. The σ1 protein of all reovirus serotypes engages junctional adhesion molecule-A (JAM-A), an integral component of intercellular tight junctions. The σ1 protein also binds to cell-surface carbohydrate, with the type of carbohydrate bound varying by serotype. Following attachment to JAM-A and carbohydrate, reovirus internalization is mediated by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by acid-dependent cysteine proteases in most cell types. Removal of σ3 results in the exposure of a hydrophobic conformer of the viral membrane-penetration protein, μ1, which pierces the endosomal membrane and delivers transcriptionally active reovirus core particles into the cytoplasm.Reoviruses induce apoptosis in both cultured cells and infected mice. Perturbation of reovirus disassembly using inhibitors of endosomal acidification or protease activity abrogates apoptosis. The μ1-encoding M2 gene is genetically linked to strain-specific differences in apoptosis-inducing capacity, suggesting a function for μ1 in induction of death signaling. Reovirus disassembly leads to activation of transcription factor NF-κB, which modulates apoptotic signaling in numerous types of cells. Inhibition of NF-κB nuclear translocation using either pharmacologic agents or expression of transdominant forms of IκB blocks reovirus-induced apoptosis, suggesting an essential role for NF-κB activation in the death response. Multiple effector pathway s downstream of NF-κB-directed gene expression execute reovirus-induced cell death. This chapter will focus on the mechanisms by which reovirus attachment and disassembly activate NF-κB and stimulate the cellular proapoptotic machinery.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | |
Collapse
|
28
|
Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A. PLoS One 2012; 7:e48064. [PMID: 23110175 PMCID: PMC3480499 DOI: 10.1371/journal.pone.0048064] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 09/19/2012] [Indexed: 01/05/2023] Open
Abstract
Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D) is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A) on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin) mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA) inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.
Collapse
|
29
|
Optimum length and flexibility of reovirus attachment protein σ1 are required for efficient viral infection. J Virol 2012; 86:10270-80. [PMID: 22811534 DOI: 10.1128/jvi.01338-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus attachment protein σ1 is an elongated trimer with head-and-tail morphology that engages cell-surface carbohydrate and junctional adhesion molecule A (JAM-A). The σ1 protein is comprised of three domains partitioned by two flexible linkers termed interdomain regions (IDRs). To determine the importance of σ1 length and flexibility at different stages of reovirus infection, we generated viruses with mutant σ1 molecules of altered length and flexibility and tested these viruses for the capacity to bind the cell surface, internalize, uncoat, induce protein synthesis, assemble, and replicate. We reduced the length of the α-helical σ1 tail to engineer mutants L1 and L2 and deleted midpoint and head-proximal σ1 IDRs to generate ΔIDR1 and ΔIDR2 mutant viruses, respectively. Decreasing length or flexibility of σ1 resulted in delayed reovirus infection and reduced viral titers. L1, L2, and ΔIDR1 viruses but not ΔIDR2 virus displayed reduced cell attachment, but altering σ1 length or flexibility did not diminish the efficiency of virion internalization. Replication of ΔIDR2 virus was hindered at a postdisassembly step. Differences between wild-type and σ1 mutant viruses were not attributable to alterations in σ1 folding, as determined by experiments assessing engagement of cell-surface carbohydrate and JAM-A by the length and IDR mutant viruses. However, ΔIDR1 virus harbored substantially less σ1 on the outer capsid. Taken together, these data suggest that σ1 length is required for reovirus binding to cells. In contrast, IDR1 is required for stable σ1 encapsidation, and IDR2 is required for a postuncoating replication step. Thus, the structural architecture of σ1 is required for efficient reovirus infection of host cells.
