1
|
Wang X, Tong J, Li H, Lu M, Liu Y, Gan H, Wang Y, Geng M, Qie X, Wu X, Gao H, Zhu B, Tao S, Tao X, Yan S, Gao G, Wu X, Huang K, Cao Y, Tao F. Sex-and stage-specific effect of prenatal exposure to organophosphate esters with children's physical growth patterns and adiposity rebound timing: Modification by breastfeeding. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138309. [PMID: 40252324 DOI: 10.1016/j.jhazmat.2025.138309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Exploring the stage-specific effects of prenatal exposure to organophosphate esters (OPEs) on offspring growth and developmental trajectories is critical for early-life health management. METHODS Based on 2519 mother-child dyads from the Ma'anshan Birth Cohort, we examined the concentrations of OPEs in maternal urine during the three trimesters. Seventeen follow-up visits were made to the children, and physical data were collected. A grouped trajectory model was used to fit the growth trajectories. RESULTS First-trimester bis(2-butoxyethyl) phosphate (BBOEP) was inversely associated with the children's adiposity rebound (AR) timing (β = -0.33, 95 % CI: -0.65, -0.01), and the ORs (95 % CIs) for early age at AR for each doubling of BBOEP and dibutyl phosphate (DBP) were 1.07 (1.00, 1.14) and 1.12 (1.03, 1.22), respectively. BBOEP increased the risk of a high-stable BMI-for-age z score (BMIz) group (OR = 1.18, 95 % CI: 1.01, 1.39), whereas tris(2-chloroethyl) phosphate (TCEP) and bis(2-ethylhexyl) phosphate reduced this risk. Diphenyl phosphate (OR = 0.74, 95 % CI: 0.59, 0.94) and aromatic OPEs (OR = 0.70, 95 % CI: 0.54, 0.90) reduced the odds of an extreme-high body fat group. TCEP also reduced the risk of a high body fat percentage group (p < 0.05). There appeared to be sex and ester bond differences in these associations, and breastfeeding could counteract the association between the OPEs and growth trajectories. No mixed effects of OPEs on BMIz trajectories were found. CONCLUSIONS The present study identified a heterogeneous association between OPE exposure during pregnancy and AR timing and physical growth patterns in offspring. Future studies are needed involving more regions and populations, with consideration of other developmentally toxic compounds, to obtain more reliable and comprehensive results.
Collapse
Affiliation(s)
- Xing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuan Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yifan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Menglong Geng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xuejiao Qie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiulong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui 243011, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xingyong Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui 243011, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui 243011, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yunxia Cao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Gao P, Wang P, Zhang X, Chang H, Zhao X, Zhang J, Gao Z, Yu Z, Bo Y. Association between organophosphate esters exposure and all-cause and cause-specific mortality: a national population-based cohort study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:922-932. [PMID: 38972013 DOI: 10.1080/09603123.2024.2374447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Exposure to organophosphate esters (OPEs) is associated with several chronic diseases, but the relationship with mortality risk is unclear. Therefore, we used the National Health and Nutrition Examination Survey 2011-2018 data to evaluate these relationships. 6,869 participants aged 18 years or older were included. Survival status information was obtained through the National Death Index through 31 December 2019. Multivariable COX regression model was adopted to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the relationships of urinary OPEs metabolites with mortality risk. During an average of 5.0 years of follow-up, 406 deaths were documented. After adjusting for confounders, bis(2-chloroethyl) phosphate was associated with an increased risk of all-cause mortality [HR (95%CI) = 1.12(1.05-1.20)] and cardiovascular mortality [HR (95%CI) = 1.15(1.04-1.26)]. Our study found that exposure to OPEs was significantly associated with increased risks of all-cause and cardiovascular mortality. Consequently, controlling OPEs exposure is needed to alleviate the health-related burden.
Collapse
Affiliation(s)
- Panpan Gao
- Department of Clinical Nutrition, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengxi Wang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- Defects Prevention, NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Zhan Gao
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Defects Prevention, NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Defects Prevention, NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|
3
|
Li T, Liu Y, Cao J, Lu X, Lu Y, Wang Y, Zhang C, Wu M, Deng S, Li L, Shi M. Triphenyl phosphate induces lipid metabolism disorder and promotes obesity through PI3K/AKT signaling pathway. ENVIRONMENT INTERNATIONAL 2025; 198:109428. [PMID: 40199182 DOI: 10.1016/j.envint.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Triphenyl phosphate (TPHP) is a widely used organic phosphate flame retardant that has been reported as a potential environmental obesogen. However, the potential impact and mechanism of action of TPHP on adipose tissue are still unclear. This study investigates the potential impact of TPHP on lipid metabolism disorders through in vivo and in vitro experiments. Male and female BALB/c mice were exposed to TPHP (0, 1, 10, and 150 mg/kg/day) for 60 days, and 3T3-L1 preadipocytes were treated with concentrations of TPHP (0, 0.1, 1, 10 μM) during differentiation. The results showed that exposure to TPHP could cause gender specific dyslipidemia, with male mice exhibiting dose-dependent increases in inguinal adipose tissue coefficient, adipocyte hypertrophy, and upregulation of adipose differentiation and adipogenesis-related genes. In contrast, female mice did not show significant changes in tissue morphology. This suggested that TPHP might promote the potential occurrence of adiposity by disrupting the lipid metabolism homeostasis of male adipose tissue. During the differentiation and maturation process of 3T3-L1 preadipocytes, exposure to TPHP led to increased lipid accumulation and disrupted lipid homeostasis by simultaneous activation adipogenesis and lipolysis. Multiple omics data showed that the activation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway and fatty acid metabolism was the core mechanism of TPHP induced metabolic dysfunction. Further research showed that TPHP activated the PI3K/AKT pathway, and PI3K inhibitor (LY294002) could rescue TPHP induced lipid droplet formation and normalize the expression of adipogenic markers. These findings confirm that TPHP is a potential environmental obesogen that can disrupt the metabolic homeostasis of white adipose tissue through the PPARγ and PI3K/AKT signaling pathways, with higher susceptibility in males. This study provides compelling evidence for the obesogenic effects of TPHP and information for risk assessment of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Meifen Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Song Deng
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| |
Collapse
|
4
|
Grosso MF, Řehůřková E, Virmani I, Sychrová E, Sovadinová I, Babica P. Impact of endocrine disruptors on key events of hepatic steatosis in HepG2 cells. Food Chem Toxicol 2025; 197:115241. [PMID: 39778647 DOI: 10.1016/j.fct.2025.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoblastoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM. Cadmium also induced this effect, but at concentrations impairing cell viability (>1 μM). At non-cytotoxic concentrations, these compounds, along with bisphenol A, dysregulated major genes controlling lipid homeostasis. Cadmium, PFOA, DDE, and DEHP significantly upregulated the DGAT1 gene involved in triglyceride synthesis, while butylparaben increased the expression of the FAT/CD36 gene responsible for fatty acid uptake. Bisphenol A downregulated the CPT1A gene involved in fatty acid oxidation. No significant effects on lipid droplet accumulation or lipid metabolism-related genes were observed for PFOS, bisphenol S, and dibutyl phthalate. Among the tested EDCs, lipid accumulation positively correlated with the expression of SREBF1, DGAT1, and CPT1A. These findings provide additional evidence that EDCs can affect MASLD and highlight the utility of in vitro methods in the screening of EDCs with hazardous steatogenic and metabolism-disrupting properties.
Collapse
Affiliation(s)
- Marina F Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Eliška Řehůřková
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Ishita Virmani
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| |
Collapse
|
5
|
Germain L, Pereira D, Winn LM. Reference gene considerations for toxicological assessment of the flame retardant triphenyl phosphate in an in vitro fish embryonic model. J Appl Toxicol 2025; 45:288-297. [PMID: 39295171 PMCID: PMC11738539 DOI: 10.1002/jat.4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The reliability of relative quantification RT-qPCR depends upon the gene of interest being normalized to one or more reference genes, with the assumption that the chosen reference genes do not experience altered expression with experimental conditions. The correct choice of stable reference genes is critical when investigating alterations to gene transcript levels following exposure to endocrine and metabolic disrupting chemicals, such as the flame retardant triphenyl phosphate (TPhP). This study assessed the stability of eight reference genes following TPhP exposure in embryonic cells derived from rainbow trout (Oncorhynchus mykiss). The genes β-actin (actb) and 18s rRNA (18s) were stable, while glyceraldehyde-3-phosphate dehydrogenase (gapdh) relative expression was found to be increased. gapdh is a popular reference gene and has been previously used in the literature for investigating TPhP exposure in teleost fish models. We discuss the implications of gapdh upregulation in the context of TPhP as a metabolic disrupting chemical. Furthermore, we quantified the expression of the tumor suppressor gene p53 following TPhP exposure in relation to different reference genes to use as an example to report on how discrepancies in findings might arise depending on the stability of the chosen reference gene.
