1
|
Bai Z, Osman M, Brendel M, Tangen CM, Flaig TW, Thompson IM, Plets M, Scott Lucia M, Theodorescu D, Gustafson D, Daneshmand S, Meeks JJ, Choi W, Dinney CPN, Elemento O, Lerner SP, McConkey DJ, Faltas BM, Wang F. Predicting response to neoadjuvant chemotherapy in muscle-invasive bladder cancer via interpretable multimodal deep learning. NPJ Digit Med 2025; 8:174. [PMID: 40121304 PMCID: PMC11929913 DOI: 10.1038/s41746-025-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Building accurate prediction models and identifying predictive biomarkers for treatment response in Muscle-Invasive Bladder Cancer (MIBC) are essential for improving patient survival but remain challenging due to tumor heterogeneity, despite numerous related studies. To address this unmet need, we developed an interpretable Graph-based Multimodal Late Fusion (GMLF) deep learning framework. Integrating histopathology and cell type data from standard H&E images with gene expression profiles derived from RNA sequencing from the SWOG S1314-COXEN clinical trial (ClinicalTrials.gov NCT02177695 2014-06-25), GMLF uncovered new histopathological, cellular, and molecular determinants of response to neoadjuvant chemotherapy. Specifically, we identified key gene signatures that drive the predictive power of our model, including alterations in TP63, CCL5, and DCN. Our discovery can optimize treatment strategies for patients with MIBC, e.g., improving clinical outcomes, avoiding unnecessary treatment, and ultimately, bladder preservation. Additionally, our approach could be used to uncover predictors for other cancers.
Collapse
Affiliation(s)
- Zilong Bai
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Thomas W Flaig
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Ian M Thompson
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Melissa Plets
- SWOG Statistics and Data Management Center, Seattle, WA, USA
| | - M Scott Lucia
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | | | - Daniel Gustafson
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Siamak Daneshmand
- USC Institute of Urology, USC/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | - Fei Wang
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Samsa WE, Zhang Z, Gong Z. CBFβ Regulates RUNX3 ADP-Ribosylation to Mediate Homologous Recombination Repair. J Cell Physiol 2025; 240:e31503. [PMID: 39696918 DOI: 10.1002/jcp.31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
RUNX3 is a master developmental transcriptional factor that has been implicated as a tumor suppressor in many cancers. However, the exact role of RUNX3 in cancer pathogenesis remains to be completely elucidated. Recently, it has emerged that RUNX3 is involved in the DNA damage response. Here, we demonstrate that heterodimerization of RUNX3 with CBFβ is necessary for its stability by protecting RUNX3 from RUNX3 ADP-ribosylation-dependent ubiquitination and degradation. We further identify new amino acid residues that are targets for PARylation and demonstrate that RUNX3 PARylation at these residues is necessary for localization of RUNX3 to DNA double strand break sites (DBSs). We also demonstrate that both RUNX3 PARylation and CBFβ heterodimerization with RUNX3 positively regulates homologous recombination (HR) repair, in part by promoting the recruitment of CtIP and phospho-RPA2 to the DBSs to mediate HR repair. In summary, we provide evidence that RUNX3 regulates HR repair activity in a PARylation-dependent manner.
Collapse
Affiliation(s)
- William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Niibori-Nambu A, Wang CQ, Chin DWL, Chooi JY, Hosoi H, Sonoki T, Tham CY, Nah GSS, Cirovic B, Tan DQ, Takizawa H, Sashida G, Goh Y, Tng J, Fam WN, Fullwood MJ, Suda T, Yang H, Tergaonkar V, Taniuchi I, Li S, Chng WJ, Osato M. Integrin-α9 overexpression underlies the niche-independent maintenance of leukemia stem cells in acute myeloid leukemia. Gene 2024; 928:148761. [PMID: 39002785 DOI: 10.1016/j.gene.2024.148761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Leukemia stem cells (LSCs) are widely believed to reside in well-characterized bone marrow (BM) niches; however, the capacity of the BM niches to accommodate LSCs is insufficient, and a significant proportion of LSCs are instead maintained in regions outside the BM. The molecular basis for this niche-independent behavior of LSCs remains elusive. Here, we show that integrin-α9 overexpression (ITGA9 OE) plays a pivotal role in the extramedullary maintenance of LSCs by molecularly mimicking the niche-interacting status, through the binding with its soluble ligand, osteopontin (OPN). Retroviral insertional mutagenesis conducted on leukemia-prone Runx-deficient mice identified Itga9 OE as a novel leukemogenic event. Itga9 OE activates Akt and p38MAPK signaling pathways. The elevated Myc expression subsequently enhances ribosomal biogenesis to overcome the cell integrity defect caused by the preexisting Runx alteration. The Itga9-Myc axis, originally discovered in mice, was further confirmed in multiple human acute myeloid leukemia (AML) subtypes, other than RUNX leukemias. In addition, ITGA9 was shown to be a functional LSC marker of the best prognostic value among 14 known LSC markers tested. Notably, the binding of ITGA9 with soluble OPN, a known negative regulator against HSC activation, induced LSC dormancy, while the disruption of ITGA9-soluble OPN interaction caused rapid cell propagation. These findings suggest that the ITGA9 OE increases both actively proliferating leukemia cells and dormant LSCs in a well-balanced manner, thereby maintaining LSCs. The ITGA9 OE would serve as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jing Yuan Chooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Cheng-Yong Tham
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Branko Cirovic
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Darren Qiancheng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jiaqi Tng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; National University Cancer Institute, Singapore; National University Health System, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan.
| |
Collapse
|
4
|
Eftekhar Z, Aghaei M, Saki N. DNA damage repair in megakaryopoiesis: molecular and clinical aspects. Expert Rev Hematol 2024; 17:705-712. [PMID: 39117495 DOI: 10.1080/17474086.2024.2391102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Endogenous DNA damage is a significant factor in the damage of hematopoietic cells. Megakaryopoiesis is one of the pathways of hematopoiesis that ends with the production of platelets and plays the most crucial role in hemostasis. Despite the presence of efficient DNA repair mechanisms, some endogenous lesions can lead to mutagenic alterations, disruption of pathways of hematopoiesis including megakaryopoiesis and potentially result in human diseases. AREAS COVERED The complex regulation of DNA repair mechanisms plays a central role in maintaining genomic integrity during megakaryopoiesis and influences platelet production efficiency and quality. Moreover, anomalies in DNA repair processes are involved in several diseases associated with megakaryopoiesis, including myeloproliferative disorders and thrombocytopenia. EXPERT OPINION In the era of personalized medicine, diagnosing diseases related to megakaryopoiesis can only be made with a complete assessment of their molecular aspects to provide physicians with critical molecular data for patient management and to identify the subset of patients who could benefit from targeted therapy.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Jayne ND, Liang Z, Lim DH, Chen PB, Diaz C, Arimoto KI, Xia L, Liu M, Ren B, Fu XD, Zhang DE. RUNX1 C-terminal mutations impair blood cell differentiation by perturbing specific enhancer-promoter networks. Blood Adv 2024; 8:2410-2423. [PMID: 38513139 PMCID: PMC11112616 DOI: 10.1182/bloodadvances.2023011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.