Collapse
|
30
|
Cell entry-associated conformational changes in reovirus particles are controlled by host protease activity. J Virol 2012; 86:3466-73. [PMID: 22278245 DOI: 10.1128/jvi.06659-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Membrane penetration by reovirus requires successive formation of two cell entry intermediates, infectious subvirion particles (ISVPs) and ISVP*s. In vitro incubation of reovirus virions with high concentration of chymotrypsin (CHT) results in partial digestion of the viral outer capsid to form ISVPs. When virions are instead digested with low concentrations of chymotrypsin, the outer capsid is completely proteolyzed to form cores. We investigated the basis for the inverse relationship between CHT activity and protease susceptibility of the reovirus outer capsid. We report that core formation following low-concentration CHT digestion proceeds via formation of particles that contain a protease-sensitive form of the μ1C protein, a characteristic of ISVP*s. In addition, we found that both biochemical features and viral genetic requirements for ISVP* formation and core formation following low-concentration CHT digestion are identical, suggesting that core formation proceeds via a particle resembling ISVP*s. Furthermore, we determined that intermediates generated following low-concentration CHT digestion are distinct from ISVPs and convert to ISVP*-like particles much more readily than ISVPs. These results suggest that the activity of host proteases used to generate ISVPs can influence the efficiency with which the next step in reovirus cell entry, namely, ISVP-to-ISVP* conversion, occurs.
Collapse
|
31
|
Doyle JD, Danthi P, Kendall EA, Ooms LS, Wetzel JD, Dermody TS. Molecular determinants of proteolytic disassembly of the reovirus outer capsid. J Biol Chem 2012; 287:8029-38. [PMID: 22253447 DOI: 10.1074/jbc.m111.334854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following attachment and internalization, mammalian reoviruses undergo intracellular proteolytic disassembly followed by viral penetration into the cytoplasm. The initiating event in reovirus disassembly is the cathepsin-mediated proteolytic degradation of viral outer capsid protein σ3. A single tyrosine-to-histidine mutation at amino acid 354 (Y354H) of strain type 3 Dearing (T3D) σ3 enhances reovirus disassembly and confers resistance to protease inhibitors such as E64. The σ3 amino acid sequence of strain type 3 Abney (T3A) differs from that of T3D at eight positions including Y354H. However, T3A displays disassembly kinetics and protease sensitivity comparable with T3D. We hypothesize that one or more additional σ3 polymorphisms suppress the Y354H phenotype and restore T3D disassembly characteristics. To test this hypothesis, we engineered a panel of reovirus variants with T3A σ3 polymorphisms introduced individually into T3D-σ3Y354H. We evaluated E64 resistance and in vitro cathepsin L susceptibility of these viruses and found that one containing a glycine-to-glutamate substitution at position 198 (G198E) displayed disassembly kinetics and E64 sensitivity similar to those properties of T3A and T3D. Additionally, viruses containing changes at positions 233 and 347 (S233L and I347T) developed de novo compensatory mutations at position 198, strengthening the conclusion that residue 198 is a key determinant of σ3 proteolytic susceptibility. Variants with Y354H in σ3 lost infectivity more rapidly than T3A or T3D following heat treatment, an effect abrogated by G198E. These results identify a regulatory network of residues that control σ3 cleavage and capsid stability, thus providing insight into the regulation of nonenveloped virus disassembly.
Collapse
Affiliation(s)
- Joshua D Doyle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Reovirus cell entry is initiated by viral attachment to cell surface glycans and junctional adhesion molecule A. Following receptor engagement, reovirus is internalized into cells by receptor-mediated endocytosis using a process dependent on β1 integrin. Endocytosed virions undergo stepwise disassembly catalyzed by cathepsin proteases, followed by endosomal membrane penetration and delivery of transcriptionally active core particles into the cytoplasm. Cellular factors that mediate reovirus endocytosis are poorly defined. We found that both genistein, a broad-spectrum tyrosine kinase inhibitor, and PP2, a specific Src-family kinase inhibitor, diminish reovirus infectivity by blocking a cell entry step. Although neither inhibitor impedes internalization of reovirus virions, both inhibitors target virions to lysosomes. Reovirus colocalizes with Src during cell entry, and reovirus infection induces phosphorylation of Src at the activation residue, tyrosine 416. Diminished Src expression by RNA interference reduces reovirus infectivity, suggesting that Src is required for efficient reovirus entry. Collectively, these data provide evidence that Src kinase is an important mediator of signaling events that regulate the appropriate sorting of reovirus particles in the endocytic pathway for disassembly and cell entry.
