1
|
Doig AI, Sands KN, Boongaling B, Zhou W, Back TG. Synthesis, antioxidant and structural properties of modified ebselen derivatives and conjugates. Org Biomol Chem 2024; 22:8881-8897. [PMID: 39403024 DOI: 10.1039/d4ob01400f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Ebselen is a drug in clinical trials for several diseases and degenerative conditions where oxidative stress is implicated. A series of novel ebselen analogues was synthesized, including hydroxy-, alkoxy- and aminomethylene derivatives, as well as hybrid species where the ebselen selenium atom is shared with other potent antioxidant structures, such as cyclic selenenyl sulfide, cyclic seleninate ester and spirodioxyselenurane moieties. Conjugates of ebselen with cholesterol, prednisolone and the radical inhibitor BHT were also prepared. The products were tested for antioxidant activity in an NMR-based assay by measuring the rate of consumption of benzyl thiol or the production of dibenzyl disulfide in the presence of hydrogen peroxide when catalyzed by the ebselen analogues. Activities ranged from 12 to 0.12 times that of ebselen. The oxidation of the 2-hydroxymethylene derivative of ebselen was faster than thiolysis in the initial step and the overall rate was further accelerated under basic conditions. The corresponding selenenyl sulfide analogue underwent very slow disproportionation under neutral conditions that was enhanced by the presence of a base catalyst. During investigation of possible fluxional behaviour of a bis-amide analogue, an unusual tetraphenyphosphonium salt of a tricoordinate selenium pincer anion was discovered with exceptionally potent catalytic activity, 130 times that of ebselen. In addition to rate measurements, X-ray crystallography and DFT computational methods were also employed to gain further structural and mechanistic insights.
Collapse
Affiliation(s)
- Adrian I Doig
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4.
| | - Kai N Sands
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4.
| | - Bienca Boongaling
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4.
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4.
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
2
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
3
|
Godschalk R, Faulk C, LaRocca J, van Benthem J, Marchetti F. Epigenotoxicity: Decoding the epigenetic imprints of genotoxic agents and their implications for regulatory genetic toxicology. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39262275 DOI: 10.1002/em.22626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Regulatory genetic toxicology focuses on DNA damage and subsequent gene mutations. However, genotoxic agents can also affect epigenetic marks, and incorporation of epigenetic data into the regulatory framework may thus enhance the accuracy of risk assessment. Additionally, epigenetic alterations may identify non-genotoxic carcinogens that are not captured with the current battery of tests. Epigenetic alterations could also explain long-term consequences and potential transgenerational effects in the absence of DNA mutations. Therefore, at the 2022 International Workshops on Genotoxicity Testing (IWGT) in Ottawa (Ontario, Canada), an expert workgroup explored whether including epigenetic endpoints would improve regulatory genetic toxicology. Here we summarize the presentations and the discussions on technical advancements in assessing epigenetics, how the assessment of epigenetics can enhance strategies for detecting genotoxic and non-genotoxic carcinogens and the correlation between epigenetic alterations with other relevant apical endpoints.
Collapse
Affiliation(s)
- Roger Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Sahana T, Valappil AK, Kundu S. Chalcogen bonding interaction between ebselen and nitrite promote N-nitrosation of amines. Chem Commun (Camb) 2024; 60:7725-7728. [PMID: 38967548 DOI: 10.1039/d4cc02137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Ebselen (EbSe), a therapeutically significant molecule, is shown to exhibit chalcogen bonding interaction with nitrite anion (ONO-). This report suggests that the σ-holes of EbSe are powerful for offering weak but influential interactions towards biologically relevant ONO-, thereby assisting oxidative transformations like N-nitrosation of aromatic amines.
Collapse
Affiliation(s)
- Tuhin Sahana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| | - Adwaith K Valappil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram - 695551, India.
| |
Collapse
|
5
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
6
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
7
|
Singh A, Avinash K, Malaspina LA, Banoo M, Alhameedi K, Jayatilaka D, Grabowsky S, Thomas SP. Dynamic Covalent Bonds in the Ebselen Class of Antioxidants Probed by X-ray Quantum Crystallography. Chemistry 2024; 30:e202303384. [PMID: 38126954 DOI: 10.1002/chem.202303384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Dynamic bonds are essential structural ingredients of dynamic covalent chemistry that involve reversible cleavage and formation of bonds. Herein, we explore the electronic characteristics of Se-N bonds in the organo-selenium antioxidant ebselen and its derivatives for their propensity to function as dynamic covalent bonds by employing high-resolution X-ray quantum crystallography and complementary computational studies. An analysis of the experimentally reconstructed X-ray wavefunctions reveals the salient electronic features of the Se-N bonds with very low electron density localized at the bonding region and a positive Laplacian value at the bond critical point. Bond orders and percentage covalency and ionicity estimated from the X-ray wavefunctions, along with localized orbital locator (LOL) and electron localization function (ELF) analyses show that the Se-N bond is unique in its closed shell-like features, despite being a covalent bond. Time-dependent DFT calculations simulate the cleavage of Se-N bonds in ebselen in the excited state, further substantiating their nature as dynamic bonds.
Collapse
Affiliation(s)
- Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Kiran Avinash
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Lorraine A Malaspina
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012, Bern, Switzerland
| | - Masoumeh Banoo
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Khidhir Alhameedi
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Faculty of Education for Pure Sciences -, University of Kerbala, Karbala, Iraq
| | - Dylan Jayatilaka
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Simon Grabowsky
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012, Bern, Switzerland
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
8
|
Ali F, Alom S, Ali SR, Kondoli B, Sadhu P, Borah C, Kakoti BB, Ghosh SK, Shakya A, Ahmed AB, Singh UP, Bhat HR. Ebselen: A Review on its Synthesis, Derivatives, Anticancer Efficacy and Utility in Combating SARS-COV-2. Mini Rev Med Chem 2024; 24:1203-1225. [PMID: 37711004 DOI: 10.2174/1389557523666230914103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 09/16/2023]
Abstract
Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti- Alzheimer's, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-kB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteinecontaining catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Farak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur Medical College and Hospital, Tezpur, Sonitpur Assam, 784501,India
| | - Sheikh Rezzak Ali
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Biswanarayan Kondoli
- Department of Pharmacy, Tripura University, Suryamani Nagar, Agartala, Tripura 799022, India
| | - Prativa Sadhu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Chinmoyee Borah
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Kamrup, Assam, 781017, India
| | - Bibhuti Bushan Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Abdul Baquee Ahmed
- Girijananda Chowdhury Institute of Pharmaceutical Science,Tezpur Medical College and Hospital, Tezpur, Sonitpur-784501, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
9
|
Makhijani K, Kumbhare LB, Nayak M, Kunwar A, Singh BG. Bis(1-methylimidazol-2-yl) diselenide and its evaluation as a chemical radio-protector: role of kinetic rate constants for ROS scavenging and glutathione peroxidase like activity. Free Radic Res 2024; 58:43-56. [PMID: 38165076 DOI: 10.1080/10715762.2023.2299341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Bis(1-methylimidazol-2-yl) diselenide (MeImSe), a derivative of selenoneine, has been examined for bimolecular rate constants for scavenging of various radiolytically and non-radiolytically generated reactive oxygen species (ROS). Further, its potential to show glutathione peroxidase (GPx)-like activity and to protect in vitro models of DNA and lipid against radiation induced strand breakage and lipid peroxidation, respectively were studied. The results confirmed that MeImSe scavenged all major short-lived (hydroxyl radical) and long-lived (peroxyl radical, carbonate radical, nitrogen dioxide radical, hypochlorite and hydrogen peroxide) oxidants involved in the radiation toxicity either directly or through GPx-like catalytic mechanism. The rate constants of MeImSe for these oxidants were found to be comparable to analogous sulfur and selenium-based compounds. The enzyme kinetics study established that MeImSe took part in the GPx cycle through the reductive pathway. Further, MeImSe inhibited the radiation induced DNA strand cleavage and lipid peroxidation with half maximal inhibitory concentration (IC50) of ∼ 60 μM and ∼100 μM, respectively. Interestingly, MeImSe treatment in the above concentration range (>100 μM) did not show any significant toxicity in normal human lung fibroblast (WI26) cells. The balance between efficacy and toxicity of MeImSe as a chemical radioprotector was attributed to the formation of less reactive intermediates during its oxidation/reduction reactions as evidenced from NMR studies.HighlightsMeImSe, a derivative of selenoneine protects DNA and lipid from radiation damageMeImSe scavenges all major short- and long-lived oxidants involved in radiation toxicityRate constants of MeImSe for ROS scavenging determined by pulse radiolysis techniqueFirst organoselenium compound reported to scavenge nitrogen dioxide radicalMeImSe exhibits GPx-like activity through reductive pathway.