Collapse
Affiliation(s)
- Nathan D. Jayne
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Zhengyu Liang
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Do-Hwan Lim
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Poshen B. Chen
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Cristina Diaz
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Lingbo Xia
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Bing Ren
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Xiang-Dong Fu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
- School of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
6
|
Jiang Z, Jiang C, Teng X, Hou Y, Dai S, Liu C, Tuo Z, Bi L, Yang C, Wang J. Exploring the crosstalk of immune cells: The impact of dysregulated RUNX family genes in kidney renal clear cell carcinoma. Heliyon 2024; 10:e29870. [PMID: 38707395 PMCID: PMC11066633 DOI: 10.1016/j.heliyon.2024.e29870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Abnormally expressed Runt-associated transcription factor (RUNX) family has been reported in multiple tumors. Nevertheless, the immunological role of RUNX family in kidney renal clear cell carcinoma (KIRC) remains unknown. METHODS We studied the RNA-seq data regarding tumor and healthy subjects from several public databases in detail for evaluating the prognostic and immunological functions owned by three RUNX genes in cancer patients. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining served for detecting their expressions in tumor and normal samples. RESULTS We observed that KIRC patients presented high expressions of RUNX1, RUNX2, and RUNX3. The expressions of three genes were validated by qRT-PCR, which was same as bioinformatical results. Prognostic analysis indicated that the overexpression of RUNX1 and RUNX2 negatively affects the outcomes in patients with KIRC. Related functional predictions indicated that the RUNXs and co-expression genes were significantly related to the immune response pathway. Moreover, three RUNX members were associated with immune infiltration cells and their related gene markers. The expression of RUNX family in several immune cells is positively or negatively correlated, and its dysregulation is obviously associated with the differential distribution of immune cells. RUNX family genes were abnormally expressed in KIRC patients, and were closely related to the crosstalk of immune cells. CONCLUSIONS Our findings may help to understand the pathogenesis and immunologic roles of the RUNX family in KIRC patients from new perspectives.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiangyu Teng
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yidong Hou
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuxin Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chang Liu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Yang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
7
|
Liang Y, Wei X, Yue PJ, Zhang HC, Li ZN, Wang XX, Sun YY, Fu WN. MYCT1 inhibits hematopoiesis in diffuse large B-cell lymphoma by suppressing RUNX1 transcription. Cell Mol Biol Lett 2024; 29:5. [PMID: 38172714 PMCID: PMC10763471 DOI: 10.1186/s11658-023-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.
Collapse
Affiliation(s)
- Ying Liang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xin Wei
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Peng-Jie Yue
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - He-Cheng Zhang
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Zhen-Ning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Xiao-Xue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
8
|
de Jonckheere B, Kollotzek F, Münzer P, Göb V, Fischer M, Mott K, Coman C, Troppmair NN, Manke MC, Zdanyte M, Harm T, Sigle M, Kopczynski D, Bileck A, Gerner C, Hoffmann N, Heinzmann D, Assinger A, Gawaz M, Stegner D, Schulze H, Borst O, Ahrends R. Critical shifts in lipid metabolism promote megakaryocyte differentiation and proplatelet formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:835-852. [PMID: 38075556 PMCID: PMC7615361 DOI: 10.1038/s44161-023-00325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2024]
Abstract
During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.
Collapse
Affiliation(s)
- Bianca de Jonckheere
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Ferdinand Kollotzek
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Vanessa Göb
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Melina Fischer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Kristina Mott
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Austria
| | - Nina Nicole Troppmair
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Mailin-Christin Manke
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Monika Zdanyte
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | | | - Andrea Bileck
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Nils Hoffmann
- Institute of Analytical Chemistry, University of Vienna, Austria
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5) Jülich, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Alice Assinger
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Harald Schulze
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Austria
| |
Collapse
|
9
|
Marion W, Koppe T, Chen CC, Wang D, Frenis K, Fierstein S, Sensharma P, Aumais O, Peters M, Ruiz-Torres S, Chihanga T, Boettcher S, Shimamura A, Bauer DE, Schlaeger T, Wells SI, Ebert BL, Starczynowski D, da Rocha EL, Rowe RG. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 2023; 37:1698-1708. [PMID: 37391485 PMCID: PMC11009868 DOI: 10.1038/s41375-023-01945-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.
Collapse
Affiliation(s)
- William Marion
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Tiago Koppe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Wang
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Fierstein
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Prerana Sensharma
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Olivia Aumais
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Peters
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Steffen Boettcher
- Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Akiko Shimamura
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin L Ebert
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel Starczynowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - R Grant Rowe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA.
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Singh H, Kumar M, Kanungo H. Role of Gene Mutations in Acute Myeloid Leukemia: A Review Article. Glob Med Genet 2023; 10:123-128. [PMID: 37360004 PMCID: PMC10289861 DOI: 10.1055/s-0043-1770768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in peripheral blood or tissue. Enhancement in the knowledge of the molecular biology of cancer and recognition of intermittent mutations in AML contribute to favorable circumstances to establish targeted therapies and enhance the clinical outcome. There is high interest in the development of therapies that target definitive abnormalities in AML while eradicating leukemia-initiating cells. In recent years, there has been a better knowledge of the molecular abnormalities that lead to the progression of AML, and the application of new methods in molecular biology techniques has increased that facilitating the advancement of investigational drugs. In this review, literature or information on various gene mutations for AML is discussed. English language articles were scrutinized in plentiful directories or databases like PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases is "Acute myeloid leukemia", "Gene mutation in Acute myeloid leukemia", "Genetic alteration in Acute myeloid leukemia," and "Genetic abnormalities in Acute myeloid leukemia."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Magesh Kumar
- Department of Periodontics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Himanshu Kanungo
- Department of Orthodontics and Dentofacial Orthopaedics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
11
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
12
|
Cumbo C, Tota G, De Grassi A, Anelli L, Zagaria A, Coccaro N, Tarantini F, Minervini CF, Parciante E, Impera L, Conserva MR, Redavid I, Mestice A, Attolico I, Pierri CL, Musto P, Albano F. RUNX1 gene alterations characterized by allelic preference in adult acute myeloid leukemia. Leuk Lymphoma 2023; 64:717-721. [PMID: 34027815 DOI: 10.1080/10428194.2021.1929960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "Aldo Moro" of Bari, Bari, Italy
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Luciana Impera
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Anna Mestice
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Immacolata Attolico
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "Aldo Moro" of Bari, Bari, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
13
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
14
|
Nuclear Proteomics of Induced Leukemia Cell Differentiation. Cells 2022; 11:cells11203221. [PMID: 36291090 PMCID: PMC9600443 DOI: 10.3390/cells11203221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Studies of induced granulocytic differentiation help to reveal molecular mechanisms of cell maturation. The nuclear proteome represents a rich source of regulatory molecules, including transcription factors (TFs). It is important to have an understanding of molecular perturbations at the early stages of the differentiation processes. By applying the proteomic quantitative profiling using isobaric labeling, we found that the contents of 214, 319, 376, 426, and 391 proteins were altered at 3, 6, 9, 12, and 72 h, respectively, compared to 0 h in the HL-60 cell nuclear fraction under all-trans-retinoid acid (ATRA) treatment. From 1860 identified nuclear proteins, 231 proteins were annotated as proteins with transcription factor (TF) activity. Six TFs (RREB1, SRCAP, CCDC124, TRIM24, BRD7, and BUD31) were downregulated and three TFs EWSR1, ENO1, and FUS were upregulated at early time points (3–12 h) after ATRA treatment. Bioinformatic annotation indicates involvement of the HL-60 nuclear proteome in DNA damage recognition in the RUNX1-triggered pathway, and in the p53-regulation pathway. By applying scheduled multiple reaction monitoring using stable isotopically labeled peptide standards (MRM/SIS), we found a persistent increase in the content of the following proteins: PRAM1, CEPBP, RBPJ, and HIC1 in the HL-60 cell nuclear fraction during ATRA-induced granulocytic differentiation. In the case of STAT1, CASP3, PARP1, and PRKDC proteins, a transient increase in their content was observed at early time points (3–12 h) after the ATRA treatment. Obtained data on nuclear proteome composition and dynamics during granulocytic differentiation could be beneficial for the development of new treatment approaches for leukemias with the mutated p53 gene.