Collapse
Affiliation(s)
- Logan Germain
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonCanada
| | - Delaine Pereira
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonCanada
| | - Louise M. Winn
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonCanada
- School of Environmental StudiesQueen's UniversityKingstonCanada
| |
Collapse
|
6
|
Lin J, Yan F, Liu L, Liao G, Xu Y, Liu Q, Wu M, Guo H, Zhi B, Guo L, Liu X. Exposure to triphenyl phosphate during pregnancy: The role of gut-bile acids-liver axis on lipid metabolism in male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117554. [PMID: 39693854 DOI: 10.1016/j.ecoenv.2024.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
The widespread use of Triphenyl phosphate (TPhP) as a substitute flame retardant in various commercial products has raised global concerns for its health risks. Previously, we found that gestational and lactational TPhP exposure disturbed lipid metabolism and gut microbiota in offspring sex-dependently. In this study, we further explored the prenatal TPhP exposure on lipid metabolism in male offspring, and the role of gut-bile acids-liver axis in it. The results showed that gestational TPhP exposure would induce hyperlipidemia in male offspring, it dose-dependently increased the weight of body and liver, levels of serum lipid, and enlarged lipid droplets in white adipose tissue. The expression of lipid metabolism-related genes was significantly changed in the liver and adipose tissue. The gut microbiome of male offspring was also altered, with different profiles between the low and high dose treatment group. Target bile acids (BAs) metabolites analysis revealed a significant increased levels of primary BAs cholic acid (CA), but decreased levels of chenodeoxycholic acid (CDCA), and decreased levels of the secondary BAs deoxycholic acid (DCA), hyodeoxycholic acid (HDCA), ursodeoxycholic acid (UDCA), and lithocholic acid (LCA) in TPhP treatment group. Measurements of gene expression along the gut-BAs-liver axis showed that the TPhP treatment group had an increase in cholesterol-7alpha-hydroxylase (CYP7A1) and a decrease in apical sodium-dependent bile acid transporter (ASBT), with only the low-dose group exhibiting an increase in carbohydrate response element binding protein (ChREBP). Correlation and mediation analysis highlighted associations of Burkholderiaceae in low-dose treatment group and Erysipelotrichaceae in high dose group with lipid metabolism and BAs metabolites. No consistent correlations were observed in two treatment group. Additionally, Mantel tests did not reveal a consistent correlation between the microbiome network community and lipid metabolism or the gut-bile acids-liver axis. Overall, our findings indicate that gestational TPhP exposure induces hyperlipidemia in male offspring, and while the gut-BAs-liver axis plays a role, other mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Juntong Lin
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China; Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528000, China
| | - Fuhui Yan
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Longhui Liu
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ganzhong Liao
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yilei Xu
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qian Liu
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Miaoliang Wu
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Honghui Guo
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Bai Zhi
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Lianxian Guo
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China.
| | - Xiaoshan Liu
- School of Public Health, The first Dongguan affiliated hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China.
| |
Collapse
|
7
|
Liu Q, Lu X, Liao G, Yan F, Wu M, Bai Z, Tang H, Liu X. Prenatal Triphenyl Phosphate Exposure and Hyperlipidemia in Offspring: Role of Trophoblast-Derived Extracellular Vesicle PPARγ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22930-22943. [PMID: 39688536 DOI: 10.1021/acs.est.4c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphate flame retardant, the health risks of TPhP are a global concern. In this study, we found that prenatal TPhP exposure at human relevant concentration induced hyperlipidemia in male offspring, it increased serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Placental trophoblast-derived extracellular vesicles (T-EVs) could transport to the fetus through maternal-fetal circulation. TPhP significantly upregulated the protein level of peroxisome proliferator activated receptor γ (PPARγ) in T-EVs. Similar to TPhP, gestational exposure to T-EVs isolated from TPhP exposed mice placentae induced the same effects. While, gestational intervention with GW9662 (PPARγ inhibitor) or GW4869 (EVs secretion inhibitor) would alleviate the disturbed lipid metabolism induced by TPhP. Meanwhile, in vitro experiments verified that TPhP upregulated PPARγ in HTR8/SVneo cells derived EVs, and these EVs promoted adipogenesis in preadipocyte 3T3-L1 cells. Knock down of PPARγ in HTR8/SVneo could alleviate the adipogenensis effects of EVs derived from TPhP exposed HTR8/SVneo cells. These results demonstrate that TPhP exposure induces hyperlipidemia in male offspring by upregulating PPARγ in T-EVs. Our study provides new insights into the metabolic disruptive effects of TPhP, and emphasizes the mediating effects of placental T-EVs on gestational environmental stress in fetal development.
Collapse
Affiliation(s)
- Qian Liu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xiaoxun Lu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ganzhong Liao
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Fuhui Yan
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Miaoliang Wu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zhi Bai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huanwen Tang
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xiaoshan Liu
- School of Public Health, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| |
Collapse
|
8
|
Luo Y, Li M, Luo D, Tang B. Gut Microbiota: An Important Participant in Childhood Obesity. Adv Nutr 2024; 16:100362. [PMID: 39733798 PMCID: PMC11786877 DOI: 10.1016/j.advnut.2024.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
Increasing prevalence of childhood obesity has emerged as a critical global public health concern. Recent studies have challenged the previous belief that obesity was solely a result of excessive caloric intake. Alterations in early-life gut microbiota can contribute to childhood obesity through their influence on nutrient absorption and metabolism, initiation of inflammatory responses, and regulation of gut-brain communication. The gut microbiota is increasingly acknowledged to play a crucial role in human health, as certain beneficial bacteria have been scientifically proven to possess the capacity to reduce body fat content and enhance intestinal barrier function and their metabolic products to exhibit anti-inflammatory effect. Examples of such microbes include bifidobacteria, Akkermansia muciniphila, and Lactobacillus reuteri. In contrast, an increase in Enterobacteriaceae and propionate-producing bacteria (Prevotellaceae and Veillonellaceae) has been implicated in the induction of low-grade systemic inflammation and disturbances in lipid metabolism, which can predispose individuals to obesity. Studies have demonstrated that modulating the gut microbiota through diet, lifestyle changes, prebiotics, probiotics, or fecal microbiota transplantation may contribute to gut homeostasis and the management of obesity and its associated comorbidities. This review aimed to elucidate the impact of alterations in gut microbiota composition during early life on childhood obesity and explores the mechanisms by which gut microbiota contributes to the pathogenesis of obesity and specifically focused on recent advances in using short-chain fatty acids for regulating gut microbiota and ameliorating obesity. Additionally, it aimed to discuss the therapeutic strategies for childhood obesity from the perspective of gut microbiota, aiming to provide a theoretical foundation for interventions targeting pediatric obesity based on gut microbiota.
Collapse
Affiliation(s)
- Yu Luo
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maojun Li
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Luo
- Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binzhi Tang
- Department of Pediatrics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Pediatrics, School of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
9
|
Lin C, Guo Z, Li H, Lai Z, Zhang J, Xie S, Tan Y, Jing C. Oxidative stress mediates the association of organophosphate flame retardants with metabolic obesity in U.S. adults: A combined epidemiologic and bioinformatic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125267. [PMID: 39510304 DOI: 10.1016/j.envpol.2024.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Obesity is a global public health issue, with limited epidemiologic studies on the relationship and mechanisms between organophosphate flame retardants (OPFRs) and metabolic obesity phenotypes (MOPs). We aimed to explore the link between OPFRs metabolite (m-OPFRs) and MOPs using a combined epidemiologic and bioinformatic approach. We used cross-sectional survey data from the U.S. National Health and Nutrition Examination Survey (2011-2018) to analyze the relationship between m-OPFRs and metabolic health obesity (MHO), as well as metabolic unhealthy obesity (MUO). The dataset encompasses eligible adults to assess the impact of individual, mixed, and mediated effects on the outcome variables through multivariate logistic regression, Bayesian kernel machine regression (BKMR), and mediation analysis. Multiple logistic regression models, stratified by tertiles of exposure showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) levels in the body significantly increased the risk of MHO, with OR and 95%CI of 1.454 (1.082, 1.953) for the second tertile (T2) and 1.598 (1.126, 2.268) for the third tertile (T3), compared to the first tertile (T1). Increased levels of BDCIPP in T3 (1.452(1.013, 2.081)) are associated with MUO, compared to T1. Mixed m-OPFRs and MHO risk in BMKR were positively correlated, with BDCIPP being the primary contributor. We found that the serum uric acid (SUA) and white blood cell count (WBC) indicators significantly mediated the association between BDCIPP and MHO (P < 0.05). Our study suggests that OPFRs, either individual or mixed, are associated with two distinct MOPs, with oxidative stress playing an important role. In addition, in silico analysis was used to screen for shared genes, and eight shared genes and eleven biological pathways identified during the screening process were used to construct the adverse outcome pathway, which suggests that exposure to OPFRs may activate the peroxisome proliferator-activated receptor (PPAR) pathway, thereby increasing the risk of obesity. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chuhang Lin
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Zhengtian Lai
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jing Zhang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shen Xie
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
10
|
Liu X, Sun L, Lin Y, Du J, Yang H, Li C. Cresyl diphenyl phosphate (a novel organophosphate ester) induces hepatic steatosis by directly binding to liver X receptor α: From molecule action to risk assessment. ENVIRONMENT INTERNATIONAL 2024; 194:109168. [PMID: 39612745 DOI: 10.1016/j.envint.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been increasingly detected in various environmental and human samples. However, its toxicity, mechanisms, and health risks remain largely unknown. In this work, we investigated CDP-induced hepatic steatosis through Liver X Receptor α (LXRα) pathway across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, and compared them to triphenyl phosphate (TPHP) and tricresyl phosphate (TCRP). Receptor binding results showed that all three OPEs bound to LXRα directly in the order of TCRP > CDP > TPHP. Docking results suggested that the three aryl groups played an essential role in the binding of these chemicals to LXRα. They also activated LXRα-mediated lipogenesis pathway and promoted lipid accumulation in HepG2 cells. The intracellular concentration and LXRα-bound concentration of the chemicals in HepG2 cells followed a consistent order of CDP > TCRP > TPHP. In mice, exposure to CDP activated LXRα-mediated de novo lipogenesis pathway, leading to hepatic steatosis. Risk assessment results suggested that few populations (5.38 %) face a LXRα-mediated hepatic steatosis risk from CDP exposure. Collectively, our results demonstrate that CDP could bind to LXRα, activate the subsequent de novo lipogenesis pathway, inducing hepatic steatosis, and increasing adverse health risks.
Collapse
Affiliation(s)
- Xinya Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lanchao Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jingyue Du
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huizi Yang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
11
|
Pavlíková N, Šrámek J, Němcová V, Bajard L. Effects of novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) on function and homeostasis in human and rat pancreatic beta-cell lines. Arch Toxicol 2024; 98:3859-3874. [PMID: 39192017 PMCID: PMC11489283 DOI: 10.1007/s00204-024-03841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Despite the fact that environmental pollution has been implicated in the global rise of diabetes, the research on the impact of emerging pollutants such as novel flame retardants remains limited. In line with the shift towards the use of non-animal approaches in toxicological testing, this study aimed to investigate the effects of two novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) in rat (INS1E) and human (NES2Y) pancreatic beta-cell lines. One-week exposure to 1 μM and 10 μM TDCIPP and TPhP altered intracellular insulin and proinsulin levels, but not the levels of secreted insulin (despite the presence of a statistically insignificant trend). The exposures also altered the protein expression of several factors involved in beta-cell metabolic pathways and signaling, including ATP citrate lyase, isocitrate dehydrogenase 1, perilipins, glucose transporters, ER stress-related factors, and antioxidant enzymes. This study has brought new and valuable insights into the toxicity of TDCIPP and TPhP on beta-cell function and revealed alterations that might impact insulin secretion after more extended exposure. It also adds to the scarce studies using in vitro pancreatic beta-cells models in toxicological testing, thereby promoting the development of non-animal testing strategy for identifying pro-diabetic effects of chemical pollutants.