Collapse
Affiliation(s)
- K Makhijani
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - L B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - M Nayak
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Rieder GS, Nogara PA, Omage FB, Duarte T, Dalla Corte CL, da Rocha JBT. Computational analysis of the interactions between Ebselen and derivatives with the active site of the main protease from SARS-CoV-2. Comput Biol Chem 2023; 107:107956. [PMID: 37748316 DOI: 10.1016/j.compbiolchem.2023.107956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
The main protease (Mpro) of the novel coronavirus SARS-CoV-2 is a key target for developing antiviral drugs. Ebselen (EbSe) is a selenium-containing compound that has been shown to inhibit Mpro in vitro by forming a covalent bond with the cysteine (Cys) residue in the active site of the enzyme. However, EbSe can also bind to other proteins, like albumin, and low molecular weight compounds that have free thiol groups, such as Cys and glutathione (GSH), which may affect its availability and activity. In this study, we analyzed the Mpro interaction with EbSe, its analogues, and its metabolites with Cys, GSH, and albumin by molecular docking. We also simulated the electronic structure of the generated molecules by density functional theory (DFT) and explored the stability of EbSe and one of its best derivatives, EbSe-2,5-MeClPh, in the catalytic pocket of Mpro through covalent docking and molecular dynamics. Our results show that EbSe and its analogues bound to GSH/albumin have larger distance between the selenium atom of the ligands and the sulfur atom of Cys145 of Mpro than the other compounds. This suggests that EbSe and its GSH/albumin-analogues may have less affinity for the active site of Mpro. EbSe-2,5-MeClPh was found one of the best molecules, and in molecular dynamics simulations, it showed to undergo more conformational changes in the active site of Mpro, in relation to EbSe, which remained stable in the catalytic pocket. Moreover, this study also reveals that all compounds have the potential to interact closely with the active site of Mpro, providing us with a concept of which derivatives may be promising for in vitro analysis in the future. We propose that these compounds are potential covalent inhibitors of Mpro and that organoselenium compounds are molecules that should be studied for their antiviral properties.
Collapse
Affiliation(s)
- Guilherme Schmitt Rieder
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Pablo Andrei Nogara
- Federal Institute of Education, Science and Technology Sul-rio-grandense (IFSul), Bagé 96418-400, RS, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Computational Biology Research Group, Embrapa Agricultural Informatics, Campinas, São Paulo, Brazil
| | - Tâmie Duarte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Cristiane Lenz Dalla Corte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Biochemistry, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 90035-003.
| |
Collapse
|
11
|
Guerrero F, Carmona A, Vidal V, Franco A, Martín-Malo A, Sánchez-Fernández EM, Carrillo-Carrión C. A selenoureido-iminoglycolipid transported by zeolitic-imidazolate framework nanoparticles: a novel antioxidant therapeutic approach. NANOSCALE HORIZONS 2023; 8:1700-1710. [PMID: 37819240 DOI: 10.1039/d3nh00363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A selenium-containing metal-organic framework with remarkable antioxidant capacity and ROS-scavenging activity was constructed by a controlled de novo encapsulation approach of a glycoconjugate mimetic, specifically a sp2-iminoglycolipid bearing a selenoureido fragment (DSeU), within a zeolitic-imidazolate framework exoskeleton. Biocompatible and homogeneous nanosized particles of ∼70 nm (DSeU@ZIF8) were obtained, which could be efficiently internalized in cells, overcoming the poor solubility in biological media and limited bioavailability of glycolipids. The ZIF-particle served as nanocarrier for the intracellular delivery of the selenocompound to cells, promoted by the acidic pH inside endosomes/lysosomes. As demonstrated by in vitro studies, the designed DSeU@ZIF8 nanoparticles displayed a high antioxidant activity at low doses; lower intracellular ROS levels were observed upon the uptake of DSeU@ZIF8 by human endothelial cells. Even more interesting was the finding that these DSeU@ZIF8 particles were able to reverse to a certain level the oxidative stress induced in cells by pre-treatment with an oxidizing agent. This possibility of modulating the oxidative stress in living cells may have important implications in the treatment of diverse pathological complications that are generally accompanied with elevated ROS levels.
Collapse
Affiliation(s)
- Fátima Guerrero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Andrés Carmona
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Victoria Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Franco
- Leibniz Institute für Katalyse e. V., 18059 Rostock, Germany
| | - Alejandro Martín-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain.
| | - Carolina Carrillo-Carrión
- Institute for Chemical Research (IIQ), CSIC-University of Seville, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
12
|
Sands KN, Burman AL, Ansah-Asamoah E, Back TG. Chemistry Related to the Catalytic Cycle of the Antioxidant Ebselen. Molecules 2023; 28:molecules28093732. [PMID: 37175141 PMCID: PMC10180093 DOI: 10.3390/molecules28093732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The antioxidant drug ebselen has been widely studied in both laboratories and in clinical trials. The catalytic mechanism by which it destroys hydrogen peroxide via reduction with glutathione or other thiols is complex and has been the subject of considerable debate. During reinvestigations of several key steps, we found that the seleninamide that comprises the first oxidation product of ebselen underwent facile reversible methanolysis to an unstable seleninate ester and two dimeric products. In its reaction with benzyl alcohol, the seleninamide produced a benzyl ester that reacted readily by selenoxide elimination, with formation of benzaldehyde. Oxidation of ebselen seleninic acid did not afford a selenonium seleninate salt as previously observed with benzene seleninic acid, but instead generated a mixture of the seleninic and selenonic acids. Thiolysis of ebselen with benzyl thiol was faster than oxidation by ca. an order of magnitude and produced a stable selenenyl sulfide. When glutathione was employed, the product rapidly disproportionated to glutathione disulfide and ebselen diselenide. Oxidation of the S-benzyl selenenyl sulfide, or thiolysis of the seleninamide with benzyl thiol, afforded a transient thiolseleninate that also readily underwent selenoxide elimination. The S-benzyl derivative disproportionated readily when catalyzed by the simultaneous presence of both the thiol and triethylamine. The phenylthio analogue disproportionated when exposed to ambient or UV (360 nm) light by a proposed radical mechanism. These observations provide additional insight into several reactions and intermediates related to ebselen.