Collapse
|
15
|
Menezes AC, Jones R, Shrestha A, Nicholson R, Leckenby A, Azevedo A, Davies S, Baker S, Gilkes AF, Darley RL, Tonks A. Increased expression of RUNX3 inhibits normal human myeloid development. Leukemia 2022; 36:1769-1780. [PMID: 35490198 PMCID: PMC9252899 DOI: 10.1038/s41375-022-01577-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022]
Abstract
RUNX3 is a transcription factor dysregulated in acute myeloid leukemia (AML). However, its role in normal myeloid development and leukemia is poorly understood. Here we investigate RUNX3 expression in both settings and the impact of its dysregulation on myelopoiesis. We found that RUNX3 mRNA expression was stable during hematopoiesis but decreased with granulocytic differentiation. In AML, RUNX3 mRNA was overexpressed in many disease subtypes, but downregulated in AML with core binding factor abnormalities, such as RUNX1::ETO. Overexpression of RUNX3 in human hematopoietic stem and progenitor cells (HSPC) inhibited myeloid differentiation, particularly of the granulocytic lineage. Proliferation and myeloid colony formation were also inhibited. Conversely, RUNX3 knockdown did not impact the myeloid growth and development of human HSPC. Overexpression of RUNX3 in the context of RUNX1::ETO did not rescue the RUNX1::ETO-mediated block in differentiation. RNA-sequencing showed that RUNX3 overexpression downregulates key developmental genes, such as KIT and RUNX1, while upregulating lymphoid genes, such as KLRB1 and TBX21. Overall, these data show that increased RUNX3 expression observed in AML could contribute to the developmental arrest characteristic of this disease, possibly by driving a competing transcriptional program favoring a lymphoid fate.
Collapse
Affiliation(s)
- Ana Catarina Menezes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Rachel Jones
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alina Shrestha
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Rachael Nicholson
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Adam Leckenby
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Aleksandra Azevedo
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sara Davies
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sarah Baker
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
16
|
Umemoto T, Johansson A, Ahmad SAI, Hashimoto M, Kubota S, Kikuchi K, Odaka H, Era T, Kurotaki D, Sashida G, Suda T. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J 2022; 41:e109463. [PMID: 35229328 PMCID: PMC9016348 DOI: 10.15252/embj.2021109463] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.
Collapse
Affiliation(s)
- Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Alban Johansson
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Shah Adil Ishtiyaq Ahmad
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michihiro Hashimoto
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Odaka
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Takumi Era
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan,Cancer Science Institute of SingaporeNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
17
|
Menezes AC, Dixon C, Scholz A, Nicholson R, Leckenby A, Azevedo A, Baker S, Gilkes AF, Davies S, Darley RL, Tonks A. RUNX3 overexpression inhibits normal human erythroid development. Sci Rep 2022; 12:1243. [PMID: 35075235 PMCID: PMC8786893 DOI: 10.1038/s41598-022-05371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.
Collapse
Affiliation(s)
- Ana Catarina Menezes
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Christabel Dixon
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Anna Scholz
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Rachael Nicholson
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Adam Leckenby
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Aleksandra Azevedo
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Sarah Baker
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.,Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Amanda F Gilkes
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.,Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sara Davies
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Richard L Darley
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Alex Tonks
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.
| |
Collapse
|
18
|
A Runx1-enhancer element eR1 identified lineage restricted mammary luminal stem cells. Stem Cells 2022; 40:112-122. [DOI: 10.1093/stmcls/sxab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Mammary gland homeostasis is maintained by adult tissue stem-progenitor cells residing within the luminal and basal epithelia. Dysregulation of mammary stem cells is a key mechanism for cancer development. However, stem cell characterization is challenging because reporter models using cell-specific promoters do not fully recapitulate the mammary stem cell populations. We previously found that a 270-basepair Runx1 enhancer element, named eR1, marked stem cells in the blood and stomach. Here, we identified eR1 activity in a rare subpopulation of the ERα-negative luminal epithelium in mouse mammary glands. Lineage-tracing using an eR1-CreERT2 mouse model revealed that eR1+ luminal cells generated the entire luminal lineage and milk-secreting alveoli – eR1 therefore specifically marks lineage-restricted luminal stem cells. eR1-targeted-conditional knockout of Runx1 led to the expansion of luminal epithelial cells, accompanied by elevated ERα expression. Our findings demonstrate a definitive role for Runx1 in the regulation of the eR1-positive luminal stem cell proliferation during mammary homeostasis. Our findings identify a mechanistic link for Runx1 in stem cell proliferation and its dysregulation in breast cancer. Runx1 inactivation is therefore likely to be an early hit in the cell-of-origin of ERα+ luminal type breast cancer.
Collapse
|
19
|
Abdalhabib EK, Jackson DE, Alzahrani B, Elfaki E, Hamza A, Mohamed Elasbali A, Alanazi F, Algarni A, Khider Ibrahim I, Saboor M. Age- and Gender-Independent Association of XRCC1 Arg399Gln Polymorphism with Chronic Myeloid Leukemia. Int J Gen Med 2021; 14:8231-8236. [PMID: 34815696 PMCID: PMC8605866 DOI: 10.2147/ijgm.s340283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose DNA damage to hematopoietic progenitor cells is an essential factor for leukemia development as a failure of the host DNA repair system to fix errors in DNA. This study aimed to assess the association of XRCC1 gene polymorphisms including Arg194Trp, Arg399Gln, and Arg280His with the risk of development of CML in Sudanese population. Patients and Methods The present study was conducted on 186 newly diagnosed patients with CML, aged 19–70 years (118 males and 68 females; mean age of 46.15±13.91 years) and 186 normal healthy controls (123 males and 63 females; mean age of 44.94±8.97 years). Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) assay was utilized to analyze the XRCC1 (Arg194Trp, Arg399Gln, and Arg280His) gene polymorphisms. Results The genotypic frequencies of Arg399Gln polymorphism in cases were 131 (70.4%) homozygous Arg/Arg, 46 (24.7%) homozygous Gln/Gln, and 9 (4.8%) heterozygous Arg/Gln as compared to the controls ie, 153 (82.3%), 73 (14.5%), and 6 (3.2%), respectively. The Arg399Gln variant genotypic frequencies significantly differed between the cases and controls (χ2 = 7.249, P = 0.027). By comparison, no statistically significant difference was observed in the variant genotype frequencies between the cases and controls in terms of Arg194Trp and Arg280His polymorphisms. Conclusion XRCC1 Arg399Gln gene polymorphism might have an important role in increasing the risk of chronic myeloid leukemia among Sudanese patients. Furthermore, all tested three polymorphisms showed no association of risk of the development of CML with age and gender.
Collapse
Affiliation(s)
- Ezeldine K Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, AlQurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Denise E Jackson
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, RMIT University, Victoria, Australia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, AlQurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Elyasa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, AlQurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Alneil Hamza
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, AlQurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, AlQurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, AlQurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Borders University, Arar, Saudi Arabia
| | - Ibrahim Khider Ibrahim
- Department of Hematology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Muhammad Saboor
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Medical Research Center (MRC), Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
20
|
Chuang LSH, Ito Y. The Multiple Interactions of RUNX with the Hippo-YAP Pathway. Cells 2021; 10:2925. [PMID: 34831147 PMCID: PMC8616315 DOI: 10.3390/cells10112925] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The Hippo-YAP signaling pathway serves roles in cell proliferation, stem cell renewal/maintenance, differentiation and apoptosis. Many of its functions are central to early development, adult tissue repair/regeneration and not surprisingly, tumorigenesis and metastasis. The Hippo pathway represses the activity of YAP and paralog TAZ by modulating cell proliferation and promoting differentiation to maintain tissue homeostasis and proper organ size. Similarly, master regulators of development RUNX transcription factors have been shown to play critical roles in proliferation, differentiation, apoptosis and cell fate determination. In this review, we discuss the multiple interactions of RUNX with the Hippo-YAP pathway, their shared collaborators in Wnt, TGFβ, MYC and RB pathways, and their overlapping functions in development and tumorigenesis.