Collapse
Affiliation(s)
- Nela Pavlíková
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic.
| | - Jan Šrámek
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Vlasta Němcová
- 3LF UK, Departement of Biochemistry, Cell and Molecular Biology & Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
12
|
Sun L, Liu X, Du J, Yang H, Lin Y, Yu D, Li C, Zheng Y. Adipogenic Effects of Cresyl Diphenyl Phosphate (Triphenyl Phosphate Alternative) through Peroxisome Proliferator-Activated Receptor Gamma Pathway: A Comprehensive Study Integrating In Vitro, In Vivo, and In Silico from Molecule to Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18631-18641. [PMID: 39382118 DOI: 10.1021/acs.est.4c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been detected in various environmental and human samples. However, there is very limited knowledge regarding its toxicity, mechanisms of action, and potential health risks. Using new alternative methods (NAMs), across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, we investigated the potential adipogenic effects and associated risks of CDP and legacy OPE triphenyl phosphate (TPHP) by acting on peroxisome proliferator-activated receptor gamma (PPARγ). Among the 19 screened OPEs, CDP bound to PPARγ with the highest binding potency, followed by TPHP. CDP activated PPARγ through fitting into the binding pocket with strong hydrophobicity and hydrogen bond interactions; CDP exhibited higher potency compared to TPHP. In 3T3-L1 cells, CDP enhanced the PPARγ-mediated adipogenesis activity, exhibiting greater potency than TPHP. The intracellular concentration and receptor-bound concentrations (RBC) of CDP were also higher than those of TPHP in both HEK293 cells and 3T3-L1 cells. In mice, exposure to CDP activated the PPARγ-mediated adipogenic pathway, leading to an increased white adipose tissue weight gain. Overall, CDP could bind to and activate PPARγ, thereby promoting preadipocyte differentiation and the development of white adipose tissue. Its potential obesogenic risks should be of high concern.
Collapse
Affiliation(s)
- Lanchao Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jingyue Du
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huizi Yang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
13
|
Negi CK, Bláhová L, Phan A, Bajard L, Blaha L. Triphenyl Phosphate Alters Methyltransferase Expression and Induces Genome-Wide Aberrant DNA Methylation in Zebrafish Larvae. Chem Res Toxicol 2024; 37:1549-1561. [PMID: 39205618 PMCID: PMC11409374 DOI: 10.1021/acs.chemrestox.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging environmental contaminants, organophosphate flame retardants (OPFRs), pose significant threats to ecosystems and human health. Despite numerous studies reporting the toxic effects of OPFRs, research on their epigenetic alterations remains limited. In this study, we investigated the effects of exposure to 2-ethylhexyl diphenyl phosphate (EHDPP), tricresyl phosphate (TMPP), and triphenyl phosphate (TPHP) on DNA methylation patterns during zebrafish embryonic development. We assessed general toxicity and morphological changes, measured global DNA methylation and hydroxymethylation levels, and evaluated DNA methyltransferase (DNMT) enzyme activity, as well as mRNA expression of DNMTs and ten-eleven translocation (TET) methylcytosine dioxygenase genes. Additionally, we analyzed genome-wide methylation patterns in zebrafish larvae using reduced-representation bisulfite sequencing. Our morphological assessment revealed no general toxicity, but a statistically significant yet subtle decrease in body length following exposure to TMPP and EHDPP, along with a reduction in head height after TPHP exposure, was observed. Eye diameter and head width were unaffected by any of the OPFRs. There were no significant changes in global DNA methylation levels in any exposure group, and TMPP showed no clear effect on DNMT expression. However, EHDPP significantly decreased only DNMT1 expression, while TPHP exposure reduced the expression of several DNMT orthologues and TETs in zebrafish larvae, leading to genome-wide aberrant DNA methylation. Differential methylation occurred primarily in introns (43%) and intergenic regions (37%), with 9% and 10% occurring in exons and promoter regions, respectively. Pathway enrichment analysis of differentially methylated region-associated genes indicated that TPHP exposure enhanced several biological and molecular functions corresponding to metabolism and neurological development. KEGG enrichment analysis further revealed TPHP-mediated potential effects on several signaling pathways including TGFβ, cytokine, and insulin signaling. This study identifies specific changes in DNA methylation in zebrafish larvae after TPHP exposure and brings novel insights into the epigenetic mode of action of TPHP.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
14
|
Cao J, Lei Y, Jiang X, Kannan K, Li M. Biotransformation, Bioaccumulation, and Bioelimination of Triphenyl Phosphate and Its Dominant Metabolite Diphenyl Phosphate In Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15486-15496. [PMID: 39167085 DOI: 10.1021/acs.est.4c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Aryl phosphorus flame retardants (aryl-PFRs), such as triphenyl phosphate (TPHP) and diphenyl phosphate (DPHP), are widely used worldwide. Understanding the fates of aryl-PFRs in vivo is crucial to assessing their toxicity and the risks they pose. Seven TPHP metabolites, including Phase I hydrolysis and hydroxylation and Phase II glucuronidation products, were identified in C57BL/6J male mice following subacute dietary exposure to aryl-PFRs (70 μg/kg body weight (bw)/day) for 7 days. TPHP was almost completely metabolized by mice (∼97%), with DPHP the major metabolite formed (34%-58%). In addition, mice were exposed to aryl-PFRs (7 μg/kg bw/day) for 12 weeks. Both TPHP and DPHP occurred at higher concentrations in the digestive tract (intestine and stomach), liver and heart. The total concentration of DPHP in all organs was 3.55-fold greater than that of TPHP. Recovery analysis showed that the rate of TPHP elimination from mouse organs reached 38%, while only 3%-5% of DPHP was removed, suggesting that the rates of degradation and elimination of DPHP were slower than TPHP and its bioaccumulation potential was higher. These results highlight the critical role of DPHP in the biotransformation, bioaccumulation, and bioelimination of TPHP, providing valuable insights into the fate of aryl-PFRs in vivo.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, United States
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Beausoleil C, Thébault A, Andersson P, Cabaton NJ, Ermler S, Fromenty B, Garoche C, Griffin JL, Hoffmann S, Kamstra JH, Kubickova B, Lenters V, Kos VM, Poupin N, Remy S, Sapounidou M, Zalko D, Legler J, Jacobs MN, Rousselle C. Weight of evidence evaluation of the metabolism disrupting effects of triphenyl phosphate using an expert knowledge elicitation approach. Toxicol Appl Pharmacol 2024; 489:116995. [PMID: 38862081 DOI: 10.1016/j.taap.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.
Collapse
Affiliation(s)
- Claire Beausoleil
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France.
| | - Anne Thébault
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| | | | - Nicolas J Cabaton
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sibylle Ermler
- Department of Life Sciences, Centre of Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, UB8 3PH Uxbridge, United Kingdom
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Julian L Griffin
- The Rowett Institute, Foresterhill Health Campus, University of Aberdeen, Aberdeen, UK
| | | | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Barbara Kubickova
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Virissa Lenters
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Poupin
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Daniel Zalko
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| |
Collapse
|
16
|
Germain L, Winn LM. The flame retardant triphenyl phosphate alters the epigenome of embryonic cells in an aquatic in vitro model. J Appl Toxicol 2024; 44:965-977. [PMID: 38419361 DOI: 10.1002/jat.4589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Triphenyl phosphate (TPhP) is an organophosphate flame retardant and plasticizer that is added to a wide variety of consumer and industrial products. It is also a ubiquitous environmental pollutant. Exposure to TPhP has been shown to alter gene expression in metabolic and estrogenic signaling pathways in in vitro and in vivo models of a variety of species, and as such, is considered to be an endocrine disrupting chemical. Exposure to endocrine disrupting chemicals is increasingly being associated with changes to the epigenome, especially during embryonic development. The aim of this study was to evaluate whether TPhP exposure in aquatic ecosystems has the ability to alter the epigenome in two immortal cell lines derived from trout (Oncorhynchus mykiss). This study assessed whether 24 h exposure to TPhP resulted in changes to histone modification and DNA methylation profiles in steelhead trout embryonic cells and rainbow trout gill epithelial cells. Results show that several epigenetic modifications on histone H3 and DNA methylation are altered in the embryonic cells following TPhP exposure, but not in the gill epithelial cells. Specifically, histone H3 acetylation, histone H3 mono-methylation and global DNA methylation were found to be reduced. The alterations of these epigenetic modification profiles in the embryonic cells suggest that exposure to TPhP during fetal development may alter gene expression in the developing embryo, likely in metabolic and estrogenic pathways. The impacts to the epigenome determined in this study may even carry multigenerational detrimental effects on human and ecosystem health, which requires further investigation.
Collapse
Affiliation(s)
- Logan Germain
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- School of Environmental Studies, Queen's University, Kingston, Canada
| |
Collapse
|
17
|
Chen Y, Liu Q, Wang Y, Jiang M, Zhang J, Liu Y, Lu X, Tang H, Liu X. Triphenyl phosphate interferes with the synthesis of steroid hormones through the PPARγ/CD36 pathway in human trophoblast JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3400-3409. [PMID: 38450882 DOI: 10.1002/tox.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3βHSD1, 17βHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qian Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wang
- Dazhou Center Hospital, Dazhou, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jing Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoxun Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
18
|
Sha Y, Zhang D, Tu J, Zhang R, Shao Y, Chen J, Lu S, Liu X. Chronic exposure to tris(1,3-dichloro-2-propyl) phosphate: Effects on intestinal microbiota and serum metabolism in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116469. [PMID: 38772141 DOI: 10.1016/j.ecoenv.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphate ester that can adversely affect animal or human health. The intestinal microbiota is critical to human health. High-dose exposure to TDCIPP can markedly affect the intestinal ecosystem of mice, but the effects of long-term exposure to lower concentrations of TDCIPP on the intestinal flora and body metabolism remain unclear. In this study, TDCIPP was administered to Sprague-Dawley rats by gavage at a dose of 13.3 mg/kg bw/day for 90 days. TDCIPP increased the relative weight of the kidneys (P = 0.017), but had no effect on the relative weight of the heart, liver, spleen, lungs, testes, and ovaries (P > 0.05). 16 S rRNA gene sequencing revealed that long-term TDCIPP exposure affected the diversity, relative abundance, and functions of rat gut microbes. The serum metabolomics of the rats showed that TDCIPP can disrupt the serum metabolic profiles, result in the up-regulation of 26 metabolites and down-regulation of 3 metabolites, and affect multiple metabolic pathways in rat sera. In addition, the disturbed genera and metabolites were correlated. The functions of some disturbed gut microbes were consistent with the affected metabolic pathways in the sera, and these metabolic pathways were all associated with kidney disease, suggesting that TDCIPP may cause kidney injury in rats by affecting the intestinal flora and serum metabolism.