Collapse
Affiliation(s)
- Kai N Sands
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Austin L Burman
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Esther Ansah-Asamoah
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Kumar M, Chhillar B, Verma D, Nain S, Singh VP. Introduction of Methyl Group in Substituted Isoselenazolones: Catalytic and Mechanistic Study. J Org Chem 2023; 88:4273-4285. [PMID: 36930142 DOI: 10.1021/acs.joc.2c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Copper-catalyzed direct selenation of substituted 2-bromo-N-phenylbenzamide substrates with elemental selenium powder provided a series of methoxy-substituted isoselenazolones via the C-Se and Se-N bond formations. Phenolic substituted isoselenazolones have been obtained by O-demethylation of the corresponding methoxy-substituted analogues using boron tribromide. Some isoselenazolones have been structurally characterized by X-ray single-crystal analysis. The glutathione peroxidase (GPx)-like antioxidant activity of isoselenazolones has been evaluated both in thiophenol and coupled-reductase assays. All isoselenazolones showed good GPx-like activities in the coupled-reductase assay. The ferric-reducing antioxidant power of phenolic antioxidants has also been evaluated. The best phenolic antioxidants were found to be good ferric-reducing antioxidant power agents. The single electron transfer, hydrogen atom transfer, and proton-coupled electron transfer mechanisms for the antioxidant properties of all catalysts have been supported by density functional theory calculations. The catalytic cycle was proposed for one of the phenolic isoselenazolones involving diselenide, selenenyl sulfide, selenol, and selenenic acid as intermediates using 77Se{1H} NMR spectroscopy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Babli Chhillar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Divya Verma
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Sumit Nain
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
14
|
Huang YM, Cheng Y, Peng ZN, Pang LP, Li JY, Xiao JA, Zhang YF, Cui JG. Synthesis and antitumor activity of some cholesterol-based selenocyanate compounds. Steroids 2023; 194:109217. [PMID: 36893827 DOI: 10.1016/j.steroids.2023.109217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
The introduction of selenium-containing functional groups into steroids to study the biological activities of related derivatives is rarely reported in the literature. In the present study, using cholesterol as raw material, four cholesterol-3-selenocyanoates and eight B-norcholesterol selenocyanate derivatives were synthesized, respectively. The structures of the compounds were characterized by NMR and MS. The results of the in vitro antiproliferative activity test showed that the cholesterol-3-selenocyanoate derivatives did not exhibit obvious inhibitory on the tested tumor cell lines. However, the B-norcholesterol selenocyanate derivatives obtained by structural modification of cholesterol showed good inhibitory activity against the proliferation of tumor cell. Among them, compounds 9b-c, 9f and 12 showed similar inhibitory activity against tested tumor cells as positive control 2-methoxyestradiol, and better than Abiraterone. At the same time, these B-norcholesterol selenocyanate derivatives displayed a strong selective inhibitory against Sk-Ov-3 cell line. Except for compound 9g, the IC50 value of all B-norcholesterol selenocyanate compounds against Sk-Ov-3 cells was less than 10 µM, and compound 9d was 3.4 µM. In addition, Annexin V-FITC/PI double staining was used to analyze the cell death mechanism. The results showed that compound 9c could induce Sk-Ov-3 cells to enter programmed apoptosis in a dose-dependent manner. Furthermore, the in vivo antitumor experiments of compound 9f against zebrafish xenograft tumor showed that 9f displayed obvious inhibitory effect on the growth of human cervical cancer (HeLa) xenograft tumor in zebrafish. Our results provide new thinking for the study of such compounds as new antitumor drugs.
Collapse
Affiliation(s)
- Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Zi-Ning Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Li-Ping Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Jun-Yan Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yuan-Fei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jian-Guo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
15
|
Lai Y, Wang J, Yue N, Zhang Q, Wu J, Qi W, Su R. Glutathione peroxidase-like nanozymes: mechanism, classification, and bioapplication. Biomater Sci 2023; 11:2292-2316. [PMID: 36790050 DOI: 10.1039/d2bm01915a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The field of nanozymes is developing rapidly. In particular, glutathione peroxidase (GPx)-like nanozymes, which catalytically reduce H2O2/organic hydroperoxides to H2O/alcohols, have attracted considerable attention. GPx-like nanozymes are powerful antioxidant enzymes known to combat oxidative stress. They have broad applications, including cytoprotection, anti-inflammation, neuroprotection, tumor therapy, and anti-aging. Although much progress has been made, GPx-like nanozymes have not been well discussed or fully reviewed as other nanozymes. This review aims to summarize recent advances on GPx-like nanozymes from the vantage point of mechanism, classification, and bioapplication. Future prospects for advancing their design and application are also discussed.
Collapse
Affiliation(s)
- Yifan Lai
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China.
| | - Jingyu Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China.
| | - Ning Yue
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China.
| | - Qiaochu Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China.
| | - Jiangjiexing Wu
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P.R. China. .,School of Marine Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China. .,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P.R. China. .,School of Marine Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
16
|
Barbosa FAR, Canto RFS, Teixeira KF, de Souza AS, de Oliveira AS, Braga AL. Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:689-700. [PMID: 35209817 DOI: 10.2174/0929867329666220224161454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-β (Aβ) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aβ aggregation. OBJECTIVE In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aβ. METHODS We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs. RESULTS In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs. CONCLUSION We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.