Collapse
Affiliation(s)
| | - Yoshiaki Ito
- NUS Centre for Cancer Research, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| |
Collapse
|
21
|
Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proc Natl Acad Sci U S A 2021; 118:2019655118. [PMID: 33479171 DOI: 10.1073/pnas.2019655118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental "ratchet" mechanism making commitment irreversible.
Collapse
|
22
|
Yokomizo-Nakano T, Sashida G. Two faces of RUNX3 in myeloid transformation. Exp Hematol 2021; 97:14-20. [PMID: 33600870 DOI: 10.1016/j.exphem.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 01/09/2023]
Abstract
RUNX3, a transcription factor, has been implicated as a tumor suppressor in various cancers, including hematological malignancies; however, recent studies revealed an oncogenic function of RUNX3 in the pathogenesis of myeloid malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. In contrast to the high frequency of mutations in the RUNX1 gene, deletion of and loss-of-function mutations in RUNX3 are rarely detected in patients with hematopoietic malignancies. Although RUNX3 is expressed in normal hematopoietic stem and progenitor cells, its expression decreases with aging in humans. The loss of Runx3 did not result in the development of lethal hematological diseases in mice despite the expansion of myeloid cells. Therefore, RUNX3 does not appear to initiate the transformation of normal hematopoietic stem cells. However, the overexpression of RUNX3 inhibits the expression and transcriptional function of the RUNX1 gene, but activates the expression of key oncogenic pathways, such as MYC, resulting in the transformation of premalignant stem cells harboring a driver genetic mutation. We herein discuss the mechanisms by which RUNX3 is activated and how RUNX3 exerts oncogenic effects on the cellular function of and transcriptional program in premalignant stem cells to drive myeloid transformation.
Collapse
Affiliation(s)
- Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
23
|
Hosoi H, Niibori-Nambu A, Nah GSS, Bahirvani AG, Mok MMH, Sanda T, Kumar AP, Tenen DG, Ito Y, Sonoki T, Osato M. Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene 2021; 774:145421. [PMID: 33444684 DOI: 10.1016/j.gene.2021.145421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus nuclear antigens 2 (EBNA2) mediated super-enhancers, defined by in silico data, localize near genes associated with B cell transcription factors including RUNX3. However, the biological function of super-enhancer for RUNX3 gene (seR3) remains unclear. Here, we show that two seR3s, tandemly-located at 59- and 70-kb upstream of RUNX3 transcription start site, named seR3 -59h and seR3 -70h, are required for RUNX3 expression and cell proliferation in Epstein-Barr virus (EBV)-positive malignant B cells. A BET bromodomain inhibitor, JQ1, potently suppressed EBV-positive B cell growth through the reduction of RUNX3 and MYC expression. Excision of either or both seR3s by employing CRISPR/Cas9 system resulted in the decrease in RUNX3 expression and the subsequent suppression of cell proliferation and colony forming capability. The expression of MYC was also reduced when seR3s were deleted, probably due to the loss of trans effect of seR3s on the super-enhancers for MYC. These findings suggest that seR3s play a pivotal role in expression and biological function of both RUNX3 and MYC. seR3s would serve as a potential therapeutic target in EBV-related widespread tumors.
Collapse
Affiliation(s)
- Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Institute of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
24
|
Runx proteins mediate protective immunity against Leishmania donovani infection by promoting CD40 expression on dendritic cells. PLoS Pathog 2020; 16:e1009136. [PMID: 33370418 PMCID: PMC7793297 DOI: 10.1371/journal.ppat.1009136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2021] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The level of CD40 expression on dendritic cells (DCs) plays a decisive role in disease protection during Leishmania donovani (LD) infection. However, current understanding of the molecular regulation of CD40 expression remains elusive. Using molecular, cellular and functional approaches, we identified a role for Runx1 and Runx3 transcription factors in the regulation of CD40 expression in DCs. In response to lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα) or antileishmanial drug sodium antimony gluconate (SAG), both Runx1 and Runx3 translocated to the nucleus, bound to the CD40 promoter and upregulated CD40 expression on DCs. These activities of Runx proteins were mediated by the upstream phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Notably, LD infection attenuated LPS- or TNFα-induced CD40 expression in DCs by inhibiting PI3K-Akt-Runx axis via protein tyrosine phosphatase SHP-1. In contrast, CD40 expression induced by SAG was unaffected by LD infection, as SAG by blocking LD-induced SHP-1 activation potentiated PI3K-Akt signaling to drive Runx-mediated CD40 upregulation. Adoptive transfer experiments further showed that Runx1 and Runx3 play a pivotal role in eliciting antileishmanial immune response of SAG-treated DCs in vivo by promoting CD40-mediated type-1 T cell responses. Importantly, antimony-resistant LD suppressed SAG-induced CD40 upregulation on DCs by blocking the PI3K-Akt-Runx pathway through sustained SHP-1 activation. These findings unveil an immunoregulatory role for Runx proteins during LD infection.
Collapse
|
25
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
26
|
Daw S, Law S. The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment. Mol Cell Biochem 2020; 476:535-551. [PMID: 33011884 DOI: 10.1007/s11010-020-03920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
Myelodysplastic syndrome is a heterogenous group of disorder with clonal dysregulated hematopoiesis characterized by bone marrow failure, cytogenetic and molecular abnormalities and variable risk of progression to acute myeloid leukemia (AML). The bone marrow niche plays a major role in maintaining the homeostasis and is often injured by the chemotherapeutic drugs leading to catastrophic consequences like myelodysplastic syndrome. In the present study, we made an attempt to find out the osteoblastic niche related alterations in the myelodysplastic bone marrow through mainly flowcytometric and fluorescent microscopic studies. We have also checked the condition of the myelodysplastic bone through micro computed tomography. The results revealed that the affected osteoblasts of the myelodysplastic bone marrow compelled the hematopoietic stem cell to come out of quiescence and become actively proliferating, and in this scenario the decline in expression of cell adhesion molecules like N-Cadherin, Intercellular adhesion molecule 1 (ICAM) and upregulated focal adhesion kinase (FAK) played a major role. The hike in number of osteoclasts in myelodysplastic cases than control also shattered the balance between bone formation and resorption ratio. We have recorded a dysregulated expression of transcription factors GATA2 and CEBPα (CCAAT-enhancer-binding-protein) in the hematopoietic stem progenitor compartment of the myelodysplastic bone marrow, the main reason behind the presence of abnormal myeloblasts in myelodysplastic cases. Collectively, we can say the coordinated perturbations in the osteoblastic niche, cell adhesion molecules together with the transcription factors has resulted in the uncontrolled proliferation of hematopoietic stem cell, dysregulated myelopoiesis, early trafficking of hematopoietic progenitors to blood compartment and at the same time pancytopenic peripheral blood conditions during the progression of N-Ethyl N Nitroso Urea (ENU) induced myelodysplasia.