Collapse
Affiliation(s)
- Yujie Sha
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China.
| |
Collapse
|
19
|
Bui TT, Aasa J, Abass K, Ågerstrand M, Beronius A, Castro M, Escrivá L, Galizia A, Gliga A, Karlsson O, Whaley P, Yost E, Rudén C. Applying a modified systematic review and integrated assessment framework (SYRINA) - a case study on triphenyl phosphate. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:380-399. [PMID: 38205707 PMCID: PMC10879963 DOI: 10.1039/d3em00353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
This work presents a case study in applying a systematic review framework (SYRINA) to the identification of chemicals as endocrine disruptors. The suitability and performance of the framework is tested with regard to the widely accepted World Health Organization definition of an endocrine disruptor (ED). The endocrine disrupting potential of triphenyl phosphate (TPP), a well-studied flame retardant reported to exhibit various endocrine related effects was assessed. We followed the 7 steps of the SYRINA framework, articulating the research objective via Populations, Exposures, Comparators, Outcomes (PECO) statements, performed literature search and screening, conducted study evaluation, performed data extraction and summarized and integrated the evidence. Overall, 66 studies, consisting of in vivo, in vitro and epidemiological data, were included. We concluded that triphenyl phosphate could be identified as an ED based on metabolic disruption and reproductive function. We found that the tools used in this case study and the optimizations performed on the framework were suitable to assess properties of EDs. A number of challenges and areas for methodological development in systematic appraisal of evidence relating to endocrine disrupting potential were identified; significant time and effort were needed for the analysis of in vitro mechanistic data in this case study, thus increasing the workload and time needed to perform the systematic review process. Further research and development of this framework with regards to grey literature (non-peer-reviewed literature) search, harmonization of study evaluation methods, more consistent evidence integration approaches and a pre-defined method to assess links between adverse effect and endocrine activity are recommended. It would also be advantageous to conduct more case studies for a chemical with less data than TPP.
Collapse
Affiliation(s)
- Thuy T Bui
- Department of Environmental Science, Stockholm University, Sweden.
| | | | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland
| | | | | | - Mafalda Castro
- Section for Environmental Chemistry and Physics, University of Copenhagen, Denmark
| | - Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Spain
| | - Audrey Galizia
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, USA
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Sweden
| | - Paul Whaley
- Lancaster Environment Centre, Lancaster University, UK
| | - Erin Yost
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, USA
| | - Christina Rudén
- Department of Environmental Science, Stockholm University, Sweden.
| |
Collapse
|
20
|
Ye C, Chen Z, Lin W, Dong Z, Han J, Zhang J, Ma X, Yu J, Sun X, Li Y, Zheng J. Triphenyl phosphate exposure impairs colorectal health by altering host immunity and colorectal microbiota. CHEMOSPHERE 2024; 349:140905. [PMID: 38065263 DOI: 10.1016/j.chemosphere.2023.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhao Lin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zepeng Dong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xueqian Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
21
|
Zheng Y, Shao N, Yang X, Shi Y, Xu G. Resveratrol ameliorates intestinal lipid metabolism through the PPAR signaling pathway in high-fat diet-fed red tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109302. [PMID: 38128680 DOI: 10.1016/j.fsi.2023.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid β-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid β-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid β-oxidative metabolism.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Xiaoxi Yang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Yulu Shi
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
22
|
Tachachartvanich P, Rusit X, Tong J, Mann C, La Merrill MA. Perinatal triphenyl phosphate exposure induces metabolic dysfunctions through the EGFR/ERK/AKT signaling pathway: Mechanistic in vitro and in vivo studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115756. [PMID: 38056125 DOI: 10.1016/j.ecoenv.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Triphenyl phosphate (TPhP), a widely used organophosphate-flame retardant, is ubiquitously found in household environments and may adversely affect human health. Evidence indicates that TPhP exposure causes metabolic dysfunctions in vivo; however, the underlying mechanism of such adverse effects has not been comprehensively investigated. Herein, we utilized two in vitro models including mouse and human preadipocytes to delineate adipogenic mechanisms of TPhP. The results revealed that both mouse and human preadipocytes exposed to TPhP concentration-dependently accumulated more fat through a significant upregulation of epidermal growth factor receptor (EGFR). We demonstrated that TPhP significantly promoted adipogenesis through the activation of EGFR/ERK/AKT signaling pathway as evident by a drastic reduction in adipogenesis of preadipocytes cotreated with inhibitors of EGFR and its major effectors. Furthermore, we confirmed the mechanism of TPhP-induced metabolic dysfunctions in vivo. We observed that male mice perinatally exposed to TPhP had a significant increase in adiposity, hepatic triglycerides, insulin resistance, plasma insulin levels, hypotension, and phosphorylated EGFR in gonadal fat. Interestingly, an administration of a potent and selective EGFR inhibitor significantly ameliorated the adverse metabolic effects caused by TPhP. Our findings uncovered a potential mechanism of TPhP-induced metabolic dysfunctions and provided implications on toxic metabolic effects posed by environmental chemicals.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA; Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Xylina Rusit
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA
| | - Jason Tong
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA
| | - Chanapa Mann
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis 95616, CA, USA.
| |
Collapse
|
23
|
An J, Du C, Xue W, Huang J, Zhong Y, Ren G, Shang Y, Xu B. Endoplasmic reticulum stress participates in apoptosis of HeLa cells exposed to TPHP and OH-TPHP via the eIF2α-ATF4/ATF3-CHOP-DR5/P53 signaling pathway. Toxicol Res (Camb) 2023; 12:1159-1170. [PMID: 38145092 PMCID: PMC10734570 DOI: 10.1093/toxres/tfad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose Triphenyl phosphate (TPHP) is a widely used organophosphate flame retardant, which can be transformed in vivo into diphenyl phosphate (DPHP) and 4-hydroxyphenyl phosphate (diphenyl) ester (OH-TPHP) through biotransformation process. Accumulation of TPHP and its derivatives in biological tissues makes it necessary to investigate their toxicity and molecular mechanism. Methods The present study evaluated the cellular effects of TPHP, DPHP, and OH-TPHP on cell survival, cell membrane damage, oxidative damage, and cell apoptosis using HeLa cells as in vitro model. RNA sequencing and bioinformatics analysis were conducted to monitor the differently expressed genes, and then RT-qPCR and Western bolt were used to identify potential molecular mechanisms and key hub genes. Results Results showed that OH-TPHP had the most significant cytotoxic effect in HeLa cells, followed by TPHP; and no significant cytotoxic effects were observed for DPHP exposure within the experimental concentrations. Biological function enrichment analysis suggested that TPHP and OH-TPHP exposure may induce endoplasmic reticulum stress (ERS) and cell apoptosis. The nodes filtering revealed that ERS and apoptosis related genes were involved in biological effects induced by TPHP and OH-TPHP, which may be mediated through the eukaryotic translation initiation factor 2α/activating transcription factor 4 (ATF4)/ATF3- CCAAT/ enhancer-binding protein homologous protein (CHOP) cascade pathway and death receptor 5 (DR5) /P53 signaling axis. Conclusion Above all, these findings indicated that ERS-mediated apoptosis might be one of potential mechanisms for cytotoxicity of TPHP and OH-TPHP.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Chenyang Du
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Wanlei Xue
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Jin Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Nanchen Road 333, Shanghai 200444, PR China
| | - Bingye Xu
- Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Xueyuan Road 117, Hangzhou 310012, PR China
| |
Collapse
|
24
|
Wang X, Rowan-Carroll A, Meier MJ, Williams A, Yauk CL, Hales BF, Robaire B. Toxicological Mechanisms and Potencies of Organophosphate Esters in KGN Human Ovarian Granulosa Cells as Revealed by High-throughput Transcriptomics. Toxicol Sci 2023; 197:kfad114. [PMID: 37941476 PMCID: PMC10823774 DOI: 10.1093/toxsci/kfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Despite the growing number of studies reporting potential risks associated with exposure to organophosphate esters (OPEs), their molecular mechanisms of action remain poorly defined. We used the high-throughput TempO-Seq™ platform to investigate the effects of frequently detected OPEs on the expression of ∼3000 environmentally responsive genes in KGN human ovarian granulosa cells. Cells were exposed for 48 h to one of five OPEs (0.1 to 50 μM): tris(methylphenyl) phosphate (TMPP), isopropylated triphenyl phosphate (IPPP), tert-butylphenyl diphenyl phosphate (BPDP), triphenyl phosphate (TPHP), or tris(2-butoxyethyl) phosphate (TBOEP). The sequencing data indicate that four OPEs induced transcriptional changes, whereas TBOEP had no effect within the concentration range tested. Multiple pathway databases were used to predict alterations in biological processes based on differentially expressed genes. At lower concentrations, inhibition of the cholesterol biosynthetic pathway was the predominant effect of OPEs; this was likely a consequence of intracellular cholesterol accumulation. At higher concentrations, BPDP and TPHP had distinct effects, primarily affecting pathways involved in cell cycle progression and other stress responses. Benchmark concentration (BMC) modelling revealed that BPDP had the lowest transcriptomic point of departure. However, in vitro to in vivo extrapolation modeling indicated that TMPP was bioactive at lower concentrations than the other OPEs. We conclude that these new approach methodologies provide information on the mechanism(s) underlying the effects of data-poor compounds and assist in the derivation of protective points of departure for use in chemical read-across and decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
25
|
Luo Y, Zhang M, Huang S, Deng G, Chen H, Lu M, Zhang G, Chen L. Effects of tris (2-chloroethyl) phosphate exposure on gut microbiome using the simulator of the human intestinal microbial ecosystem (SHIME). CHEMOSPHERE 2023; 340:139969. [PMID: 37634589 DOI: 10.1016/j.chemosphere.2023.139969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) has been widely used, and its health risk has received increasing attention. However, the rare research has been conducted on the effects of TCEP exposure on changes in the structure of the human gut microbiome and metabolic functions. In this experiment, Simulator of the human intestinal microbial ecosystem (SHIME) was applied to explore the influences of TCEP on the human gut bacteria community and structure. The results obtained from high-throughput sequencing of 16S rRNA gene have clearly revealed differences among control and exposure groups. High-dose TCEP exposure increased the Shannon and Simpson indexes in the results of α-diversity of the gut microbiome. At phylum level, Firmicutes occupied a higher proportion of gut microbiota, while the proportion of Bacteroidetes decreased. In the genus-level analysis, the relative abundance of Bacteroides descended with the TCEP exposure dose increased in the ascending colon, while the abundances of Roseburia, Lachnospira, Coprococcus and Lachnoclostridium were obviously correlated with exposure dose in each colon. The results of short chain fatty acids (SCFAs) showed a remarkable effect on the distribution after TCEP exposure. In the ascending colon, the control group had the highest acetate concentration (1.666 ± 0.085 mg⋅mL-1), while acetate concentrations in lose-dose medium-dose and high-doseTCEP exposure groups were 1.119 ± 0.084 mg⋅mL-1, 0.437 ± 0.053 mg⋅mL-1 and 0.548 ± 0.106 mg⋅mL-1, respectively. TCEP exposure resulted in a decrease in acetate and propionate concentrations, while increasing butyrate concentrations in each colon. Dorea, Fusicatenibacter, Kineothrix, Lachnospira, and Roseburia showed an increasing tendency in abundance under TCEP exposure, while they had a negatively correlation with acetate and propionate concentrations and positively related with butyrate concentrations. Overall, this study confirms that TCEP exposure alters both the composition and metabolic function of intestinal microbial communities, to arouse public concern about its negative health effects.