Collapse
Affiliation(s)
- Flavio A R Barbosa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Rômulo F S Canto
- Department of Pharmacosciences, Foundation Federal University of Health Sciences of Porto Alegre, Porto Alegre-RS, Brazil
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Anacleto S de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Antonio L Braga
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
17
|
Macegoniuk K, Tabor W, Mazzei L, Cianci M, Giurg M, Olech K, Burda-Grabowska M, Kaleta R, Grabowiecka A, Mucha A, Ciurli S, Berlicki Ł. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J Med Chem 2023; 66:2054-2063. [PMID: 36661843 PMCID: PMC9923736 DOI: 10.1021/acs.jmedchem.2c01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Screening of 25 analogs of Ebselen, diversified at the N-aromatic residue, led to the identification of the most potent inhibitors of Sporosarcina pasteurii urease reported to date. The presence of a dihalogenated phenyl ring caused exceptional activity of these 1,2-benzisoselenazol-3(2H)-ones, with Ki value in a low picomolar range (<20 pM). The affinity was attributed to the increased π-π and π-cation interactions of the dihalogenated phenyl ring with αHis323 and αArg339 during the initial step of binding. Complementary biological studies with selected compounds on the inhibition of ureolysis in whole Proteus mirabilis cells showed a very good potency (IC50 < 25 nM in phosphate-buffered saline (PBS) buffer and IC90 < 50 nM in a urine model) for monosubstituted N-phenyl derivatives. The crystal structure of S. pasteurii urease inhibited by one of the most active analogs revealed the recurrent selenation of the Cys322 thiolate, yielding an unprecedented Cys322-S-Se-Se chemical moiety.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Mirosław Giurg
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kamila Olech
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kaleta
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,. Phone: +48 71 320
3344. Fax: +48 71 320 2427
| |
Collapse
|
18
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
19
|
Huang Y, Peng Z, Wei M, Pang L, Cheng Y, Xiao JA, Gan C, Cui J. Straightforward synthesis of steroidal selenocyanates through oxidative umpolung selenocyanation of steroids and their antitumor activity. J Steroid Biochem Mol Biol 2023; 225:106203. [PMID: 36228841 DOI: 10.1016/j.jsbmb.2022.106203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Straightforward access to steroidal selenocyanates in a single assembly step from steroids remains a significant challenge. However, the development of novel method for the synthesis of steroidal selenocyanates and further investigation of their bioactivities have largely lagged behind. In this work, selenocyano groups were directly introduced into the 17- or 21-position of pregnenolone, the 2-position of estradiol, and the 16-position of estrone. A total of 16 estrogen selenocyanate derivatives with diverse structures were synthesized, and the tumor cell lines closely related to the expression level of estrogen were used to investigate the inhibitory activity of the target products on tumor cell proliferation in vitro. The results revealed that the 17-selenocyano-substituted pregnenolone selenocyanate derivatives 1b-3b exhibit obvious inhibitory activity against the tested tumor cell lines. Additionally, the 2-selenocyano-substituted estradiol derivatives and 16-selenocyano-substituted estrone derivatives exhibit selective inhibitory on HeLa cell lines. Among them, 2-selenocyano-3-methoxyestradiol-17-benzoate (7e) displayed an IC50 value of 4.1 µM against HeLa cells and induced programmed apoptosis in HeLa cancer cells. Furthermore, compound 7e could significantly inhibit the growth of human cervical cancer xenografts in zebrafish in vivo. This approach provides new insights for future steroid antitumor drug design.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Zining Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Meizhen Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Liping Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
20
|
Chen YC, Li CW, Chen JJ, Shih TL. Synthesis of selenophene-based chalcone analogs and assessment of their biological activity as anticancer agents. Arch Pharm (Weinheim) 2023; 356:e2200486. [PMID: 36587972 DOI: 10.1002/ardp.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Selenium is an essential micronutrient that is beneficial to human health. Selenium-containing drugs have been developed as antioxidants, anti-inflammatory, and anticancer agents. However, the synthesis of selenium-containing chalcones has not been fully explored. Therefore, we report the synthesis of novel selenophene-based chalcone analogs and reveal their biological activities as anticancer agents. Among the seven synthesized molecules, compounds 6, 8, and 10 exhibited anticancer activity with IC50 values of 19.98 ± 3.38, 38.23 ± 3.30, and 46.95 ± 5.68 μM, respectively, against human colorectal adenocarcinoma (HT-29) cells. Clonogenic assays and Western blot analysis tests further confirmed that compound 6 effectively induced apoptosis in HT-29 cells through mitochondrial- and caspase-3-dependent pathways.
Collapse
Affiliation(s)
- Ya-Chen Chen
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Cai-Wei Li
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
21
|
Gay RD, Enke YL, Kirk JR, Goldman DR. Therapeutics for hearing preservation and improvement of patient outcomes in cochlear implantation—Progress and possibilities. Hear Res 2022; 426:108637. [DOI: 10.1016/j.heares.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
|
22
|
Gilbert AK, Newton TD, Hettiaratchi MH, Pluth MD. Reactive sulfur and selenium species in the regulation of bone homeostasis. Free Radic Biol Med 2022; 190:148-157. [PMID: 35940516 PMCID: PMC9893879 DOI: 10.1016/j.freeradbiomed.2022.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) are important modulators of physiological signaling and play important roles in bone tissue regulation. Both reactive sulfur species (RSS) and reactive selenium species (RSeS) are involved in ROS signaling, and recent work suggests RSS and RSeS involvement in the regulation of bone homeostasis. For example, RSS can promote osteogenic differentiation and decrease osteoclast activity and differentiation, and the antioxidant activity of RSeS play crucial roles in balancing bone remodeling. Here, we outline current research progress on the application of RSS and RSeS in bone disease and regeneration. Focusing on these investigations, we highlight different methods, tools, and sources of RSS and RSeS, and we also highlight future opportunities for delivery of RSS and RSeS in biological environments relating to bone.
Collapse
Affiliation(s)
- Annie K Gilbert
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Turner D Newton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States
| | - Marian H Hettiaratchi
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States.
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
23
|
Peng H, Shi S, Lu Z, Liu L, Peng S, Wei P, Yi T. HOCl-Activated Reactive Organic Selenium Delivery Platform for Alleviation of Inflammation. Bioconjug Chem 2022; 33:1602-1608. [PMID: 36018225 DOI: 10.1021/acs.bioconjchem.2c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenium plays an important role in the biological system and can be used to treat various types of diseases. However, the current selenium delivery systems face the problems of low activity of released Se-containing compounds or nonspecific toxicity of reactive organic selenium donors in living systems. In response to these problems, we constructed a reactive organic selenium delivery platform by the activation of HOCl. Compared with prodrugs without activation capability, the hypochloroselenoite derivatives released from the present platform after activation displayed higher reactivity and could react with various nucleophiles to participate in specific life processes. Taking the selected compound (DHU-Se1) as an example, we found that it could alleviate the process of inflammation by blocking the polarization of macrophages from M0 to M1. Therefore, the development of this system is of great significance for expanding the application of selenium-containing compounds and treating related diseases.
Collapse
Affiliation(s)
- Hongying Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shi Shi
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuxin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
24
|
Tupikina EY. Non-covalent interactions in the glutathione peroxidase active center and their influence on the enzyme activity. Org Biomol Chem 2022; 20:5551-5557. [PMID: 35791825 DOI: 10.1039/d2ob00890d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this computational work, the structure of the active center of the enzyme glutathione peroxidase (in three forms -SeH, -SeOH and -Se(O)OH) and the non-covalent interactions in it were investigated using modern quantum chemistry methods. The non-covalent interactions are described in detail. The presence of σ-hole interactions (chalcogen, tetrel and pnictogen bonds) formed mostly by a selenium atom as an electrophile in the glutathione peroxidase active center is confirmed for the first time. It is shown that a number of non-covalent interactions stabilize intermediates along the catalytic cycle and that modelling of the whole enzyme active center is necessary for accurate predictions of thermodynamic parameters, in particular, activation barriers.