Collapse
Affiliation(s)
- Suchismita Daw
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical, Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical, Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
27
|
Fritz AJ, Hong D, Boyd J, Kost J, Finstaad KH, Fitzgerald MP, Hanna S, Abuarqoub AH, Malik M, Bushweller J, Tye C, Ghule P, Gordon J, Zaidi SK, Frietze S, Lian JB, Stein JL, Stein GS. RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. J Cell Physiol 2020; 235:7261-7272. [PMID: 32180230 PMCID: PMC7415511 DOI: 10.1002/jcp.29625] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFβ1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFβ for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jason Kost
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Kristiaan H. Finstaad
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Mark P. Fitzgerald
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sebastian Hanna
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Alqassem H. Abuarqoub
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Miles Malik
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
| | - Coralee Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Prachi Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jonathan Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| |
Collapse
|
28
|
Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep 2020; 39:BSR20191805. [PMID: 31548362 PMCID: PMC6851515 DOI: 10.1042/bsr20191805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO), the pathologic formation of extraskeletal bone, can be disabling and lethal. However, the underlying molecular mechanisms were largely unknown. The present study aimed to clarify the involvement of secreted protein acidic and rich in cysteine (SPARC) and the underlying mechanism in rat model of HO. The mechanistic investigation on roles of SPARC in HO was examined through gain- and loss-of-function approaches of SPARC, with alkaline-phosphatase (ALP) activity, mineralized nodules, and osteocalcin (OCN) content measured. To further confirm the regulatory role of SPARC, levels of mitogen-activated protein kinase (MAPK) signaling pathways-related proteins (extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38, nuclear factor κ-B (NF-κB), and IkB kinase β (IKKβ)) were determined. Bone marrow mesenchymal stem cells were treated with pathway inhibitor to investigate the relationship among SPARC, MAPK signaling pathway, and HO. The results suggested that SPARC expression was up-regulated in Achilles tendon tissues of HO rats. Silencing of SPARC could decrease phosphorylation of ERK, JNK, p38, NF-κB, and IKKβ. Additionally, silencing of SPARC or inhibition of MAPK signaling pathway could reduce the ALP activity, the number of mineralized nodules, and OCN content, thus impeding HO. To sum up, our study identifies the inhibitory role of SPARC gene silencing in HO via the MAPK signaling pathway, suggesting SPARC presents a potential target for HO therapy.
Collapse
|
29
|
Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci Rep 2020; 39:220729. [PMID: 31652460 PMCID: PMC6822533 DOI: 10.1042/bsr20193220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules, thereby activating CD8+ T cells, contributing to tumor elimination through a mechanism known as antigen cross-presentation. A variety of factors such as maturation state of DCs, co-stimulatory signals, T-cell microenvironment, antigen internalization routes and adjuvants regulate the process of DC-mediated antigen cross-presentation. Recently, the development of successful cancer immunotherapies may be attributed to the ability of DCs to cross-present tumor antigens. In this review article, we focus on the underlying mechanism of antigen cross-presentation and ways to improve antigen cross-presentation in different DC subsets. We have critically summarized the recent developments in the generation of novel nanovaccines for robust CD8+ T-cell response in cancer. In this context, we have reviewed nanocarriers that have been used for cancer immunotherapeutics based on antigen cross-presentation mechanism. Additionally, we have also expressed our views on the future applications of this mechanism in curing cancer.
Collapse
|
30
|
Bae SC, Kolinjivadi AM, Ito Y. Functional relationship between p53 and RUNX proteins. J Mol Cell Biol 2020; 11:224-230. [PMID: 30535344 PMCID: PMC6478125 DOI: 10.1093/jmcb/mjy076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/04/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
RUNX genes belong to a three-membered family of transcription factors, which are well established as master regulators of development. Of them, aberrations in RUNX3 expression are frequently observed in human malignancies primarily due to epigenetic silencing, which is often overlooked. At the G1 phase of the cell cycle, RUNX3 regulates the restriction (R)-point, a mechanism that decides cell cycle entry. Deregulation at the R-point or loss of RUNX3 results in premature entry into S phase, leading to a proliferative advantage. Inactivation of Runx1 and Runx2 induce immortalization of mouse embryo fibroblast. As a consequence, RUNX loss induces pre-cancerous lesions independent of oncogene activation. p53 is the most extensively studied tumour suppressor. p53 plays an important role to prevent tumour progression but not tumour initiation. Therefore, upon oncogene activation, early inactivation of RUNX genes and subsequent mutation of p53 appear to result in tumour initiation and progression. Recently, transcription-independent DNA repairing roles of RUNX3 and p53 are emerging. Being evolutionarily old genes, it appears that the primordial function of p53 is to protect genome integrity, a function that likely extends to the RUNX gene as well. In this review, we examine the mechanism and sequence of actions of these tumour suppressors in detail.
Collapse
Affiliation(s)
- Suk-Chul Bae
- Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, South Korea
| | - Arun Mouli Kolinjivadi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Kirtonia A, Pandya G, Sethi G, Pandey AK, Das BC, Garg M. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J Mol Med (Berl) 2020; 98:1069-1091. [PMID: 32620999 DOI: 10.1007/s00109-020-01944-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is an extremely heterogeneous disease defined by the clonal growth of myeloblasts/promyelocytes not only in the bone marrow but also in peripheral blood and/or tissues. Gene mutations and chromosomal abnormalities are usually associated with aberrant proliferation and/or block in the normal differentiation of hematopoietic cells. So far, the combination of cytogenetic profiling and molecular and gene mutation analyses remains an essential tool for the classification, diagnosis, prognosis, and treatment for AML. This review gives an overview on how the development of novel innovative technologies has allowed us not only to detect the genetic alterations as early as possible but also to understand the molecular pathogenesis of AML to develop novel targeted therapies. We also discuss the remarkable advances made during the last decade to understand the AML genome both at primary and relapse diseases and how genetic alterations might influence the distinct biological groups as well as the clonal evolution of disease during the diagnosis and relapse. Also, the review focuses on how the persistence of epigenetic gene mutations during morphological remission is associated with relapse. It is suggested that along with the prognostic and therapeutic mutations, the novel molecular targeted therapies either approved by FDA or those under clinical trials including CART-cell therapy would be of immense importance in the effective management of AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, 122413, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
32
|
Yokomizo-Nakano T, Kubota S, Bai J, Hamashima A, Morii M, Sun Y, Katagiri S, Iimori M, Kanai A, Tanaka D, Oshima M, Harada Y, Ohyashiki K, Iwama A, Harada H, Osato M, Sashida G. Overexpression of RUNX3 Represses RUNX1 to Drive Transformation of Myelodysplastic Syndrome. Cancer Res 2020; 80:2523-2536. [PMID: 32341038 DOI: 10.1158/0008-5472.can-19-3167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
RUNX3, a RUNX family transcription factor, regulates normal hematopoiesis and functions as a tumor suppressor in various tumors in humans and mice. However, emerging studies have documented increased expression of RUNX3 in hematopoietic stem/progenitor cells (HSPC) of a subset of patients with myelodysplastic syndrome (MDS) showing a worse outcome, suggesting an oncogenic function for RUNX3 in the pathogenesis of hematologic malignancies. To elucidate the oncogenic function of RUNX3 in the pathogenesis of MDS in vivo, we generated a RUNX3-expressing, Tet2-deficient mouse model with the pancytopenia and dysplastic blood cells characteristic of MDS in patients. RUNX3-expressing cells markedly suppressed the expression levels of Runx1, a critical regulator of hemaotpoiesis in normal and malignant cells, as well as its target genes, which included crucial tumor suppressors such as Cebpa and Csf1r. RUNX3 bound these genes and remodeled their Runx1-binding regions in Tet2-deficient cells. Overexpression of RUNX3 inhibited the transcriptional function of Runx1 and compromised hematopoiesis to facilitate the development of MDS in the absence of Tet2, indicating that RUNX3 is an oncogene. Furthermore, overexpression of RUNX3 activated the transcription of Myc target genes and rendered cells sensitive to inhibition of Myc-Max heterodimerization. Collectively, these results reveal the mechanism by which RUNX3 overexpression exerts oncogenic effects on the cellular function of and transcriptional program in Tet2-deficient stem cells to drive the transformation of MDS. SIGNIFICANCE: This study defines the oncogenic effects of transcription factor RUNX3 in driving the transformation of myelodysplastic syndrome, highlighting RUNX3 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | | | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Daiki Tanaka
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo Japan
| | - Yuka Harada
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo Japan
| | - Hironori Harada
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto Japan.
| |
Collapse
|
33
|
Balogh P, Adelman ER, Pluvinage JV, Capaldo BJ, Freeman KC, Singh S, Elagib KE, Nakamura Y, Kurita R, Sashida G, Zunder ER, Li H, Gru AA, Price EA, Schrier SL, Weissman IL, Figueroa ME, Pang WW, Goldfarb AN. RUNX3 levels in human hematopoietic progenitors are regulated by aging and dictate erythroid-myeloid balance. Haematologica 2020; 105:905-913. [PMID: 31171641 PMCID: PMC7109730 DOI: 10.3324/haematol.2018.208918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.