Collapse
|
33
|
Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. From touchdown to transcription: the reovirus cell entry pathway. Curr Top Microbiol Immunol 2011; 343:91-119. [PMID: 20397070 PMCID: PMC4714703 DOI: 10.1007/82_2010_32] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are prototype members of the Reoviridae family of nonenveloped viruses. Reoviruses contain ten double-stranded RNA gene segments enclosed in two concentric protein shells, outer capsid and core. These viruses serve as a versatile experimental system for studies of virus cell entry, innate immunity, and organ-specific disease. Reoviruses engage cells by binding to cell-surface carbohydrates and the immunoglobulin superfamily member, junctional adhesion molecule-A (JAM-A). JAM-A is a homodimer formed by extensive contacts between its N-terminal immunoglobulin-like domains. Reovirus attachment protein σ1 disrupts the JAM-A dimer, engaging a single JAM-A molecule by virtually the same interface used for JAM-A homodimerization. Following attachment to JAM-A and carbohydrate, reovirus internalization is promoted by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by cathepsin proteases, which exposes the viral membrane-penetration protein, μ1. Proteolytic processing and conformational rearrangements of μ1 mediate endosomal membrane rupture and delivery of transcriptionally active reovirus core particles into the host cell cytoplasm. These events also allow the φ cleavage fragment of μ1 to escape into the cytoplasm where it activates NF-κB and elicits apoptosis. This review will focus on mechanisms of reovirus cell entry and activation of innate immune response signaling pathways.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sarkar P, Danthi P. Determinants of strain-specific differences in efficiency of reovirus entry. J Virol 2010; 84:12723-32. [PMID: 20943982 PMCID: PMC3004336 DOI: 10.1128/jvi.01385-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/30/2010] [Indexed: 12/28/2022] Open
Abstract
Cell entry of reovirus requires a series of ordered steps, which include conformational changes in outer capsid protein μ1 and its autocleavage. The μ1N fragment released as a consequence of these events interacts with host cell membranes and mediates their disruption, leading to delivery of the viral core into the cytoplasm. The prototype reovirus strains T1L and T3D exhibit differences in the efficiency of autocleavage, in the propensity to undergo conformational changes required for membrane penetration, and in the capacity for penetrating host cell membranes. To better understand how polymorphic differences in μ1 influence reovirus entry events, we generated recombinant viruses that express chimeric T1L-T3D μ1 proteins and characterized them for the capacity to efficiently complete each step required for membrane penetration. Our studies revealed two important functions for the central δ region of μ1. First, we found that μ1 autocleavage is regulated by the N-terminal portion of δ, which forms an α-helical pedestal structure. Second, we observed that the C-terminal portion of δ, which forms a jelly-roll β barrel structure, regulates membrane penetration by influencing the efficiency of ISVP* formation. Thus, our studies highlight the molecular basis for differences in the membrane penetration efficiency displayed by prototype reovirus strains and suggest that distinct portions of the reovirus δ domain influence different steps during entry.