Collapse
Affiliation(s)
- Elena Yu Tupikina
- Institute of Chemistry, St. Petersburg University, Universitetskaya emb. 7/9, St. Petersburg, Russia.
| |
Collapse
|
25
|
Schiesser CH. The quest for selenocycles: From an ESR spectrum to a commercial product. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221089514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selenium compounds have a checkered history. Originally considered to be highly toxic, the tide turned in the 20th century when selenium was discovered to be an essential trace element; indeed, selenium is the least abundant element on Earth to have a well-defined biological role. Despite this new-found importance, organoselenium compounds were largely curiosities because methods for their synthesis were cumbersome and unpleasant and often involved toxic reagents and/or hazardous procedures. This paper describes how work carried out in collaboration with Alwyn Davies in the late 1980s, aimed at acquiring Electron Spin Responance (ESR) spectra of selenophene radical anions and cations, led to the development of free-radical methods for the synthesis of numerous selenium-containing heterocycles, many of which showed interesting and useful biological properties. This journey ends with the development of selenium-containing carbohydrates (selenosugars) that exhibit unique skin-repair properties and the establishment of Seleno Therapeutics as a vehicle for the commercialization of these selenosugars.
Collapse
|
26
|
Clare J, Ganly J, Bursill CA, Sumer H, Kingshott P, de Haan JB. The Mechanisms of Restenosis and Relevance to Next Generation Stent Design. Biomolecules 2022; 12:biom12030430. [PMID: 35327622 PMCID: PMC8945897 DOI: 10.3390/biom12030430] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Stents are lifesaving mechanical devices that re-establish essential blood flow to the coronary circulation after significant vessel occlusion due to coronary vessel disease or thrombolytic blockade. Improvements in stent surface engineering over the last 20 years have seen significant reductions in complications arising due to restenosis and thrombosis. However, under certain conditions such as diabetes mellitus (DM), the incidence of stent-mediated complications remains 2–4-fold higher than seen in non-diabetic patients. The stents with the largest market share are designed to target the mechanisms behind neointimal hyperplasia (NIH) through anti-proliferative drugs that prevent the formation of a neointima by halting the cell cycle of vascular smooth muscle cells (VSMCs). Thrombosis is treated through dual anti-platelet therapy (DAPT), which is the continual use of aspirin and a P2Y12 inhibitor for 6–12 months. While the most common stents currently in use are reasonably effective at treating these complications, there is still significant room for improvement. Recently, inflammation and redox stress have been identified as major contributing factors that increase the risk of stent-related complications following percutaneous coronary intervention (PCI). The aim of this review is to examine the mechanisms behind inflammation and redox stress through the lens of PCI and its complications and to establish whether tailored targeting of these key mechanistic pathways offers improved outcomes for patients, particularly those where stent placement remains vulnerable to complications. In summary, our review highlights the most recent and promising research being undertaken in understanding the mechanisms of redox biology and inflammation in the context of stent design. We emphasize the benefits of a targeted mechanistic approach to decrease all-cause mortality, even in patients with diabetes.
Collapse
Affiliation(s)
- Jessie Clare
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Justin Ganly
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christina A. Bursill
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5000, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Correspondence: (H.S.); (J.B.d.H.)
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Judy B. de Haan
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (H.S.); (J.B.d.H.)
| |
Collapse
|
27
|
Fellowes T, White JM. Simulating chalcogen bonding using molecular mechanics: a pseudoatom approach to model ebselen. J Mol Model 2022; 28:66. [PMID: 35201444 PMCID: PMC8867462 DOI: 10.1007/s00894-021-05023-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
The organoselenium compound ebselen has recently been investigated as a treatment for COVID-19; however, efforts to model ebselen in silico have been hampered by the lack of an efficient and accurate method to assess its binding to biological macromolecules. We present here a Generalized Amber Force Field modification which incorporates classical parameters for the selenium atom in ebselen, as well as a positively charged pseudoatom to simulate the σ-hole, a quantum mechanical phenomenon that dominates the chemistry of ebselen. Our approach is justified using an energy decomposition analysis of a number of density functional theory–optimized structures, which shows that the σ-hole interaction is primarily electrostatic in origin. Finally, our model is verified by conducting molecular dynamics simulations on a number of simple complexes, as well as the clinically relevant enzyme SOD1 (superoxide dismutase), which is known to bind to ebselen. Ebselen is an organoselenium drug that has shown promise for the treatment of a number of conditions. Computational modelling of drug-target complexes is commonly performed to determine the likely mechanism of action, however this is difficult in the case of ebselen, as an important mode of interaction is not simulated using current techniques. We present here an extension to common methods, which accurately captures this interaction. ![]()
Collapse
Affiliation(s)
- Thomas Fellowes
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, Australia.
| | - Jonathan M White
- Bio21 Institute and School of Chemistry, University of Melbourne, Parkville, Australia
| |
Collapse
|
28
|
Singh A, Kaushik A, Dhau JS, Kumar R. Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Kukushkin M, Novotortsev V, Filatov V, Ivanenkov Y, Skvortsov D, Veselov M, Shafikov R, Moiseeva A, Zyk N, Majouga A, Beloglazkina E. Synthesis and Biological Evaluation of S-, O- and Se-Containing Dispirooxindoles. Molecules 2021; 26:molecules26247645. [PMID: 34946727 PMCID: PMC8703884 DOI: 10.3390/molecules26247645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel S-, O- and Se-containing dispirooxindole derivatives has been synthesized using 1,3-dipolar cycloaddition reaction of azomethine ylide generated from isatines and sarcosine at the double C=C bond of 5-indolidene-2-chalcogen-imidazolones (chalcogen was oxygen, sulfur or selenium). The cytotoxicity of these dispiro derivatives was evaluated in vitro using different tumor cell lines. Several molecules have demonstrated a considerable cytotoxicity against the panel and showed good selectivity towards colorectal carcinoma HCT116 p53+/+ over HCT116 p53−/− cells. In particular, good results have been obtained for LNCaP prostate cell line. The performed in silico study has revealed MDM2/p53 interaction as one of the possible targets for the synthesized molecules. However, in contrast to selectivity revealed during the cell-based evaluation and the results obtained in computational study, no significant p53 activation using a reporter construction in p53wt A549 cell line was observed in a relevant concentration range.
Collapse
Affiliation(s)
- Maksim Kukushkin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, 119049 Moscow, Russia
| | - Vladimir Novotortsev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
| | - Vadim Filatov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
| | - Yan Ivanenkov
- Laboratory of Medicinal Chemistry and Bioinformatic, Moscow Institute of Physics and Technology (MIPT), Institutski Pereulok 9, 141701 Dolgoprudny, Russia; (Y.I.); (M.V.)
| | - Dmitry Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
| | - Mark Veselov
- Laboratory of Medicinal Chemistry and Bioinformatic, Moscow Institute of Physics and Technology (MIPT), Institutski Pereulok 9, 141701 Dolgoprudny, Russia; (Y.I.); (M.V.)
| | - Radik Shafikov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
| | - Anna Moiseeva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
| | - Nikolay Zyk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
| | - Alexander Majouga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Elena Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991 Moscow, Russia; (M.K.); (V.N.); (V.F.); (D.S.); (R.S.); (A.M.); (N.Z.); (A.M.)