Collapse
Affiliation(s)
- Yasong Luo
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Guoke (Foshan) Testing and Certification Co., Ltd, Foshan, 528299, China
| | - Mai Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shuyang Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guanhua Deng
- Guangzhou Twelfth People's Hospital, Tianqiang St., Huangpu West Ave., Guangzhou, Guangdong, 510620, China
| | - Huashan Chen
- Guoke (Foshan) Testing and Certification Co., Ltd, Foshan, 528299, China
| | - Mingmin Lu
- Guoke (Foshan) Testing and Certification Co., Ltd, Foshan, 528299, China
| | - Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Lingyun Chen
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Bo Y, Zhu Y, Zhang X, Chang H, Zhang J, Lao XQ, Yu Z. Spatiotemporal Trends of Stroke Burden Attributable to Ambient PM 2.5 in 204 Countries and Territories, 1990-2019: A Global Analysis. Neurology 2023; 101:e764-e776. [PMID: 37380431 PMCID: PMC10437020 DOI: 10.1212/wnl.0000000000207503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/21/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies suggested that long-term exposure to ambient fine particulate matter (PM2.5) is associated with increased risk of stroke. However, limited studies evaluated the stroke burden attributable to ambient PM2.5 globally, especially comprising across different regions, countries, and social-economic levels. We thus conducted this study to estimate the spatial and temporal trends of ambient PM2.5-related stroke burden by sex, age, and subtypes from 1990 to 2019 at global, regional, and national levels. METHODS Information on the ambient PM2.5-related stroke burden from 1990 to 2019 was obtained from the Global Burden of Disease study 2019. The burdens of stroke attributable to ambient PM2.5 (i.e., age-standardized mortality rate [ASMR] and age-standardized disability-adjusted life-year rate [ASDR]) were estimated by sex, age, and subtypes from 1990 to 2019 at global, regional, and national levels. The estimated annual percentage change (EAPC) was used to evaluate the changing trends of ASDR and ASMR attributable to ambient PM2.5 from 1990 to 2019. The Spearman correlation coefficient was used to examine the correlation between sociodemographic index (SDI) and EAPC of ASMR and ASDR at the national level. RESULTS In 2019, the global ambient PM2.5-related stroke mortality and disability-adjusted life years were 1.14 million and 28.74 million, respectively, with the corresponding ASDR and ASMR of 348.1 and 14.3 per 100,000 population, respectively. The ASDR and ASMR increased with age and were highest among male patients, in the middle SDI regions, and for intracerebral hemorrhage (ICH). From 1990 to 2019, the absolute death number of stroke attributable to ambient PM2.5 and the corresponding ASMR and ASDR were both in an increasing trend. The corresponding EAPCs in ASMR and ASDR were 0.09 (95% CI -0.05 to 0.24) and 0.31 (95% CI 0.18-0.44), respectively. The significant increases of ASMR and ASDR were observed in the low, low-middle, and middle SDI regions, and for ICH. However, a decreasing trend was observed in high and middle-high SDI regions, and for subarachnoid hemorrhage. DISCUSSION The global burden of stroke attributable to ambient PM2.5 showed an increasing trend over the past 30 years, especially in male patients, low-income countries, and for ICH. Continued efforts on reducing the level of ambient PM2.5 are necessary to reduce the burden of stroke.
Collapse
Affiliation(s)
- Yacong Bo
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong
| | - Yongjian Zhu
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong
| | - Xiaoan Zhang
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong
| | - Hui Chang
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong
| | - Junxi Zhang
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong
| | - Xiang Qian Lao
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong
| | - Zengli Yu
- From the School of Public Health (Y.B., Z.Y.), Zhengzhou University; Department of Cardiology (Y.Z.), The First Affiliated Hospital of Zhengzhou University; The Third Affiliated Hospital of Zhengzhou University (X.Z., H.C.); NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention (J.Z.), Zhengzhou, China; and Department of Biomedical Sciences (X.Q.L.), City University of Hong Kong, Kowloon Tong.
| |
Collapse
|
27
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body's normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China.
| |
Collapse
|
28
|
An J, Jiang J, Tang W, Zhong Y, Ren G, Shang Y, Yu Z. Lipid metabolic disturbance induced by triphenyl phosphate and hydroxy metabolite in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115160. [PMID: 37356402 DOI: 10.1016/j.ecoenv.2023.115160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Triphenyl phosphate (TPHP) has been widely used as flame retardants and been detected with increasing frequency in environment. TPHP can transform into mono-hydroxylated phosphate (OH-TPHP) and diester diphenyl phosphate (DPHP) through biotransformation. So far, information on the cytotoxicity and molecular regulatory mechanisms of TPHP metabolites are still limit. This study investigated the adverse effects of TPHP, OH-TPHP, and DPHP in HepG2 cells in terms of cell proliferation, lactate dehydrogenase release, reactive oxygen species generation, and mitochondrial membrane potential. The transcriptomic changes were measured using RNA sequencing, and bioinformatics characteristics including biological functions, signal pathways and protein-protein interaction were analyzed to explore the potential molecular mechanisms. Results displayed that the order of cytotoxicity was OH-TPHP> TPHP> DPHP. The prioritized biological functions changes induced by TPHP and OH-TPHP were correlated with lipid metabolism. Significant lipid accumulation was observed as confirmed by increased total cholesterol and triglycerides contents, and enhanced oil red O staining. Enrichment of PPARα/γ and down-stream genes suggested the participation of PPARs signal pathway in lipid metabolism disorder. In addition, TPHP and OH-TPHP induced endoplasmic reticulum stress (ERS), which was further confirmed by the ERS inhibitor experiment. In general, TPHP and OH-TPHP had obvious cytotoxic effects in HepG2 cells. PPARs signal pathway and endoplasmic reticulum stress may be involved in the lipid metabolism disorder induced by TPHP and OH-TPHP.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingjing Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Waner Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
29
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
30
|
Zhang G, Meng L, Guo J, Guan X, Liu M, Han X, Li Y, Zhang Q, Jiang G. Exposure to novel brominated and organophosphate flame retardants and associations with type 2 diabetes in East China: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162107. [PMID: 36764545 DOI: 10.1016/j.scitotenv.2023.162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The alternative flame retardants, novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment and biota and may induce endocrine disruption effects. Associations between traditional endocrine-disrupting chemicals and type 2 diabetes have been extensively reported in epidemiological studies. However, the effects of NBFRs and OPFRs in humans have not been reported to date. This paper reports a case-control study of 344 participants aged 25-80 years from Shandong Province, East China, where potential associations between serum NBFR and OPFR concentrations and type 2 diabetes are assessed for the first time. After adjusting for covariates (i.e., age, sex, body mass index, smoking status, alcohol consumption, triglycerides, and total cholesterol), serum concentrations of pentabromotoluene, 2,3-dibromopropyl 2,4,6-tribromophenyl ether, tri-n-propyl phosphate, triphenyl phosphate, and tris (2-ethylhexyl) phosphate were significantly positively associated with type 2 diabetes. In the control group, decabromodiphenyl ethane and triphenyl phosphate were significantly positively associated with fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol. In the quantile g-computation model, significant positive mixture effect was found between the flame retardants mixtures and high-density lipoprotein cholesterol levels, and decabromodiphenyl ethane contributed the largest positive weights to the mixture effect. Overall, these findings suggest that exposure to NBFRs and OPFRs may promote type 2 diabetes.