Collapse
Affiliation(s)
- Payel Sarkar
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
35
|
Genetic and pharmacologic alteration of cathepsin expression influences reovirus pathogenesis. J Virol 2009; 83:9630-40. [PMID: 19640986 DOI: 10.1128/jvi.01095-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cathepsin family of endosomal proteases is required for proteolytic processing of several viruses during entry into host cells. Mammalian reoviruses utilize cathepsins B (Ctsb), L (Ctsl), and S (Ctss) for disassembly of the virus outer capsid and activation of the membrane penetration machinery. To determine whether cathepsins contribute to reovirus tropism, spread, and disease outcome, we infected 3-day-old wild-type (wt), Ctsb(-/-), Ctsl(-/-), and Ctss(-/-) mice with the virulent reovirus strain T3SA+. The survival rate of Ctsb(-/-) mice was enhanced in comparison to that of wt mice, whereas the survival rates of Ctsl(-/-) and Ctss(-/-) mice were diminished. Peak titers at sites of secondary replication in all strains of cathepsin-deficient mice were lower than those in wt mice. Clearance of the virus was delayed in Ctsl(-/-) and Ctss(-/-) mice in comparison to the levels for wt and Ctsb(-/-) mice, consistent with a defect in cell-mediated immunity in mice lacking cathepsin L or S. Cathepsin expression was dispensable for establishment of viremia, but cathepsin L was required for maximal reovirus growth in the brain. Treatment of wt mice with an inhibitor of cathepsin L led to amelioration of reovirus infection. Collectively, these data indicate that cathepsins B, L, and S influence reovirus pathogenesis and suggest that pharmacologic modulation of cathepsin activity diminishes reovirus disease severity.
Collapse
|
36
|
Danthi P, Coffey CM, Parker JSL, Abel TW, Dermody TS. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain. PLoS Pathog 2008; 4:e1000248. [PMID: 19112493 PMCID: PMC2600812 DOI: 10.1371/journal.ppat.1000248] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 11/25/2008] [Indexed: 02/05/2023] Open
Abstract
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (PD); (TSD)
| | - Caroline M. Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John S. L. Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (PD); (TSD)
| |
Collapse
|
37
|
Ji WT, Chulu JL, Lin FL, Li SK, Lee LH, Liu HJ. Suppression of protein expression of three avian reovirus S-class genome segments by RNA interference. Vet Microbiol 2008; 129:252-61. [DOI: 10.1016/j.vetmic.2007.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
38
|
NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J Virol 2008; 82:3181-91. [PMID: 18216114 DOI: 10.1128/jvi.01612-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reovirus cell entry is mediated by attachment to cell surface carbohydrate and junctional adhesion molecule A (JAM-A) and internalization by beta1 integrin. The beta1 integrin cytoplasmic tail contains two NPXY motifs, which function in recruitment of adaptor proteins and clathrin for endocytosis and serve as sorting signals for internalized cargo. As reovirus infection requires disassembly in the endocytic compartment, we investigated the role of the beta1 integrin NPXY motifs in reovirus internalization. In comparison to wild-type cells (beta1+/+ cells), reovirus infectivity was significantly reduced in cells expressing mutant beta1 integrin in which the NPXY motifs were altered to NPXF (beta1+/+Y783F/Y795F cells). However, reovirus displayed equivalent binding and internalization levels following adsorption to beta1+/+ cells and beta1+/+Y783F/Y795F cells, suggesting that the NPXY motifs are essential for transport of reovirus within the endocytic pathway. Reovirus entry into beta1+/+ cells was blocked by chlorpromazine, an inhibitor of clathrin-mediated endocytosis, while entry into beta1+/+Y783F/Y795F cells was unaffected. Furthermore, virus was distributed to morphologically distinct endocytic organelles in beta1+/+ and beta1+/+Y783F/Y795F cells, providing further evidence that the beta1 integrin NPXY motifs mediate sorting of reovirus in the endocytic pathway. Thus, NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry, which indicates a key role for these sequences in endocytosis of a pathogenic virus.