- Correspondence:
| |
Collapse
|
30
|
The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus. Bioorg Chem 2021; 117:105455. [PMID: 34740055 PMCID: PMC8556866 DOI: 10.1016/j.bioorg.2021.105455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
The main protease (Mpro or 3CLpro) of
SARS-CoV-2 virus is a cysteine enzyme critical for viral replication and
transcription, thus indicating a potential target for antiviral therapy.
A recent repurposing effort has identified ebselen, a multifunctional
drug candidate as an inhibitor of Mpro. Our docking of ebselen to the
binding pocket of Mpro crystal structure suggests a noncovalent
interaction for improvement of potency, antiviral activity and
selectivity. To test this hypothesis, we designed and synthesized ebselen
derivatives aimed at enhancing their non-covalent bonds within Mpro. The
inhibition of Mpro by ebselen derivatives (0.3 μM) was screened in both
HPLC and FRET assays. Nine ebselen derivatives (EBs) exhibited stronger
inhibitory effect on Mpro with IC50 of
0.07–0.38 μM. Further evaluation of three derivatives showed that EB2-7
exhibited the most potent inhibition of SARS-CoV-2 viral replication with
an IC50 value of 4.08 µM in HPAepiC cells, as
compared to the prototype ebselen at 24.61 μM. Mechanistically, EB2-7
functions as a noncovalent Mpro inhibitor in LC-MS/MS assay. Taken
together, our identification of ebselen derivatives with improved
antiviral activity may lead to developmental potential for treatment of
COVID-19 and SARS-CoV-2 infection.
Collapse
|
31
|
Jastrzebska I, Grzes PA, Niemirowicz-Laskowska K, Car H. Selenosteroids - promising hybrid compounds with pleiotropic biological activity: synthesis and biological aspects. J Steroid Biochem Mol Biol 2021; 213:105975. [PMID: 34418527 DOI: 10.1016/j.jsbmb.2021.105975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
It is established that steroid based agents are an example of compounds obtained from natural patterns and are of great importance due to their application in the prevention and treatment of diseases. Selenosteroids are hybrids formed by attaching Se-moiety to a steroid molecule. In these types of hybrids, selenium can be present as selenide or as a part of selenosemicarbazones, isoselenocyanates, selenourea, etc. Attaching a Se-moiety to a biologically active steroid might enhance the biological properties of both fragments. Available literature indicates that these kinds of hybrids demonstrate significant anticancer activity, which renders them interesting in terms of medical use. In this review, we present various methods of synthesis and demonstrate that seleno-steroid compounds are promising molecules for further pharmaceutical application.
Collapse
Affiliation(s)
- Izabella Jastrzebska
- Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245, Białystok, Poland.
| | - Pawel A Grzes
- Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245, Białystok, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, 15-295, Białystok, Poland
| |
Collapse
|
32
|
Calle L, Marrero-Ponce Y, Mora JR. Molecular simulation of the (GPx)-like antioxidant activity of ebselen derivatives through machine learning techniques. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1975039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luis Calle
- Facultad de Ciencias Médicas, Instituto de Investigación e Innovación en Salud Integral (ISAIN), Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
- Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Yovani Marrero-Ponce
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Quito, Ecuador
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
33
|
Parise A, Romeo I, Russo N, Marino T. The Se-S Bond Formation in the Covalent Inhibition Mechanism of SARS-CoV-2 Main Protease by Ebselen-like Inhibitors: A Computational Study. Int J Mol Sci 2021; 22:9792. [PMID: 34575955 PMCID: PMC8467846 DOI: 10.3390/ijms22189792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se-S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.
Collapse
Affiliation(s)
- Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy; (A.P.); (I.R.); (N.R.)
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Isabella Romeo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy; (A.P.); (I.R.); (N.R.)
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy; (A.P.); (I.R.); (N.R.)
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, CS, Italy; (A.P.); (I.R.); (N.R.)
| |
Collapse
|
34
|
Abstract
The severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the infectious agent responsible for COVID-19 - has caused more than 2.5 million deaths worldwide and triggered a global pandemic. Even with successful vaccines being delivered, there is an urgent need for novel treatments to combat SARS-CoV-2, and other emerging viral diseases. While several organic small molecule drug candidates are in development, some effort has also been devoted towards the application of metal complexes as potential antiviral agents against SARS-CoV-2. Herein, the metal complexes that have been reported to show antiviral activity against SARS-CoV-2 or one of its target proteins are described and their proposed mechanisms of action are discussed.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego9500 Gilman Drive, La JollaCA 92093USA
| | - Seth M. Cohen
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego9500 Gilman Drive, La JollaCA 92093USA
| |
Collapse
|
35
|
Nogara PA, Omage FB, Bolzan GR, Delgado CP, Aschner M, Orian L, Teixeira Rocha JB. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Mol Inform 2021; 40:e2100028. [PMID: 34018687 PMCID: PMC8236915 DOI: 10.1002/minf.202100028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Folorunsho Bright Omage
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Gustavo Roni Bolzan
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Cássia Pereira Delgado
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of Medicine1300 Morris Park Avenue, BronxNY10461USA
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| |
Collapse
|
36
|
Trebino MA, Shingare RD, MacMillan JB, Yildiz FH. Strategies and Approaches for Discovery of Small Molecule Disruptors of Biofilm Physiology. Molecules 2021; 26:molecules26154582. [PMID: 34361735 PMCID: PMC8348372 DOI: 10.3390/molecules26154582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria’s heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure–activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.
Collapse
Affiliation(s)
- Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Rahul D. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA;
| | - John B. MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA;
- Correspondence: (J.B.M.); (F.H.Y.)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
- Correspondence: (J.B.M.); (F.H.Y.)
| |
Collapse
|
37
|
Mechanistic Insight into SARS-CoV-2 Mpro Inhibition by Organoselenides: The Ebselen Case Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main protease (Mpro) of SARS-CoV-2 is a current target for the inhibition of viral replication. Through a combined Docking and Density Functional Theory (DFT) approach, we investigated in-silico the molecular mechanism by which ebselen (IUPAC: 2-phenyl-1,2-benzoselenazol-3-one), the most famous and pharmacologically active organoselenide, inhibits Mpro. For the first time, we report on a mechanistic investigation in an enzyme for the formation of the covalent -S-Se- bond between ebselen and a key enzymatic cysteine. The results highlight the strengths and weaknesses of ebselen and provide hints for a rational drug design of bioorganic selenium-based inhibitors.