Collapse
Affiliation(s)
- Peter Balogh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - John V Pluvinage
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Brian J Capaldo
- Flow Cytometry Core Facility, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Katie C Freeman
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Sandeep Singh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Kamaleldin E Elagib
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tatsumi, Koto-ku, Tokyo, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis IRCMS, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Hui Li
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Alejandro A Gru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| | - Elizabeth A Price
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, USA
| | - Stanley L Schrier
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Wendy W Pang
- Department of Medicine, Division of Blood and Bone Marrow Transplantation, Stanford University, Stanford, California, USA
| | - Adam N Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, USA
| |
Collapse
|
34
|
Guo C, Li J, Steinauer N, Wong M, Wu B, Dickson A, Kalkum M, Zhang J. Histone deacetylase 3 preferentially binds and collaborates with the transcription factor RUNX1 to repress AML1-ETO-dependent transcription in t(8;21) AML. J Biol Chem 2020; 295:4212-4223. [PMID: 32071087 PMCID: PMC7105303 DOI: 10.1074/jbc.ra119.010707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/11/2020] [Indexed: 01/26/2023] Open
Abstract
In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1-eight-twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1-ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1-ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1-ETO and RUNX1 co-occupy the binding sites of AML1-ETO-activated genes. How this joined binding allows RUNX1 to antagonize AML1-ETO-mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1-ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1-ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1-ETO-activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1-ETO-dependent transcription, a finding further supported by results of genome-wide analyses of AML1-ETO-activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1-ETO/RUNX1 cistrome.
Collapse
MESH Headings
- Cell Line, Tumor
- Core Binding Factor Alpha 2 Subunit/genetics
- Gene Expression Regulation, Neoplastic
- Genome, Human/genetics
- Histone Deacetylases/genetics
- Humans
- Interleukin-8/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein/genetics
- Transcriptional Activation/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Jian Li
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Madeline Wong
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Brent Wu
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Alexandria Dickson
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104.
| |
Collapse
|
35
|
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020; 43:99-106. [PMID: 32024352 PMCID: PMC7057837 DOI: 10.14348/molcells.2019.0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023] Open
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Collapse
Affiliation(s)
- Ann Sanoji Samarakkody
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Nah-Young Shin
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
- Harvard Stem Cell Institute, Cambridge, MA 0138, USA
| |
Collapse
|
36
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
37
|
Sun H, Guo F, Xu L. Downregulation of microRNA-101-3p participates in systemic lupus erythematosus progression via negatively regulating HDAC9. J Cell Biochem 2020; 121:4310-4320. [PMID: 31904179 DOI: 10.1002/jcb.29624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the mechanism of microRNA-101-3p (miR-101-3p) on the progression of systemic lupus erythematosus (SLE). The human peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples of SLE patients and healthy individuals, followed by cell culture and transfection. Moreover, the flow cytometry assay, quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunoassay were used to assess the effect of miR-101-3p on PBMCs. Bioinformatics analysis was conducted to predict the putative target gene of miR-101-3p, luciferase reporter gene assay, and RNA pull-down assay were applied to verify the interaction between them. Compared with healthy individuals, the expression level of miR-101-3p in PBMCs of SLE patients was significantly decreased, whereas interleukin (IL)-17A, IL-6, and interferon (IFN)-γ were remarkably increased (all P < .001). Correlation analyses showed that there were negative correlations between miR-101-3p and IL-17A, IL-6 and IFN-γ. The expression level of miR-101-3p in PBMCs of SLE patients was positively correlated with C3 expression (rs = .4075; P = .0229), while negatively associated with erythrocyte sedimentation rate (ESR) (rs = -.4238; P = .0175) and IgG expression (rs = -.4949; P = .0047). Overexpression of miR-101-3p could inhibit the differentiation of CD4 + T cells into Th17 lineage. Histone deacetylase 9 (HDAC9) was identified as a potential target gene of miR-101-3p. Furthermore, HDAC9 abolished the effect of miR-101-3p on Th17 cell differentiation and IL-17A expression in SLE. In conclusion, downregulated miR-101-3p in PBMCs of SLE patients inhibited Th17 cell differentiation by directly targeting HDAC9, which could be used as a novel therapeutic therapy for SLE treatment.
Collapse
Affiliation(s)
- Huanxia Sun
- Department of Rheumatology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Fei Guo
- Department of Rheumatology and Immunology, The Second People's Hospital of Liaocheng, Linqing City, Shandong Province, China
| | - Liming Xu
- Department of Rheumatology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| |
Collapse
|
38
|
Khattar E, Maung KZY, Chew CL, Ghosh A, Mok MMH, Lee P, Zhang J, Chor WHJ, Cildir G, Wang CQ, Mohd-Ismail NK, Chin DWL, Lee SC, Yang H, Shin YJ, Nam DH, Chen L, Kumar AP, Deng LW, Ikawa M, Gunaratne J, Osato M, Tergaonkar V. Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nat Commun 2019; 10:5349. [PMID: 31836706 PMCID: PMC6911077 DOI: 10.1038/s41467-019-13082-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
Increased levels and non-telomeric roles have been reported for shelterin proteins, including RAP1 in cancers. Herein using Rap1 null mice, we provide the genetic evidence that mammalian Rap1 plays a major role in hematopoietic stem cell survival, oncogenesis and response to chemotherapy. Strikingly, this function of RAP1 is independent of its association with the telomere or with its known partner TRF2. We show that RAP1 interacts with many members of the DNA damage response (DDR) pathway. RAP1 depleted cells show reduced interaction between XRCC4/DNA Ligase IV and DNA-PK, and are impaired in DNA Ligase IV recruitment to damaged chromatin for efficient repair. Consistent with its role in DNA damage repair, RAP1 loss decreases double-strand break repair via NHEJ in vivo, and consequently reduces B cell class switch recombination. Finally, we discover that RAP1 levels are predictive of the success of chemotherapy in breast and colon cancer.
Collapse
Affiliation(s)
- Ekta Khattar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Kyaw Ze Ya Maung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Chen Li Chew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Arkasubhra Ghosh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pei Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jun Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Wei Hong Jeff Chor
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Gökhan Cildir
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chelsia Qiuxia Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Nur Khairiah Mohd-Ismail
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yong-Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lih Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Xie Y, Lin T, Yang M, Zhang Z, Deng N, Tang M, Xiao Y, Guo H, Deng Q. Co-exposure to polycyclic aromatic hydrocarbons and metals, four common polymorphisms in microRNA genes, and their gene-environment interactions: Influences on oxidative damage levels in Chinese coke oven workers. ENVIRONMENT INTERNATIONAL 2019; 132:105055. [PMID: 31382182 DOI: 10.1016/j.envint.2019.105055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Human are often simultaneously exposed to polycyclic aromatic hydrocarbons (PAHs) and metals, yet relatively little is known regarding their co-exposure effects on oxidative damage. Genetic factors and the gene-environment interactions can also determine the severity of oxidative damage. Four polymorphisms in microRNA (miRNA) genes (rs11614913, rs2292832, rs2910164, and rs3746444) have been well-studied to be associated with oxidative damage-related diseases. OBJECTIVE To investigate the influences of PAH-metal co-exposure, four polymorphisms, and their interactions on oxidative damage levels. METHODS We conducted a cross-sectional study in 1385 coke oven workers. We quantified exposure levels of PAHs and metals by urinary monohydroxy-PAHs, plasma benzo[a]pyrene-7,8-diol-9,10-epoxide-albumin adducts, and urinary metals, respectively, and measured oxidative damage levels by 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine. We also genotyped four polymorphisms. RESULTS In multiple-pollutant models, 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were associated with multiple PAH exposure biomarkers, as well as with multiple metals (ptrend < 0.05). Metabolites of phenanthrene and pyrene interacted synergistically with lead and zinc to influence 8-iso-prostaglandin-F2α (βinteraction > 7.75%, false discovery rate-adjusted pinteraction ≤ 2.25 × 10-5). Significantly higher 8-hydroxydeoxyguanosine was observed in carriers of rs11614913 CC variant homozygote than TC carriers (p = 0.037). Associations of the number of rs11614913 C allele with increased 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were significant (βstd > 0, ptrend < 0.05) and more pronounced in workers with lower metals [p for modifying effect (pME) < 0.040]. Positive associations of some PAHs and metals with 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were weaker in carriers of rs11614913 CC genotype or C allele (pME < 0.05). CONCLUSION PAH-metal co-exposure, rs11614913, and their interactions may affect oxidative damage levels in Chinese population in a complex manner that are worthy of further investigation.