Collapse
|
39
|
A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 2007; 1:147-57. [PMID: 18005692 PMCID: PMC2034303 DOI: 10.1016/j.chom.2007.03.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/16/2007] [Accepted: 03/19/2007] [Indexed: 02/06/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are highly tractable experimental models for studies of double-stranded (ds) RNA virus replication and pathogenesis. Reoviruses infect respiratory and intestinal epithelium and disseminate systemically in newborn animals. Until now, a strategy to rescue infectious virus from cloned cDNA has not been available for any member of the Reoviridae family of dsRNA viruses. We report the generation of viable reovirus following plasmid transfection of murine L929 (L) cells using a strategy free of helper virus and independent of selection. We used the reovirus reverse genetics system to introduce mutations into viral capsid proteins σ1 and σ3 and to rescue a virus that expresses a green fluorescent protein (GFP) transgene, thus demonstrating the tractability of this technology. The plasmid-based reverse genetics approach described here can be exploited for studies of reovirus replication and pathogenesis and used to develop reovirus as a vaccine vector.
Collapse
|
40
|
Reovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency. J Virol 2007; 82:161-72. [PMID: 17959662 DOI: 10.1128/jvi.01739-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis and myocarditis in infected animals. Differences in apoptosis efficiency displayed by reovirus strains are linked to the viral mu1-encoding M2 gene segment. Studies using pharmacologic inhibitors of reovirus replication demonstrate that apoptosis induction by reovirus requires viral disassembly in cellular endosomes but not RNA synthesis. Since the mu1 protein functions to pierce endosomal membranes during this temporal window, these findings point to an important role for mu1 in activating signaling pathways that lead to apoptosis. To understand mechanisms used by mu1 to induce apoptosis, a panel of mu1 mutant viruses generated by reverse genetics was analyzed for the capacities to penetrate host cell membranes, activate proapoptotic signaling pathways, evoke cell death, and produce encephalitis in newborn mice. We found that single amino acid changes within the delta region of mu1 reduce the efficiency of membrane penetration. These mutations also diminish the capacities of reovirus to activate proapoptotic transcription factors NF-kappaB and IRF-3 and elicit apoptosis. Additionally, we observed that following intracranial inoculation, an apoptosis-deficient mu1 mutant is less virulent in newborn mice in comparison to the wild-type virus. These results indicate a critical function for the membrane penetration activity of mu1 in evoking prodeath signaling pathways that regulate reovirus pathogenesis.
Collapse
|
41
|
Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PW. Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther 2007; 15:1522-30. [PMID: 17457318 DOI: 10.1038/sj.mt.6300179] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reovirus, a potential cancer therapy, replicates more efficiently in Ras-transformed cells than in non-transformed cells. It was presumed that increased translation was the mechanistic basis of reovirus oncolysis. Analyses of each step of the reovirus life cycle now show that cellular processes deregulated by Ras transformation promote not one but three viral replication steps. First, in Ras-transformed cells, proteolytic disassembly (uncoating) of the incoming virions, required for onset of infection, occurs more efficiently. Consequently, threefold more Ras-transformed cells become productively infected with reovirus than non-transformed cells, which accounts for the observed increase of reovirus proteins in Ras-transformed cells. Second, Ras transformation increases the infectious-to-noninfectious virus particle ratio, as virions purified from Ras-transformed cells are fourfold more infectious than those purified from non-transformed cells. Progeny assembled in non- and Ras-transformed cells appear similar by electron microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, suggesting that Ras transformation introduces a subtle change necessary for virus infectivity. Finally, reovirus release, mediated by caspase-induced apoptosis, is ninefold more efficient in Ras-transformed cells. The combined effects of enhanced virus uncoating, infectivity, and release result in >100-fold differences in virus titers within one round of replication. Our analysis reveals previously unrecognized mechanisms by which Ras transformation mediates selective viral oncolysis.