Collapse
|
38
|
Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int J Mol Sci 2021; 22:ijms22115924. [PMID: 34072929 PMCID: PMC8199023 DOI: 10.3390/ijms22115924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloid tellurium is characterized as a chemical element belonging to the chalcogen group without known biological function. However, its compounds, especially the oxyanions, exert numerous negative effects on both prokaryotic and eukaryotic organisms. Recent evidence suggests that increasing environmental pollution with tellurium has a causal link to autoimmune, neurodegenerative and oncological diseases. In this review, we provide an overview about the current knowledge on the mechanisms of tellurium compounds' toxicity in bacteria and humans and we summarise the various ways organisms cope and detoxify these compounds. Over the last decades, several gene clusters conferring resistance to tellurium compounds have been identified in a variety of bacterial species and strains. These genetic determinants exhibit great genetic and functional diversity. Besides the existence of specific resistance mechanisms, tellurium and its toxic compounds interact with molecular systems, mediating general detoxification and mitigation of oxidative stress. We also discuss the similarity of tellurium and selenium biochemistry and the impact of their compounds on humans.
Collapse
|
39
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
40
|
Felix L, Mylonakis E, Fuchs BB. Thioredoxin Reductase Is a Valid Target for Antimicrobial Therapeutic Development Against Gram-Positive Bacteria. Front Microbiol 2021; 12:663481. [PMID: 33936021 PMCID: PMC8085250 DOI: 10.3389/fmicb.2021.663481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
There is a drought of new antibacterial compounds that exploit novel targets. Thioredoxin reductase (TrxR) from the Gram-positive bacterial antioxidant thioredoxin system has emerged from multiple screening efforts as a potential target for auranofin, ebselen, shikonin, and allicin. Auranofin serves as the most encouraging proof of concept drug, demonstrating TrxR inhibition can result in bactericidal effects and inhibit Gram-positive bacteria in both planktonic and biofilm states. Minimal inhibitory concentrations are on par or lower than gold standard medications, even among drug resistant isolates. Importantly, existing drug resistance mechanisms that challenge treatment of infections like Staphylococcus aureus do not confer resistance to TrxR targeting compounds. The observed inhibition by multiple compounds and inability to generate a bacterial genetic mutant demonstrate TrxR appears to play an essential role in Gram-positive bacteria. These findings suggest TrxR can be exploited further for drug development. Examining the interaction between TrxR and these proof of concept compounds illustrates that compounds representing a new antimicrobial class can be developed to directly interact and inhibit the validated target.
Collapse
Affiliation(s)
- LewisOscar Felix
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| |
Collapse
|
41
|
Qu L, Ji L, Wang C, Luo H, Li S, Peng W, Yin F, Lu D, Liu X, Kong L, Wang X. Synthesis and evaluation of multi-target-directed ligands with BACE-1 inhibitory and Nrf2 agonist activities as potential agents against Alzheimer's disease. Eur J Med Chem 2021; 219:113441. [PMID: 33862517 DOI: 10.1016/j.ejmech.2021.113441] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Cumulative evidence suggests that β-amyloid and oxidative stress are closely related with each other and play key roles in the process of Alzheimer's disease (AD). Multitarget regulation of both pathways might represent a promising therapeutic strategy. Here, a series of selenium-containing compounds based on ebselen and verubecestat were designed and synthesized. Biological evaluation showed that 13f exhibited good BACE-1 inhibitory activity (IC50 = 1.06 μΜ) and potent GPx-like activity (ν0 = 183.0 μM min-1). Aβ production experiment indicated that 13f could reduce the secretion of Aβ1-40 in HEK APPswe 293T cells. Moreover, 13f exerted a cytoprotective effect against the H2O2 or 6-OHDA caused cell damage via alleviation of intracellular ROS, mitochondrial dysfunction, Ca2+ overload and cell apoptosis. The mechanism studies indicated that 13f exhibited cytoprotective effect by activating the Keap1-Nrf2-ARE pathway and stimulating downstream anti-oxidant protein including HO-1, NQO1, TrxR1, GCLC, and GCLM. In addition, 13f significantly reduced the production of NO and IL-6 induced by LPS in BV2 cells, which confirmed its anti-inflammatory activity as a Nrf2 activator. The BBB permeation assay predicted that 13f was able to cross the BBB. In summary, 13f might be a promising multi-target-directed ligand for the treatment of AD.
Collapse
Affiliation(s)
- Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
42
|
Yaakoub H, Staerck C, Mina S, Godon C, Fleury M, Bouchara JP, Calenda A. Repurposing of auranofin and honokiol as antifungals against Scedosporium species and the related fungus Lomentospora prolificans. Virulence 2021; 12:1076-1090. [PMID: 33825667 PMCID: PMC8032236 DOI: 10.1080/21505594.2021.1909266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The slowing-down de novo drug-discovery emphasized the importance of repurposing old drugs. This is particularly true when combating infections caused by therapy-refractory microorganisms, such as Scedosporium species and Lomentospora prolificans. Recent studies on Scedosporium responses to oxidative stress underscored the importance of targeting the underlying mechanisms. Auranofin, ebselen, PX-12, honokiol, and to a lesser extent, conoidin A are known to disturb redox-homeostasis systems in many organisms. Their antifungal activity was assessed against 27 isolates belonging to the major Scedosporium species: S. apiospermum, S. aurantiacum, S. boydii, S. dehoogii, S. minutisporum, and Lomentospora prolificans. Auranofin and honokiol were the most active against all Scedosporium species (mean MIC50 values of 2.875 and 6.143 μg/ml, respectively) and against L. prolificans isolates (mean MIC50 values of 4.0 and 3.563μg/ml respectively). Combinations of auranofin with voriconazole or honokiol revealed additive effects against 9/27 and 18/27 isolates, respectively. Synergistic interaction between auranofin and honokiol was only found against one isolate of L. prolificans. The effects of auranofin upon exposure to oxidative stress were also investigated. For all species except S. dehoogii, the maximal growth in the presence of auranofin significantly decreased when adding a sublethal dose of menadione. The analysis of the expression of genes encoding oxidoreductase enzymes upon exposure of S. apiospermum to honokiol unveiled the upregulation of many genes, especially those coding peroxiredoxins, thioredoxin reductases, and glutaredoxins. Altogether, these data suggest that auranofin and honokiol act via dampening the redox balance and support their repurposing as antifungals against Scedosporium species and L. prolificans.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Cindy Staerck
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Charlotte Godon
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Maxime Fleury
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France.,Département de biologie des agents infectieux , Laboratoire De Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Alphonse Calenda
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| |
Collapse
|
43
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
44
|
Kostić MD, Divac VM. Diselenides and Selenocyanates as Versatile Precursors for the Synthesis of Pharmaceutically Relevant Compounds. Curr Org Synth 2021; 19:317-330. [PMID: 33655868 DOI: 10.2174/1570179418666210303113723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.