Collapse
Affiliation(s)
- Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, MI 49931, USA
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- Sinopec Research Institute of Petroleum Processing CO., LTD., Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
31
|
Kubickova B, Jacobs MN. Development of a reference and proficiency chemical list for human steatosis endpoints in vitro. Front Endocrinol (Lausanne) 2023; 14:1126880. [PMID: 37168981 PMCID: PMC10166001 DOI: 10.3389/fendo.2023.1126880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023] Open
Abstract
The most prevalent liver disease in humans is non-alcoholic fatty liver disease, characterised by excessive hepatic fat accumulation, or steatosis. The western diet and a sedentary lifestyle are considered to be major influences, but chemical exposure may also play a role. Suspected environmental chemicals of concern include pesticides, plasticizers, metals, and perfluorinated compounds. Here we present a detailed literature analysis of chemicals that may (or may not) be implicated in lipid accumulation in the liver, to provide a basis for developing and optimizing human steatosis-relevant in vitro test methods. Independently collated and reviewed reference and proficiency chemicals are needed to assist in the test method development where an assay is intended to ultimately be taken forward for OECD Test Guideline development purposes. The selection criteria and considerations required for acceptance of proficiency chemical selection for OECD Test Guideline development. (i.e., structural diversity, range of activity including negatives, relevant chemical sectors, global restrictions, etc.) is described herein. Of 160 chemicals initially screened for inclusion, 36 were prioritized for detailed review. Based on the selection criteria and a weight-of-evidence basis, 18 chemicals (9 steatosis inducers, 9 negatives), including some environmental chemicals of concern, were ranked as high priority chemicals to assist in vitro human steatosis test method optimisation and proficiency testing, and inform potential subsequent test method (pre-)validation.
Collapse
Affiliation(s)
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
32
|
Li Y, Wang X, Zhu Q, Xu Y, Fu Q, Wang T, Liao C, Jiang G. Organophosphate Flame Retardants in Pregnant Women: Sources, Occurrence, and Potential Risks to Pregnancy Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7109-7128. [PMID: 37079500 DOI: 10.1021/acs.est.2c06503] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) are found in various environmental matrixes and human samples. Exposure to OPFRs during gestation may interfere with pregnancy, for example, inducing maternal oxidative stress and maternal hypertension during pregnancy, interfering maternal and fetal thyroid hormone secretion and fetal neurodevelopment, and causing fetal metabolic abnormalities. However, the consequences of OPFR exposure on pregnant women, impact on mother-to-child transmission of OPFRs, and harmful effects on fetal and pregnancy outcomes have not been evaluated. This review describes the exposure to OPFRs in pregnant women worldwide, based on metabolites of OPFRs (mOPs) in urine for prenatal exposure and OPFRs in breast milk for postnatal exposure. Predictors of maternal exposure to OPFRs and variability of mOPs in urine have been discussed. Mother-to-child transmission pathways of OPFRs have been scrutinized, considering the levels of OPFRs and their metabolites in amniotic fluid, placenta, deciduae, chorionic villi, and cord blood. The results showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were the two predominant mOPs in urine, with detection frequencies of >90%. The estimated daily intake (EDIM) indicates low risk when infants are exposed to OPFRs from breast milk. Furthermore, higher exposure levels of OPFRs in pregnant women may increase the risk of adverse pregnancy outcomes and influence the developmental behavior of infants. This review summarizes the knowledge gaps of OPFRs in pregnant women and highlights the crucial steps for assessing health risks in susceptible populations, such as pregnant women and fetuses.
Collapse
Affiliation(s)
- Yongting Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thanh Wang
- Man-Technology-Environment (MTM) Research Centre, Örebro University, Örebro 701 82, Sweden
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Djekkoun N, Depeint F, Guibourdenche M, Sabbouri HEKE, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Biendo M, Al-Salameh A, Lalau JD, Bach V, Khorsi-Cauet H. Perigestational exposure of a combination of a high-fat diet and pesticide impacts the metabolic and microbiotic status of dams and pups; a preventive strategy based on prebiotics. Eur J Nutr 2023; 62:1253-1265. [PMID: 36510012 DOI: 10.1007/s00394-022-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Metabolic changes during the perinatal period are known to promote obesity and type-2 diabetes in adulthood via perturbation of the microbiota. The risk factors for metabolic disorders include a high-fat diet (HFD) and exposure to pesticide residues. The objective of the present study was to evaluate the effects of perigestational exposure to a HFD and chlorpyrifos (CPF) on glycemia, lipid profiles, and microbial populations in Wistar dams and their female offspring. We also tested a preventive strategy based on treatment with the prebiotic inulin. METHODS From 4 months before gestation to the end of the lactation period, six groups of dams were exposed to either a standard diet, a HFD alone, CPF alone, a combination of a HFD and CPF, and/or inulin supplementation. All female offspring were fed a standard diet from weaning to adulthood. We measured the impacts of these exposures on glycemia, the lipid profile, and the microbiota (composition, metabolite production, and translocation into tissues). RESULTS HFD exposure and CPF + HFD co-exposure induced dysmetabolism and an imbalance in the gut flora in both the dams and the female offspring. Inulin mitigated the impact of exposure to a HFD alone but not that of CPF + HFD co-exposure. CONCLUSION Our results provide a better understanding of the complex interactions between environmental pollutants and diet in early life, including in the context of metabolic diseases.
Collapse
Affiliation(s)
- Narimane Djekkoun
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Flore Depeint
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Marion Guibourdenche
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hiba El Khayat Et Sabbouri
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Aurélie Corona
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Larbi Rhazi
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Jerome Gay-Queheillard
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Leila Rouabah
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Maurice Biendo
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Abdallah Al-Salameh
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Jean-Daniel Lalau
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Véronique Bach
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hafida Khorsi-Cauet
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France.
| |
Collapse
|
34
|
Ding E, Deng F, Fang J, Li T, Hou M, Liu J, Miao K, Yan W, Fang K, Shi W, Fu Y, Liu Y, Dong H, Dong L, Ding C, Liu X, Pollitt KJG, Ji JS, Shi Y, Cai Y, Tang S, Shi X. Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47009. [PMID: 37042841 PMCID: PMC10094192 DOI: 10.1289/ehp11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are common endocrine-disrupting chemicals, and OPE exposure may be associated with type 2 diabetes (T2D). However, greater knowledge regarding the biomolecular intermediators underlying the impact of OPEs on T2D in humans are needed to understand biological etiology. OBJECTIVES We explored the associations between OPE exposure and glycometabolic markers among older Chinese adults 60-69 years of age to elucidate the underlying mechanisms using a multi-omics approach. METHODS This was a longitudinal panel study comprising 76 healthy participants 60-69 years of age who lived in Jinan city of northern China. The study was conducted once every month for 5 months, from September 2018 to January 2019. We measured a total of 17 OPEs in the blood, 11 OPE metabolites in urine, and 4 glycometabolic markers (fasting plasma glucose, glycated serum protein, fasting insulin, and homeostatic model assessment for insulin resistance). The blood transcriptome and serum/urine metabolome were also evaluated. The associations between individual OPEs and glycometabolic markers were explored. An adverse outcome pathway (AOP) was established to determine the biomolecules mediating the associations. RESULTS Exposure to five OPEs and OPE metabolites (trimethylolpropane phosphate, triphenyl phosphate, tri-iso-butyl phosphate, dibutyl phosphate, and diphenyl phosphate) was associated with increased levels of glycometabolic markers. The mixture effect analysis further indicated the adverse effect of OPE mixtures. Multi-omics analyses revealed that the endogenous changes in the transcriptional and metabolic levels were associated with OPE exposure. The putative AOPs model suggested that triggers of molecular initiation events (e.g., insulin receptor and glucose transporter type 4) with subsequent key events, including disruptions in signal transduction pathways (e.g., phosphatidylinositol 3-kinase/protein kinase B and insulin secretion signaling) and biological functions (glucose uptake and insulin secretion), may constitute the diabetogenic effects of OPEs. DISCUSSION OPEs are associated with the elevated risk of T2D among older Chinese adults 60-69 years of age. Implementing OPE exposure reduction strategies may help reduce the T2D burden among these individuals, if the relationship is causal. https://doi.org/10.1289/EHP11896.
Collapse
Affiliation(s)
- Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyan Yan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzheng Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changming Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - John S. Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Lin Z, Zhang W, Li X, Du B, Li T, He H, Lu X, Zhang C, Liu Y, Ni J, Li L, Shi M. Triphenyl phosphate-induced macrophages dysfunction by activation TLR4-mediated ERK/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36929861 DOI: 10.1002/tox.23778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Triphenyl phosphate (TPHP) is one of the most widely used organic phosphorus flame retardants and is ubiquitous in the environment. Studies have been reported that TPHP may lead to obesity, neurotoxicity and reproductive toxicity, but its impact on the immune system is almost blank. The present study was aimed to investigate the potential immunotoxicity of TPHP on macrophages and its underlying mechanism. The results demonstrated for the first time that TPHP (12.5, 25, and 50 μM)-induced F4/80+ CD11c+ phenotype of RAW 264.7 macrophages, accompanied by increased mRNA levels of inflammatory mediators, antigen-presenting genes (Cd80, Cd86, and H2-Aa), and significantly enhanced the phagocytosis of macrophage. Meanwhile, TPHP increased the expression of Toll-like receptor 4 (TLR4), and its co-receptor CD14, leading to significant activation of the downstream ERK/NF-κB pathway. However, co-exposure of cells to TAK-242, a TLR4 inhibitor, suppressed TPHP-induced F4/80+ CD11c+ phenotype, and down-regulated inflammatory mediators and antigen-presentation related genes, via blocked the TLR4/ERK/NF-κB pathway. Taken together, our results suggested that TPHP could induce macrophage dysfunction through activating TLR4-mediated ERK/NF-κB signaling pathway, and it may be the potential reason for health-threatening consequences.
Collapse
Affiliation(s)
- Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jindong Ni
- Precision Key Laboratory of Public Health, School of Public Health and Institute of Public Health and Wellness, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
36
|
Yue J, Sun C, Tang J, Zhang Q, Lou M, Sun H, Zhang L. Downregulation of miRNA-155-5p contributes to the adipogenic activity of 2-ethylhexyl diphenyl phosphate in 3T3-L1 preadipocytes. Toxicology 2023; 487:153452. [PMID: 36764644 DOI: 10.1016/j.tox.2023.153452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a commonly used organophosphorus flame retardant and food packaging material. Because of its high lipophilic and bioaccumulative properties, adipocytes are the primary target of EHDPP. However, the toxicity of EHDPP on preadipocytes and the potential mechanism have not been fully elucidated. MicroRNAs (miRNAs) are thought to be an important mediator that contribute to the toxicity of environmental contaminants. To identify the miRNAs specifically responsible for EHDPP exposure and their role in EGDPP's toxicity in preadipocytes, the adipogenic effects and miRNA expression profiling were performed on 3T3-L1 preadipocytes exposed to EHDPP. EHDPP at concentrations of 1-10 μM promoted adipocyte differentiation, as evidenced by lipid staining, triglyceride content, and expression of adipogenesis markers. MiRNA-seq analysis revealed that 7 differentially expressed miRNAs were recognized under EHDPP exposure, with miR-155-5p being the top down-regulated miRNA. Quantitative reverse transcription PCR (RT-qPCR) analysis showed that miR-155-5p level fell sharply during the first 2 days and continued to fall dose-dependently throughout the EHDPP exposure period. MiR-155-5p inhibition promotes adipocyte differentiation, whereas its overexpression counteracted EHDPP-induced adipogenesis. Luciferase reporter assay identified CCAAT/enhancer-binding protein beta (C/EBPβ) as a target of miR-155-5p in 3T3-L1 preadipocytes in response to EHDPP. Taken together, EHDPP exposure down-regulated miR-155-5p, which then increased C/EBPβ and peroxisome proliferator-activated receptor γ (PPARγ) expression and promoted adipogenesis in preadipocytes.