Collapse
Affiliation(s)
- Paola Marcato
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
42
|
Ivanovic T, Agosto MA, Chandran K, Nibert ML. A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. J Biol Chem 2007; 282:12210-9. [PMID: 17284448 PMCID: PMC4822165 DOI: 10.1074/jbc.m610258200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
After crossing the cellular membrane barrier during cell entry, most animal viruses must undergo further disassembly before initiating viral gene expression. In many cases, these disassembly mechanisms remain poorly defined. For this report, we examined a final step in disassembly of the mammalian reovirus outer capsid: cytoplasmic release of the central, delta fragment of membrane penetration protein mu1 to yield the transcriptionally active viral core particle. An in vitro assay with reticulocyte lysate recapitulated the release of intact delta molecules. Requirements for activity in this system were shown to include a protein factor, ATP, and Mg(2+) and K(+) ions, consistent with involvement of a molecular chaperone such as Hsc70. Immunodepletion of Hsc70 and Hsp70 impaired delta release, which was then rescued by addition of purified Hsc70. Hsc70 was associated with released delta molecules not only in the lysate but also during cell entry. We conclude that Hsc70 plays a defined role in reovirus outer capsid disassembly, during or soon after membrane penetration, to prepare the entering particle for gene expression and replication.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Virology, Harvard University, Boston, Massachusetts 02115
| | - Melina A. Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115
| | - Kartik Chandran
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115
- Training Program in Virology, Harvard University, Boston, Massachusetts 02115
- Training Program in Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115
- To whom correspondence should be addressed: Dept. of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115. Tel.: 617-432-4838; Fax: 617-738-7664;
| |
Collapse
|
43
|
Guglielmi KM, Johnson EM, Stehle T, Dermody TS. Attachment and cell entry of mammalian orthoreovirus. Curr Top Microbiol Immunol 2006; 309:1-38. [PMID: 16909895 DOI: 10.1007/3-540-30773-7_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) serve as a tractable model system for studies of viral pathogenesis. Reoviruses infect virtually all mammals, but cause disease only in the very young. Prototype strains of the three reovirus serotypes differ in pathogenesis following infection of newborn mice. Reoviruses are nonenveloped, icosahedral particles that consist of ten segments of double-stranded RNA encapsidated within two protein shells, the inner core and outer capsid. High-resolution structures of individual components of the reovirus outer capsid and a single viral receptor have been solved and provide insight into the functions of these molecules in viral attachment, entry, and pathogenesis. Attachment of reovirus to target cells is mediated by the reovirus sigma1 protein, a filamentous trimer that projects from the outer capsid. Junctional adhesion molecule-A is a serotype-independent receptor for reovirus, and sialic acid is a coreceptor for serotype 3 strains. After binding to receptors on the cell surface, reovirus is internalized via receptor-mediated endocytosis. Internalization is followed by stepwise disassembly of the viral outer capsid in the endocytic compartment. Uncoating events, which require acidic pH and endocytic proteases, lead to removal of major outer-capsid protein sigma3, resulting in exposure of membrane-penetration mediator micro1 and a conformational change in attachment protein sigma1. After penetration of endosomes by uncoated particles, the transcriptionally active viral core is released into the cytoplasm, where replication proceeds. Despite major advances in defining reovirus attachment and entry mechanisms, many questions remain. Ongoing research is aimed at understanding serotype-dependent differences in reovirus tropism, viral cell-entry pathways, the individual and corporate roles of acidic pH and proteases in viral entry, and micro1 function in membrane penetration.
Collapse
Affiliation(s)
- K M Guglielmi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
44
|
Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JSL. Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 2006; 80:8422-38. [PMID: 16912293 PMCID: PMC1563861 DOI: 10.1128/jvi.02601-05] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms by which reoviruses induce apoptosis have not been fully elucidated. Earlier studies identified the mammalian reovirus S1 and M2 genes as determinants of apoptosis induction. However, no published results have demonstrated the capacities of the proteins encoded by these genes to induce apoptosis, either independently or in combination, in the absence of reovirus infection. Here we report that the mammalian reovirus micro1 protein, encoded by the M2 gene, was sufficient to induce apoptosis in transfected cells. We also found that micro1 localized to lipid droplets, endoplasmic reticulum, and mitochondria in both transfected cells and infected cells. Two small regions encompassing amphipathic alpha-helices within a carboxyl-terminal portion of micro1 were necessary for efficient induction of apoptosis and association with lipid droplets, endoplasmic reticulum, and mitochondria in transfected cells. Induction of apoptosis by micro1 and its association with lipid droplets and intracellular membranes in transfected cells were abrogated when micro1 was coexpressed with sigma3, with which it is known to coassemble. We propose that micro1 plays a direct role in the induction of apoptosis in infected cells and that this property may relate to the capacity of micro1 to associate with intracellular membranes. Moreover, during reovirus infection, association with sigma3 may regulate apoptosis induction by micro1.