Collapse
Affiliation(s)
- Marina D Kostić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Vera M Divac
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| |
Collapse
|
45
|
Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Adv 2021; 11:30781-30797. [PMID: 35498922 PMCID: PMC9041380 DOI: 10.1039/d1ra03718h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Dementia is a term used to define different brain disorders that affect memory, thinking, behavior, and emotion. Alzheimer's disease (AD) is the second cause of dementia that is generated by the death of cholinergic neurons (especially acetylcholine (ACh)), which have a vital role in cognition. Acetylcholinesterase inhibitors (AChEI) affect acetylcholine levels in the brain and are broadly used to treat Alzheimer's. Donepezil, rivastigmine, and galantamine, which are FDA-approved drugs for AD, are cholinesterase inhibitors. In addition, scientists are attempting to develop hybrid molecules and multi-target-directed ligands (MTDLs) that can simultaneously modulate multiple biological targets. This review highlights recent examples of MTDLs and fragment-based strategy in the rational design of new potential AD medications from 2010 onwards. This review highlights recent examples of multi-target-directed ligands (MTDLs) based on donepezil structure modification from 2010 onwards.![]()
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina, Hamadan, Iran
| | - Fahimeh Abedinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Evan Abdolkareem Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Fatemeh Rajabi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
46
|
Silva MS, Alves D, Hartwig D, Jacob RG, Perin G, Lenardão EJ. Selenium‐NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Márcio S. Silva
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Daniela Hartwig
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Raquel G. Jacob
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Gelson Perin
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| |
Collapse
|
47
|
Landgraf AD, Alsegiani AS, Alaqel S, Thanna S, Shah ZA, Sucheck SJ. Neuroprotective and Anti-neuroinflammatory Properties of Ebselen Derivatives and Their Potential to Inhibit Neurodegeneration. ACS Chem Neurosci 2020; 11:3008-3016. [PMID: 32840996 DOI: 10.1021/acschemneuro.0c00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ebselen (EBS) is an organo-selenium-containing compound that has anti-inflammatory, antitumor, and antibacterial properties. EBS is being explored as a possible treatment for reperfusion injury and stroke and is under clinical trials as a mimetic of lithium for the treatment of bipolar disorder [Mota et al. Synapse 2020, 74 (7), 1-6] and noise-induced hearing loss as a result of these actives [Martini et al. J. Psychiatr. Res. 2019, 109, 107-117. Slusarczyk et al. Neural Regener. Res. 2019, 17 (7), 1255-1261. Thangamani et al. PLoS One 2015, 10 (7), e0133877. Kil et al. Lancet 2017, 390 (10098), 969-979]. However, we wanted to characterize derivatives of EBS as neuroprotective, anti-neuroinflammatory, and antioxidant compounds. Recently, we have reported on a new thermal and photoinduced copper-mediated cross-coupling between potassium selenocyanate (KSeCN) and N-substituted ortho-halobenzamides to form ebselen derivatives with increased synthetic efficiency [Thanna et al. J. Org. Chem. 2017, 82 (7), 3844-3854]. Our synthesis allows for the varying of the remote benzene ring with various substituents or replacing that ring with heterocyclic rings such as pyridine, pyrrole, thiophene, etc. In this study, we synthesized seven new heterocyclic EBS derivatives to further diversify our EBS library. These 21 compounds were then evaluated for their neuroprotective properties, with four compounds showing an equal or better neuroprotective profile than EBS. Compounds 5, 9, 23, and 27 showed 73, 86, 80, 84% cell viability, respectively, at a 10 μM concentration. These studies were performed using human neuroblastoma SH-SY5Y cells in an oxygen and glucose deprivation (OGD) model of ischemia. At the same concentration, these compounds significantly inhibited lipopolysaccharide-induced nitric oxide and tumor necrosis factor alpha release from Human microglia clone 3 microglial cells. Compounds 9 and 27 showed significantly increased cell viability (84 and 80%, respectively) for SH-SY5Y cells exposed to microglia-activated media. These compounds showed only mild GPx-like reductive activity, with compounds 2, 7, 12, and 14 (115, 96, 95, and 82%, respectively) showing a higher percent rate of oxidation of NADPH in a coupled reaction assay compared to ebselen. This research highlights several derivatives of ebselen that show improved activity as neuroprotective agents over the parent compound.
Collapse
Affiliation(s)
- Alexander D. Landgraf
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Amsha Saud Alsegiani
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Saleh Alaqel
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Sandeep Thanna
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
48
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
49
|
Hopanna M, Kelly L, Blaney L. Photochemistry of the Organoselenium Compound Ebselen: Direct Photolysis and Reaction with Active Intermediates of Conventional Reactive Species Sensitizers and Quenchers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11271-11281. [PMID: 32803943 DOI: 10.1021/acs.est.0c03093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ebselen (EBS), 2-phenyl-1,2-benzisoselenazol-3(2H)-one, is an organoselenium pharmaceutical with antioxidant and anti-inflammatory properties. Furthermore, EBS is an excellent scavenger of reactive oxygen species. This property complicates conventional protocols for sensitizing and quenching reactive species because of potential generation of active intermediates that quickly react with EBS. In this study, the photochemical reactivity of EBS was investigated in the presence of (1) 1O2 and •OH sensitizers [rose Bengal (RB), perinaphthanone, and H2O2] and (2) reactive species scavenging and quenching agents (sorbic acid, isopropanol, sodium azide, and tert-butanol) that are commonly employed to study photodegradation mechanisms and kinetics. The carbon analogue of EBS, namely, 2-phenyl-3H-isoindol-1-one, was included as a reference compound to confirm the impact of the selenium atom on EBS photochemical reactivity. EBS does not undergo acid dissociation, but pH-dependent kinetics were observed in RB-sensitized solutions, suggesting EBS reaction with active intermediates (3RB2-*, O2•-, and H2O2) that are not kinetically relevant for other compounds. In addition, the observed rate constant of EBS increased in the presence of sorbic acid, isopropanol, and sodium azide. These findings suggest that conventional reactive species sensitizers, scavengers, and quenchers need to be carefully applied to highly reactive organoselenium compounds to account for reactions that are typically slow for other organic contaminants.
Collapse
Affiliation(s)
- Mamatha Hopanna
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building 314, Baltimore, Maryland 21250 United States
| | - Lisa Kelly
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building 314, Baltimore, Maryland 21250 United States
| |
Collapse
|
50
|
Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med 2020; 156:107-112. [PMID: 32598985 PMCID: PMC7319625 DOI: 10.1016/j.freeradbiomed.2020.06.032] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Ebselen is an organoselenium compound exhibiting hydroperoxide- and peroxynitrite-reducing activity, acting as a glutathione peroxidase and peroxiredoxin enzyme mimetic. Ebselen reacts with a multitude of protein thiols, forming a selenosulfide bond, which results in pleiotropic effects of antiviral, antibacterial and anti-inflammatory nature. The main protease (Mpro) of the corona virus SARS-CoV-2 is a potential drug target, and a screen with over 10,000 compounds identified ebselen as a particularly promising inhibitor of Mpro (Jin, Z. et al. (2020) Nature 582, 289-293). We discuss here the reaction of ebselen with cysteine proteases, the role of ebselen in infections with viruses and with other microorganisms. We also discuss effects of ebselen in lung inflammation. In further research on the inhibition of Mpro in SARS-CoV-2, ebselen can serve as a promising lead compound, if the inhibitory effect is confirmed in intact cells in vivo. Independently of this action, potential beneficial effects of ebselen in COVID-19 are ascribed to a number of targets critical to pathogenesis, such as attenuation of inflammatory oxidants and cytokines.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Michael J Parnham
- Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt, Frankfurt am Main, Germany; Pharmacology Consultant, Bad Soden am Taunus, Germany.
| |
Collapse
|