Collapse
Affiliation(s)
- Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Caiting Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jinyuan Tang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiyuan Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mengjie Lou
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lianying Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
37
|
Chen Y, Zhang X, Wang Z, Yuan Z, Luan M, Yuan W, Liang H, Chen H, Chen D, Yang Y, Miao M. Gestational exposure to organophosphate esters and adiposity measures of children up to 6 years: Effect modification by breastfeeding. Int J Hyg Environ Health 2023; 248:114089. [PMID: 36481744 DOI: 10.1016/j.ijheh.2022.114089] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Organophosphate esters (OPEs) are synthetic chemicals used in various commercial products. Accumulating evidence has shown that they may act as metabolic disruptors. However, no study has investigated the long-term effects of gestational OPEs exposure on childhood adiposity. Breast milk represents the optimal nutritional form of feeding for infants and may protect against the adverse effects of gestational OPEs exposure on offspring development. Using data from the Shanghai-Minhang birth cohort study, we investigated the associations of gestational OPEs exposure with adiposity measures in children up to 6 years of age, and whether breastfeeding could modify these associations. A total of 733 mother-child pairs with available data on OPE concentrations and child anthropometry were included. Eight OPE metabolites were assessed in maternal urine samples collected at 12-16 weeks of pregnancy. Information on children's weight, height, arm circumference, and waist circumference was collected at birth and 0.5, 1, 4, and 6 years of age. Weight-for-age and body mass index-for-age z scores were calculated. The duration of children's breastfeeding was categorized as ≤4 months or >4 months. The generalized estimate equation and Bayesian Kernel Machine Regression models were used to examine the associations of OPEs exposure with children's adiposity measures. Selected OPEs exposure was associated with higher children's adiposity measures. Particularly, we found stronger associations of bis(1-chloro-2-propyl) phosphate (BCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), and di-o-cresyl phosphate and di-p-cresyl phosphate (DCP) with higher adiposity measures in children breastfed for ≤4 months, while little evidence of associations was found among those breastfed for >4 months. Our study suggested that gestational OPEs exposure could alter children's adiposity measures, but the potential effects were attenuated if children were breastfed for >4 months.
Collapse
Affiliation(s)
- Yafei Chen
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, China
| | - Xiaohua Zhang
- Minhang Maternal and Child Health Hospital, Shanghai, China
| | - Ziliang Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, China
| | - Zhengwei Yuan
- Key Lab. of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical Hospital, Shenyang, Liaoning, China
| | - Min Luan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, China
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, China.
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Makrinioti H, Zhu Z, Camargo CA, Fainardi V, Hasegawa K, Bush A, Saglani S. Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites 2023; 13:328. [PMID: 36984768 PMCID: PMC10054720 DOI: 10.3390/metabo13030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity-related asthma is a heterogeneous childhood asthma phenotype with rising prevalence. Observational studies identify early-life obesity or weight gain as risk factors for childhood asthma development. The reverse association is also described, children with asthma have a higher risk of being obese. Obese children with asthma have poor symptom control and an increased number of asthma attacks compared to non-obese children with asthma. Clinical trials have also identified that a proportion of obese children with asthma do not respond as well to usual treatment (e.g., inhaled corticosteroids). The heterogeneity of obesity-related asthma phenotypes may be attributable to different underlying pathogenetic mechanisms. Although few childhood obesity-related asthma endotypes have been described, our knowledge in this field is incomplete. An evolving analytical profiling technique, metabolomics, has the potential to link individuals' genetic backgrounds and environmental exposures (e.g., diet) to disease endotypes. This will ultimately help define clinically relevant obesity-related childhood asthma subtypes that respond better to targeted treatment. However, there are challenges related to this approach. The current narrative scoping review summarizes the evidence for metabolomics contributing to asthma subtyping in obese children, highlights the challenges associated with the implementation of this approach, and identifies gaps in research.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Valentina Fainardi
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
- Centre for Paediatrics and Child Health, Imperial College, London SW7 2AZ, UK
- Royal Brompton Hospital, London SW3 6NP, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
- Centre for Paediatrics and Child Health, Imperial College, London SW7 2AZ, UK
- Royal Brompton Hospital, London SW3 6NP, UK
| |
Collapse
|
39
|
Yue J, Sun X, Duan X, Sun C, Chen H, Sun H, Zhang L. Triphenyl phosphate proved more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance through endoplasmic reticulum stress. ENVIRONMENT INTERNATIONAL 2023; 172:107749. [PMID: 36680801 DOI: 10.1016/j.envint.2023.107749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Triphenyl phosphate (TPHP) is a widely used flame retardant and plasticizer and has been detected extensively in environmental media, wildlife and human bodies. Several epidemiological and animal studies have revealed that TPHP exposure is positively associated with glucose homeostasis disruption and diabetes. However, the effects of TPHP on hepatic glucose homeostasis and the underlying mechanisms remain unclear. The present work aimed to investigate the cytotoxicity and glucose metabolism disruption of TPHP and its metabolite diphenyl phosphate (DPHP) within hepatocytes. The cell viability assay undertaken on human normal liver (L02) cells showed that TPHP exhibited more potent hepatotoxicity than DPHP. RNA sequencing (RNA-seq) data showed that TPHP and DPHP presented different modes of toxic action. Insulin resistance is one of the predominant toxicities for TPHP, but not for DPHP. The insulin-stimulated glucose uptake and glycogen synthesis were impaired by TPHP, while DPHP exhibited no significant impairment on these factors. TPHP exposure induced endoplasmic reticulum (ER) stress, and the ER stress antagonist 4-PBA restored the impairment of insulin-stimulated glucose uptake and glycogen synthesis induced by TPHP. TPHP could also induce liver ER stress and insulin resistance in mice. Taken together, the results suggested that TPHP induces more potent insulin resistance through ER stress than its metabolite DPHP.
Collapse
Affiliation(s)
- Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Caiting Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lianying Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
40
|
Chen Q, Gao Z, Wang K, Magnuson JT, Chen Y, Li M, Shi H, Xu L. High accumulation of microplastic fibers in fish hindgut induces an enhancement of triphenyl phosphate hydroxylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120804. [PMID: 36470455 DOI: 10.1016/j.envpol.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Fiber shedding from artificial textiles is among the primary sources of pervasive microplastics in various aquatic habitats. To avoid molten drop burning, triphenyl phosphate (TPhP), a typical flame retardant additive, is commonly incorporated into textile fibers. However, the role of microplastic fibers (MFs) as a vehicle for TPhP remains largely unknown. In this study, we investigated the effects of MFs on the bioaccumulation and metabolism of TPhP in zebrafish. We applied the compound spinning technique for a non-disruptive in situ measurement of fluorescent MFs in fish, and the desorption electrospray ionization mass spectrometry (DESI-MS) to display the tissue distribution of TPhP and its metabolites vividly. Laboratory results showed that ingested MFs did not change the TPhP distribution in fish; however, they statistically increased the metabolite p-OH-TPhP concentration in the fish hindgut, which was probably because the high accumulation of MFs there enhanced the TPhP hydroxylation. Field investigation further supported the lab-based analyses. Higher concentrations of MFs did cause a higher ratio of [p-OH-TPhP]/[TPhP] in the wild fish gut, particularly in the hindgut. Collectively, our results demonstrated that MFs can change the distribution and bioavailability of TPhP metabolites, which was confirmed by both laboratory and fieldwork. Therefore, the ingestion of MFs can indirectly but substantially influence the bioaccumulation and biotransformation of co-existing pollutants.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Kang Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021, Stavanger, Norway
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
41
|
Zhou Y, Liao H, Yin S, Wang P, Ye X, Zhang J. Aryl-, halogenated- and alkyl- organophosphate esters induced oxidative stress, endoplasmic reticulum stress and NLRP3 inflammasome activation in HepG2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120559. [PMID: 36328282 DOI: 10.1016/j.envpol.2022.120559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are a group of extensively used man-made chemicals with diverse substituents that are ubiquitously detected in human-related samples including serum, breastmilk, food and house dust. The understanding of their toxicological effects and potential mechanisms on hepatocytes is still limited. In this study, nine most frequently detected OPEs were selected and divided into three subgroups (aryl-, halogenated- and alkyl-OPEs) based on their substituents. The cytotoxicity, apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and NLRP3 inflammasome activation induced by OPEs were evaluated in human hepatocellular carcinomas HepG2 cells. All OPEs induced apoptosis likely through a caspase-dependent apoptotic pathway. The activities of anti-oxidative enzyme SOD and CAT exhibited sensitive responses after OPEs treatment for 6 h. The OPEs induced ROS overproduction, DNA damage, endoplasmic reticulum (ER) stress and NLRP3 inflammasome activation varied among aryl-, halogenated- and alkyl-OPEs. Halogenated- and alkyl- OPEs induced overproduction of ROS and DNA damage, and elevated ER stress and NLRP3 inflammasome activation are observed aryl-OPEs induced cytotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Pengqiao Wang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
42
|
Cui H, Chang Y, Cao J, Jiang X, Li M. Liver immune and lipid metabolism disorders in mice induced by triphenyl phosphate with or without high fructose and high fat diet. CHEMOSPHERE 2022; 308:136543. [PMID: 36150489 DOI: 10.1016/j.chemosphere.2022.136543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are frequently detected in food and human samples, and epidemiological studies have found that human exposure to aryl-OPFRs (triphenyl phosphate, TPP) is associated with lipid metabolism. Although toxicity studies suggest a potential obesity risk from TPP exposure, the molecular mechanism remains unclear. This study investigated the subchronic dietary effects on mouse liver significantly changed proteins (SCPs) and elucidated the underlying molecular mechanisms of TPP with or without a high-fructose and high-fat (HFF) diet. Male C57BL/6J mice were exposed to low-dose TPP (corresponding to the oral reference dose, 10 μg/kg body weight (bw)/day) and high-dose TPP (1000 μg/kg bw/day) for 12 weeks. The results showed that exposure to TPP generated changes of liver function and organelle damage as well as increases in total cholesterol and triglyceride levels. TPP exposure at a low dose damaged the liver immune system via major histocompatibility complex-related proteins involved in antigen processing and presentation. TPP exposure at a high dose caused disorders of the biosynthesis of unsaturated fatty acids and steroid hormones, thereby inducing lipid accumulation in the liver. Although 10 μg/kg TPP did not cause serious lipid metabolism disorders in the liver, significant overexpression of fatty acid-binding protein 5, malic enzyme 1, and other related SCPs was observed, which led to disorders of cholesterol metabolism and lipogenesis to activate the proliferator-activated receptor signaling pathway and thus induced potential obesity risks. In addition, lipid metabolism disorders related to TPP were aggravated under the HFF diet, impairing liver mitochondrial and endoplasmic reticulum function in mice by altering the activity of cytochrome P450 enzyme subfamilies. These findings provide an in-depth understanding of the molecular toxicity mechanisms and health risks associated with subchronic exposure to TPP under different dietary regimes.