Collapse
Affiliation(s)
- Caroline M Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kobayashi T, Chappell JD, Danthi P, Dermody TS. Gene-specific inhibition of reovirus replication by RNA interference. J Virol 2006; 80:9053-63. [PMID: 16940517 PMCID: PMC1563907 DOI: 10.1128/jvi.00276-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/03/2006] [Indexed: 01/26/2023] Open
Abstract
Mammalian reoviruses contain a genome of 10 segments of double-stranded RNA (dsRNA). Reovirus replication and assembly occur within distinct structures called viral inclusions, which form in the cytoplasm of infected cells. Viral nonstructural proteins muNS and sigmaNS and core protein mu2 play key roles in forming viral inclusions and recruiting other viral proteins and RNA to these structures for replication and assembly. However, the precise functions of these proteins in viral replication are poorly defined. Therefore, to better understand the functions of reovirus proteins associated with formation of viral inclusions, we used plasmid-based vectors to establish 293T cell lines stably expressing small interfering RNAs (siRNAs) specific for transcripts encoding the mu2, muNS, and sigmaNS proteins of strain type 3 Dearing (T3D). Infectivity assays revealed that yields of T3D, but not those of strain type 1 Lang, were significantly decreased in 293T cells stably expressing mu2, muNS, or sigmaNS siRNA. Stable expression of siRNAs specific for any one of these proteins substantially diminished viral dsRNA, protein synthesis, and inclusion formation, indicating that each is a critical component of the viral replication machinery. Using cell lines stably expressing muNS siRNA, we developed a complementation system to rescue viral replication by transient transfection with recombinant T3D muNS in which silent mutations were introduced into the sequence targeted by the muNS siRNA. Furthermore, we demonstrated that muNSC, which lacks the first 40 amino residues of muNS, is incapable of restoring reovirus growth in the complementation system. These results reveal interdependent functions for viral inclusion proteins and indicate that cell lines stably expressing reovirus siRNAs are useful tools for the study of viral protein structure-function relationships.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Pediatrics, and Lamb Center for Pediatric Research (D7235 MCN), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
46
|
Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, Nemerow GR, Bergelson JM, Dermody TS. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 2006; 80:2760-70. [PMID: 16501085 PMCID: PMC1395463 DOI: 10.1128/jvi.80.6.2760-2770.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Microbiology and Immunology, Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Danthi P, Hansberger MW, Campbell JA, Forrest JC, Dermody TS. JAM-A-independent, antibody-mediated uptake of reovirus into cells leads to apoptosis. J Virol 2006; 80:1261-70. [PMID: 16415003 PMCID: PMC1346953 DOI: 10.1128/jvi.80.3.1261-1270.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays a major role in the cytopathic effect induced by reovirus following infection of cultured cells and newborn mice. Strain-specific differences in the capacity of reovirus to induce apoptosis segregate with the S1 and M2 gene segments, which encode attachment protein sigma1 and membrane penetration protein mu1, respectively. Virus strains that bind to both junctional adhesion molecule-A (JAM-A) and sialic acid are the most potent inducers of apoptosis. In addition to receptor binding, events in reovirus replication that occur during or after viral disassembly but prior to initiation of viral RNA synthesis also are required for reovirus-induced apoptosis. To determine whether reovirus infection initiated in the absence of JAM-A and sialic acid results in apoptosis, Chinese hamster ovary (CHO) cells engineered to express Fc receptors were infected with reovirus using antibodies directed against viral outer-capsid proteins. Fc-mediated infection of CHO cells induced apoptosis in a sigma1-independent manner. Apoptosis following this uptake mechanism requires acid-dependent proteolytic disassembly, since treatment of cells with the weak base ammonium chloride diminished the apoptotic response. Analysis of T1L x T3D reassortant viruses revealed that the mu1-encoding M2 gene segment is the only viral determinant of the apoptosis-inducing capacity of reovirus when infection is initiated via Fc receptors. Additionally, a temperature-sensitive, membrane penetration-defective M2 mutant, tsA279.64, is an inefficient inducer of apoptosis. These data suggest that signaling pathways activated by binding of sigma1 to JAM-A and sialic acid are dispensable for reovirus-mediated apoptosis and that the mu1 protein plays an essential role in stimulating proapoptotic signaling.