Collapse
Affiliation(s)
- Yunling Xie
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaorui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Na Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqi Tang
- School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifei Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Ye K, Xu C, Hui T. MiR-34b inhibits the proliferation and promotes apoptosis in colon cancer cells by targeting Wnt/β-catenin signaling pathway. Biosci Rep 2019; 39:BSR20191799. [PMID: 31467172 PMCID: PMC6822525 DOI: 10.1042/bsr20191799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022] Open
Abstract
Colon cancer is one of the leading cause of cancer deaths that is severely threatening human health. Several microRNAs (miRNAs) have been found to be associated with the tumor genesis of colon cancer. The present study determined the expression of miR-34b in patients with colon cancer and studied the molecular mechanism of miR-34b in the proliferation and apoptosis of human colon cancer Caco-2 cells in vitro. In colon cancer patients, the expression of miR-34b was decreased in tumor tissues when compared with the adjacent non-tumor tissues. Furthermore, overexpression of miR-34b inhibited proliferation, migration and invasion, while promoted apoptosis in colon cancer cells. The online bioinformatics sites predicted possible regulatory genes of miR-34b and luciferase reporter assay verify that β-catenin was a direct target of miR-34b. Furthermore, miR-34b overexpression significantly decreased the expression of genes associated with Wnt/β-catenin signaling pathway. In conclusion, our results suggest that miR-34b may inhibit migration and invasion of human colon cancer cells by regulating Wnt/β-catenin signaling and miR-34b may be a key target for the treatment and diagnosis of colon cancer.
Collapse
Affiliation(s)
- Kailun Ye
- Department of Surgery, First People’s Hospital of Tonglu, Hangzhou 311500, Zhejiang, China
| | - Chunhua Xu
- Department of Surgery, First People’s Hospital of Tonglu, Hangzhou 311500, Zhejiang, China
| | - Tongguan Hui
- Department of Surgery, First People’s Hospital of Tonglu, Hangzhou 311500, Zhejiang, China
| |
Collapse
|
41
|
|
42
|
Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep 2019; 39:BSR20191452. [PMID: 31420372 PMCID: PMC6732367 DOI: 10.1042/bsr20191452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cerebral ischemia–reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κB (NF-κB)/p53 pathway in cerebral I/R rats. Methods: Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given intraperitoneally (i.p.) after the 2-h ischemia, and Pifithrin-α (PFT-α, p53 inhibitor), SN50 (NF-κB inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, respectively. Results: The neurological deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT-α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT-α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT-α and ginkgetin. Conclusion: Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κB/p53 signaling pathway.
Collapse
|
43
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
44
|
Meng Y, Yu F. Long noncoding RNA FAM3D-AS1 inhibits development of colorectal cancer through NF-κB signaling pathway. Biosci Rep 2019; 39:BSR20190724. [PMID: 31147452 PMCID: PMC6609597 DOI: 10.1042/bsr20190724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Although numerous differential long noncoding RNAs (IncRNAs) have been identified, the relationship between lncRNA and colorectal cancer (CRC) still remains largely unclear. In the present study, we investigated the function and provided a possible mechanism of lncRNA FAM3D-AS1 in CRC. CCK8, transwell, and trypan blue staining were used to evaluate the proliferation, invasion, and cell death rates. Real-time PCR was used to elucidate the expression level of FAM3D-AS1. We found that lncRNA FAM3D-AS1 located in cytoplasm. Overexpression of FAM3D-AS1 significantly inhibited the cell proliferation, cell survival rates, and invaded cells. We also provided evidence that FAM3D-AS1 reversed the EMT process. Moreover, we proved that FAM3D-AS1 inhibits CRC development through NF-κB signaling pathway. Taken together, we performed functional analysis of FAM3D-AS1 and provided a possible mechanism in the development of CRC. Our study provided new targets for clinical treatment.
Collapse
Affiliation(s)
- Ying Meng
- The First Division of Cancer Department of Zibo Central Hospital, Shandong, China
| | - Feng Yu
- The Second Division of Gastroenterology Department of Zibo Central Hospital, Shandong, China
| |
Collapse
|
45
|
Down-regulation of microRNA-142-3p inhibits the aggressive phenotypes of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting nuclear factor-κB signaling. Biosci Rep 2019; 39:BSR20190700. [PMID: 31239367 PMCID: PMC6614573 DOI: 10.1042/bsr20190700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to investigate the regulatory roles of miR-142-3p on the aggressive phenotypes of rheumatoid arthritis (RA) human fibroblast-like synoviocytes (RA-HFLSs), and reveal the potential mechanisms relating with nuclear factor-κB (NF-κB) signaling. miR-142-3p expression was detected in RA synovial tissues and RA-HFLSs by quantitative real-time PCR (qRT-PCR) and Northern blot analysis. RA-HFLSs were transfected with miR-142-3p inhibitor and/or treated with 10 µg/l tumor necrosis factor α (TNF-α). The viability, colony formation, apoptosis, migration, invasion, and the levels of interleukin (IL)-6, and matrix metalloproteinase 3 (MMP-3) were detected. The mRNA expressions of B-cell lymphoma-2 (Bcl-2), Bax, Bad, IL-6, and MMP-3 were detected by qRT-PCR. Moreover, the expression of Bcl-2, IL-1 receptor-associated kinase 1 (IRAK1), Toll-like receptor 4 (TLR4), NF-κB p65, and phosphorylated NF-κB p65 (p-NF-κB p65) were detected by Western blot. The interaction between IRAK1 and miR-142-3p was identified by dual luciferase reporter gene assay. MiR-142-3p was up-regulated in RA synovial tissues and RA-HFLSs. TNF-α activated the aggressive phenotypes of RA-HFLSs, including enhanced proliferation, migration, invasion, and inflammation, and inhibited apoptosis. miR-142-3p inhibitor significantly decreased the cell viability, the number of cell clones, the migration rate, the number of invasive cells, the contents and expression of IL-6 and MMP-3, and increased the apoptosis rate and the expressions of Bax and Bad, and decreased Bcl-2 expression of TNF-α-treated RA-HFLSs. MiR-142-3p inhibitor significantly reversed TNF-α-induced up-regulation of IRAK1, TLR4, and p-NF-κB p65 in TNF-α-treated RA-HFLSs. Besides, IRAK1 was a target of miR-142-3p. The down-regulation of miR-142-3p inhibited the aggressive phenotypes of RA-HFLSs through inhibiting NF-κB signaling.