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
43
|
Li M, Liu G, Yuan LX, Yang J, Liu J, Li Z, Yang C, Wang J. Triphenyl phosphate (TPP) promotes hepatocyte toxicity via induction of endoplasmic reticulum stress and inhibition of autophagy flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156461. [PMID: 35660595 DOI: 10.1016/j.scitotenv.2022.156461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPP), a commonly used organophosphate flame retardant, is frequently found in environmental and biota samples, indicating widespread human exposure. Recent studies have shown that TPP causes hepatotoxicity, but the underlying cellular mechanisms are not fully elucidated. Here, by using normal hepatocyte AML12 cells as a model, we showed that TPP induced apoptotic cell death. RNA sequencing analyses revealed that differentially expressed genes induced by TPP were related to endoplasmic reticulum (ER) stress and autophagy. Immunostaining and western blot results further confirmed that TPP activated ER stress. Interestingly, though TPP increased LC3-II, a canonical marker for autophagy, TPP inhibited autophagy flux rather than induced autophagy. Interestingly, TPP-induced ER stress facilitated autophagy flux inhibition and apoptosis. Furthermore, inhibition of autophagy aggravated, and activation of autophagy attenuated apoptosis induced by TPP. Collectively, these results uncovered that ER stress and autophagy flux inhibition were responsible for TPP-induced apoptosis in mouse hepatocytes. Thus, our foundlings provided novel insight into the potential mechanisms of TPP-induced hepatocyte toxicity.
Collapse
Affiliation(s)
- Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li-Xia Yuan
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jing Liu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China; Artemisinin Research Center, Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
44
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|
45
|
Liu Y, Xu M, Le Y, Wang W, Li Y, Li X, Wang C. Sex-dependent effect of triphenyl phosphate on hepatic energy metabolism at the intersection of diet pattern in pubertal mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113850. [PMID: 36068767 DOI: 10.1016/j.ecoenv.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPhP) is mostly residual in fat-rich foodstuff and ingestion is the main route for adolescents' exposure. As a typical metabolic disruptor, however, sex-specific effect of TPhP-high fat diet (HFD) co-exposure in adolescent remains unknown. This study revealed that HFD exacerbated systematic inflammation and insulin insensitivity in female mice at pubertal stage after exposure to 25 mg/kg TPhP or above. Notably, the pattern of sexual selective metabolic disruption caused by TPhP was irrespective of diet after examined mice both in HFD and normal diet feeding. Female mice favored the energy storage in forms of D-glucose 6-phosphate, D-fructose 6-phosphate and triglyceride. That was further supported by mRNA levels of key enzymes in glycolysis, gluconeogenesis, and lipid metabolism. Contrastingly, the elevation of the corresponding genes ensuing by the depleted metabolites were observed in males. In mechanistic investigation, we observed a declination of serum estrogen, a master of energy homeostasis, in both sexes, irrespective of diet. However, only male mice displayed estrogen-hypothalamus negative feedback, supporting by the upregulation of gonadotropin-releasing hormone. Rather than the well-recognized estrogen receptor α, hepatic G protein-coupled estrogen receptor manifested sexual dichotomy, which desensitized to estrogenic response only in females. Collectively, this study posited that females were more susceptible to store energy under TPhP-HFD than males during pubertal partially through estrogenic pathway.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yi Li
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Xiaowen Li
- Cangzhou Medical College, Cangzhou, Hebei, People's Republic of China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Bo Y, Zhu Y. Organophosphate esters exposure in relation to glucose homeostasis and type 2 diabetes in adults: A national cross-sectional study from the national health and nutrition survey. CHEMOSPHERE 2022; 301:134669. [PMID: 35460677 DOI: 10.1016/j.chemosphere.2022.134669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to organophosphate esters (OPEs) may be associated with impaired glucose homeostasis and increased risk of type 2 diabetes (T2D) in adolescent. However, the evidence in general population is scarce, especially for glucose homeostasis. We used data from the National Health and Nutrition Examination Survey (NHANES) 1999-2008 and 2011-2012 to investigate the relationship of urinary OPEs with glucose homeostasis and T2D in adults. METHODS A total of 5347 participants aged ≥20 years were included. The exposures were the concentrations of urinary OPEs metabolites [dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP), dimethyl dithiophosphate (DMDTP), diethyl phosphate (DEP), diethyl thiophosphate (DETP), and diethyl dithiophosphate (DEDTP)]. The health outcomes were prevalence of T2D and glucose homeostasis [i.e., fasting glucose, 2-h plasma glucose during a 75-g oral glucose tolerance test (2 h-OGTT), serum insulin, HemoglobinA1c (HbA1c), HOMA-IR, and HOMA-β]. The multivariable linear regression model was used to evaluate the relationship between OPEs and glucose homeostasis. The multivariable binary logistic regression analysis was used to investigate the relationship between OPEs and prevalence of T2D. RESULTS The OPEs compound DMTP was significantly associated with higher levels of serum insulin [β (95%confidence interval, CI) = 0.21 (0.06,0.36), for one unit increase in log2-transformed exposure] and HOMA IR [β (95%CI) = 0.08 (0.02,0.14)], and increased odds of T2D [odds ratio (95% CI) = 1.05 (1.01-1.08)]. Other OPEs were not statistically associated with the serum markers for glucose homeostasis or T2D prevalence. CONCLUSION Our study found that the OPEs compound DMTP might be associated with impaired glucose homeostasis and may increase the prevalence of T2D in U.S. adults. Further longitudinal or experimental studies are warranted to verify our findings in different populations and different OPEs concentrations.
Collapse
Affiliation(s)
- Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjian Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
47
|
Sha Y, Wu H, Guo Y, Liu X, Mo Y, Yang Q, Wei S, Long K, Lu D, Xia Y, Zheng W, Su Z, Wei X. Effects of iodoacetic acid drinking water disinfection byproduct on the gut microbiota and its metabolism in rats. J Environ Sci (China) 2022; 117:91-104. [PMID: 35725093 DOI: 10.1016/j.jes.2022.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.
Collapse
Affiliation(s)
- Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shumao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
48
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Dos Santos RS, Medina-Gali RM, Babiloni-Chust I, Marroqui L, Nadal A. In Vitro Assays to Identify Metabolism-Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic β-Cell Model. Int J Mol Sci 2022; 23:ijms23095040. [PMID: 35563431 PMCID: PMC9102687 DOI: 10.3390/ijms23095040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.
Collapse
Affiliation(s)
- Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
50
|
Zhang YT, Chen R, Wang F, Huang Z, He S, Chen J, Mu J. Potential involvement of the microbiota-gut-brain axis in the neurotoxicity of triphenyl phosphate (TPhP) in the marine medaka (Oryzias melastigma) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152945. [PMID: 35007605 DOI: 10.1016/j.scitotenv.2022.152945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Triphenyl phosphate (TPhP), a prevalent pollutant in the aquatic environment, has been reported to induce neurotoxicity (e.g., a suppression in locomotor activity) in fish larvae, posing a great threat to fish populations. However, the underlying mechanism was not fully revealed. In this study, the Oryzias melastigma larvae (21 dph) were exposed to waterborne TPhP (20 and 100 μg/L) for 7 days and a decreased locomotor activity was found. After exposure, the brain transcriptome and communities of gut microbiota were investigated to explore the potential mechanism underlying the suppressed locomotor activity by TPhP. The results showed that 1160 genes in the brain were dysregulated by TPhP, of which 24 genes were identified as being highly associated with the neural function and development (including nerve regeneration, neuronal growth and differentiation, brain ion homeostasis, production of neurotransmitters and etc), suggesting a general impairment in the central nervous system. Meanwhile, TPhP caused disorders in the gut microbiota. The relative abundance of Gammaproteobacteria and Alphaproteobacteria, which can influence the brain functions of host via the microbiota-gut-brain axis, were significantly altered by TPhP. Furthermore, the Redundancy analysis (RDA) revealed positive correlations between the intestinal genera Ruegeria, Roseivivax and Nautella and the dysregulated brain genes by TPhP. These results suggest that TPhP might impair the central nervous system of the O. melastigma larvae not only directly but also through the microbiota-gut-axis (indirectly), contributing to the suppressed locomotor activity. These findings enrich our mechanistic understanding of the toxicity of TPhP in fish larvae and shed preliminary light on the involvement of microbiota-gut-brain axis in the neurotoxicity of environmental pollutants.
Collapse
Affiliation(s)
- Yu Ting Zhang
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Ruanni Chen
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Feipeng Wang
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shuiqing He
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jianming Chen
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| | - Jingli Mu
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China.
| |
Collapse
|