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Pediatrics, and Elizabeth B. Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
48
|
Clark KM, Wetzel JD, Gu Y, Ebert DH, McAbee SA, Stoneman EK, Baer GS, Zhu Y, Wilson GJ, Prasad BVV, Dermody TS. Reovirus variants selected for resistance to ammonium chloride have mutations in viral outer-capsid protein sigma3. J Virol 2006; 80:671-81. [PMID: 16378970 PMCID: PMC1346852 DOI: 10.1128/jvi.80.2.671-681.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the sigma3 protein and proteolytic cleavage of the mu1/mu1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the sigma3-encoding S4 gene. The deduced sigma3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of sigma3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant sigma3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of sigma3 demonstrated native capsid protein organization and minimal alterations in sigma3 structure. These results suggest that mutations in sigma3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.
Collapse
Affiliation(s)
- Kimberly M Clark
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37241, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
VanCompernolle SE, Taylor RJ, Oswald-Richter K, Jiang J, Youree BE, Bowie JH, Tyler MJ, Conlon JM, Wade D, Aiken C, Dermody TS, KewalRamani VN, Rollins-Smith LA, Unutmaz D. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 2005; 79:11598-606. [PMID: 16140737 PMCID: PMC1212620 DOI: 10.1128/jvi.79.18.11598-11606.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.
Collapse
Affiliation(s)
- Scott E VanCompernolle
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 21st Ave. South, Medical Center North, Room AA5206, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pal K, Kaetzel CS, Brundage K, Cunningham CA, Cuff CF. Regulation of polymeric immunoglobulin receptor expression by reovirus. J Gen Virol 2005; 86:2347-2357. [PMID: 16033983 DOI: 10.1099/vir.0.80690-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA and IgA-coated immune complexes from the lamina propria across epithelia and into secretions. The effect of reovirus infection on regulation of pIgR expression in the human intestinal epithelial cell line HT-29 was characterized in this report. Both replication-competent and UV-inactivated reovirus at m.o.i. equivalents of 1-100 p.f.u. per cell upregulated pIgR mRNA by 24 h post-infection and intracellular pIgR protein was increased at 48 h following exposure to UV-inactivated virus. Binding of virus to HT-29 cells was required, as pre-incubating virus with specific antiserum, but not non-immune serum, inhibited reovirus-mediated pIgR upregulation. Endosomal acidification leading to uncoating of virus is a required step for pIgR upregulation, as ammonium chloride or bafilomycin A1 pre-treatment inhibited virus-induced pIgR upregulation. Inhibition experiments using the calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal suggested that calpains are involved in reovirus-mediated pIgR upregulation. Upregulation of pIgR following virus infection appears to be an innate immune response against invading pathogens that could help the host clear infection effectively. Signalling induced by microbes and their products may serve to augment pIgR-mediated transcytosis of IgA, linking the innate and acquired immune responses to viruses.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen Brundage
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Cynthia A Cunningham
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Christopher F Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| |
Collapse
|