Collapse
|
46
|
Seo A, Gulsuner S, Pierce S, Ben-Harosh M, Shalev H, Walsh T, Krasnov T, Dgany O, Doulatov S, Tamary H, Shimamura A, King MC. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum Mol Genet 2019; 28:133-142. [PMID: 30247636 DOI: 10.1093/hmg/ddy334] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Severe thrombocytopenia, characterized by dysplastic megakaryocytes and intracranial bleeding, was diagnosed in six individuals from a consanguineous kindred. Three of the individuals were successfully treated by bone marrow transplant. Whole-exome sequencing and homozygosity mapping of multiple family members, coupled with whole-genome sequencing to reveal shared non-coding variants, revealed one potentially functional variant segregating with thrombocytopenia under a recessive model: GALE p.R51W (c.C151T, NM_001127621). The mutation is extremely rare (allele frequency = 2.5 × 10-05), and the likelihood of the observed co-segregation occurring by chance is 1.2 × 10-06. GALE encodes UDP-galactose-4-epimerase, an enzyme of galactose metabolism and glycosylation responsible for two reversible reactions: interconversion of UDP-galactose with UDP-glucose and interconversion of UDP-N-acetylgalactosamine with UDP-N-acetylglucosamine. The mutation alters an amino acid residue that is conserved from yeast to humans. The variant protein has both significantly lower enzymatic activity for both interconversion reactions and highly significant thermal instability. Proper glycosylation is critical to normal hematopoiesis, in particular to megakaryocyte and platelet development, as reflected in the presence of thrombocytopenia in the context of congenital disorders of glycosylation. Mutations in GALE have not previously been associated with thrombocytopenia. Our results suggest that GALE p.R51W is inadequate for normal glycosylation and thereby may impair megakaryocyte and platelet development. If other mutations in GALE are shown to have similar consequences, this gene may be proven to play a critical role in hematopoiesis.
Collapse
Affiliation(s)
- Aaron Seo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Suleyman Gulsuner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Sarah Pierce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Miri Ben-Harosh
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Hanna Shalev
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Tom Walsh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Sergei Doulatov
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Hannah Tamary
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.,Hematology Unit, Schneider Children's Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Song X, Song Y, Dong M, Liu Z, Wang W, Wang L, Song L. A new member of the runt domain family from Pacific oyster Crassostrea gigas (CgRunx) potentially involved in immune response and larvae hematopoiesis. FISH & SHELLFISH IMMUNOLOGY 2019; 89:228-236. [PMID: 30936046 DOI: 10.1016/j.fsi.2019.03.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The Runx family is a kind of heteromeric transcription factors, which is defined by the presence of a runt domain. As transcriptional regulator during development and cell fate specification, Runx is best known for its critical roles in hematopoiesis. In the present study, a Runx transcription factor (designed as CgRunx) was identified and characterized from the oyster Crassostrea gigas. The complete coding sequence of CgRunx was of 1638 bp encoding a predicted polypeptide of 545 amino acids with one conserved runt domain, which shared high similarity with other reported Runx proteins. CgRunx was highly expressed in hemocytes, gill and mantle both at the protein and nucleic acid levels. CgRunx protein was localized specifically in the cell nuclei of hemocytes, and distributed at the tubule lumen of gill filament. During the larval developmental stages, the mRNA transcripts of CgRunx gradually increased after fertilization, reached to a relative high level at the 8 cell embryos and the blastula stage of 2-4 hpf (hours post fertilization) (about 40-fold), and peaked at early trochophore larvae (10 hpf) (about 60-fold). Whole-mount immunofluorescence assay further revealed that the abundant immunofluorescence signals of CgRunx distributed through the whole embryo at blastula stage (5 hpf), and progressively reduced with the development to a ring structure around the dorsal region in trochophore larvae (10 hpf). Scattered positive immunoreactivity signals finally appeared in the velum region of D-veliger larvae. After LPS and Vibrio splendidus stimulations, the expression levels of CgRunx mRNA in hemocytes were up-regulated significantly compared with that in the control (0 h), which were 2.98- and 2.46-fold (p < 0.05), 2.67- and 1.5-fold (p < 0.05), 2.36- and 1.38-fold (p < 0.05) at 3 h, 6 h and 12 h, respectively. These results collectively suggested that CgRunx involved in immune response and might participate in larvae hematopoiesis in oyster.
Collapse
Affiliation(s)
- Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
48
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
49
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
50
|
Azevedo AP, Silva SN, Reichert A, Lima F, Júnior E, Rueff J. Effects of polymorphic DNA genes involved in BER and caspase pathways on the clinical outcome of myeloproliferative neoplasms under treatment with hydroxyurea. Mol Med Rep 2018; 18:5243-5255. [PMID: 30320340 DOI: 10.3892/mmr.2018.9535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/01/2018] [Indexed: 11/06/2022] Open
Abstract
Several single nucleotide polymorphisms (SNPs) influencing DNA repair capacity and apoptotic status may confer genetic predisposition to Philadelphia‑chromosome negative myeloproliferative neoplasms (PN‑MPNs), and influence therapeutic response and the clinical course. In the present study, whether SNPs in genes involved in apoptosis and the base excision repair (BER) pathway was evaluated. In addition, some known risk factors in PN‑MPNs that may influence survival and therapeutic response to hydroxyurea (HU) were analyzed, taking into account three items: Disease progression, predisposition to new non‑myeloid neoplasms and thrombotic events. The present study involved a total of 133 Caucasian Portuguese PN‑MPNs patients treated with HU, whereby 17 cases showed progression to myelofibrosis/leukemia, 11 developed new non‑myeloid neoplasms and 22 presented with thrombotic events. Progression to secondary myelofibrosis/leukemia is influenced by exposure to cytoreductive agents, and caspase and BER polymorphisms {globally, CASP8 3'untranslated region [odds ratio (OR)=0.24; 95% confidence interval (CI), 0.08‑0.69], XRCC1 Arg194Trp [OR=3.58; 95% CI, 0.98‑13.01]; for essential thrombocythemia patients CASP9 Arg173His [OR=11.27; 95% CI, 1.13‑112.28], APEX1 Asp148Glu [OR=0.28; 95% CI, 0.74‑1.03], and XRCC1 Arg194Trp [OR=6.60; 95% CI, 1.60‑27.06]}. Moreover, globally caspase and BER polymorphisms influenced the development of new nonmyeloid malignancies [CASP8 Asp270His (OR=5.90; 95% CI, 1.42‑24.62) and XRCC1 Arg399Gln (OR=0.27; 95% CI, 0.07‑1.03)]. On the other hand, only the BER pathway had a role in the presence of thrombotic events [XRCC1 Gln399Arg (OR=0.35; 95% CI, 0.14‑0.88)]. JAK2 mutation had no influence on these complications. Larger studies are required to confirm these results, and to provide conclusive evidence of association between these and other variants with PN‑MPNs therapeutic response and clinical evolution. However, this study may allow the development of drugs more directly targeted to the pathophysiology of the disease, with high efficacy, fewer adverse effects, contributing to compliance of patients with treatments. The clinical indication for classical drugs, including HU, may be guided by variant genes, which may provide additional beneficial effects.
Collapse
Affiliation(s)
- Ana P Azevedo
- Centre for Toxicogenomics and Human Health (Toxomics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade Nova de Lisboa, 1150‑082 Lisbon, Portugal
| | - Susana N Silva
- Centre for Toxicogenomics and Human Health (Toxomics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade Nova de Lisboa, 1150‑082 Lisbon, Portugal
| | - Alice Reichert
- Department of Clinical Haematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449‑005 Lisbon, Portugal
| | - Fernando Lima
- Department of Clinical Haematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449‑005 Lisbon, Portugal
| | - Esmeraldina Júnior
- Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449‑005 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (Toxomics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade Nova de Lisboa, 1150‑082 Lisbon, Portugal
| |
Collapse
|