1
|
Li Y, Su J, Liu S, Li S, Liu S, Zhang H, Ding Z, Wang Z, Liu M, Zhao Y. Improved stability and biocompatibility of lycopene liposomes with sodium caseinate and PEG coating. Int J Biol Macromol 2025; 311:143685. [PMID: 40316080 DOI: 10.1016/j.ijbiomac.2025.143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
In this study, novel surface-modified lycopene liposomes were prepared for functional food applications, with systematic comparison of their physicochemical characteristics and biological evaluation. In contrast to whey protein isolate/polyethylene glycol layer-by-layer assembled lycopene liposomes (Lips-LYC/WPI) and PEGylated lycopene liposomes (LYC Lips), sodium caseinate/polyethylene glycol layer-by-layer assembled lycopene liposomes (Lips-LYC/SC) exhibited significantly reduced particle size and improved stability. Besides, Lips-LYC/SC highlighted enhanced encapsulation efficiency and minimized lycopene leakage attributed to sodium caseinate modification. DSC and PXRD confirmed effective reduction of lycopene crystallinity through excipient interaction, which was conducive to its water solubility improvement. FT-IR and fluorescence analysis revealed intermolecular hydrogen bonding between lycopene and the excipients. Furthermore, DPPH antioxidant and ROS scavenging experiments showed that the encapsulation of lycopene effectively improved its antioxidant activity. Cytotoxicity test revealed that Lips-LYC/SC had minimal cytotoxicity towards LO2 cells and Caco-2 cells, achieving cell survival rates >90 %, while the cell scratch results confirmed that LYC Lips induced significantly slower migration rates towards these cells. Moreover, Lips-LYC/SC significantly ameliorated metabolic disorders, oxidative stress, and hepatotoxicity in HFD-induced liver injury model. The above results highlighted the strategic advantage of sodium caseinate and PEG co-decorated liposomes, establishing Lips-LYC/SC as a promising delivery platform for the hydrophobic bioactive ingredient.
Collapse
Affiliation(s)
- Yinglan Li
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jianshuo Su
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Shufan Liu
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Shuangfeng Li
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Sisi Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, People's Republic of China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhuang Ding
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Zhengping Wang
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yanna Zhao
- Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| |
Collapse
|
2
|
Ariaeenejad S, Sadeghian-Motahar SF. Enhanced solubility, bioaccessibility, and antioxidant activity of curcumin via lipase complexation: Structural insights and stability assessment. Int J Biol Macromol 2025; 309:142881. [PMID: 40194570 DOI: 10.1016/j.ijbiomac.2025.142881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Curcumin, a bioactive compound with diverse therapeutic properties, faces challenges in clinical applications owing to its limited solubility and poor bioaccessibility. This study proposes a novel strategy to enhance the aqueous solubility, bioaccessibility, and antioxidant potential of curcumin by complexation with lipase (PersiLip1). The optimal condition for complex formation was determined to be pH 7.0, resulting in a 90-fold increase in solubility, reaching 96.92 %. Antioxidant activity assays (ABTS and DPPH) revealed significant radical scavenging capacity. Structural characterization, including Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD), indicated a notable transformation of curcumin from its crystalline to amorphous state. Atomic Force Microscopy (AFM) confirmed the formation of larger, stable molecular assemblies, with a particle size increase from 4.68 nm (free curcumin) to 121 nm (Cur-Lip complex). Dynamic Light Scattering (DLS) analysis revealed a further increase in the particle size to 3214.10 nm, coupled with a reduced Polydispersity Index (PDI) of 0.23, suggesting enhanced homogeneity. Zeta potential analysis showed a reduction in surface charge. Storage stability assessments confirmed the sustained solubility of the Cur-Lip complex for over 30 days. These findings highlight lipase-assisted complexation as an effective strategy for enhancing the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Seyedeh Fatemeh Sadeghian-Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
3
|
Roamcharern N, Matthew SAL, Brady DJ, Parkinson JA, Rattray Z, Seib FP. Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly. ACS Biomater Sci Eng 2025; 11:1847-1856. [PMID: 39883858 PMCID: PMC11897946 DOI: 10.1021/acsbiomaterials.4c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca2+). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size. Conformational and structural analyses of silk demonstrated Ca2+-induced silk assemblies that resulted in a liquid crystalline-like state, with the subsequent generation of β-sheet-enriched silk nanoparticles. Thioflavin T studies demonstrated that Ca2+ effectively induces self-assembly and conformation changes that also increased model drug loading. Ca2+ incorporation in the biopolymer feed significantly increased the nanoparticle production yield from 16 to 89%, while simultaneously enabling Ca2+ concentration-dependent particle-size tuning with a narrow polydispersity index and altered zeta potential. The resulting silk nanoparticles displayed high biocompatibility in macrophages with baseline levels of cytotoxicity and cellular inflammation. Our strategy for manufacturing biomimetic silk nanoparticles enabled overall tuning of particle size and improved yields─features that are critical for particle-based nanomedicines.
Collapse
Affiliation(s)
- Napaporn Roamcharern
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
| | - Saphia A. L. Matthew
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
| | - Daniel J. Brady
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied
Ecology, Ohlebergsweg
12, Giessen 35392, Germany
| | - John A. Parkinson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland,U.K.
| | - Zahra Rattray
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied
Ecology, Ohlebergsweg
12, Giessen 35392, Germany
- Institute
of Pharmacy, Department of Pharmaceutics and Biopharmaceutics, Friedrich Schiller University Jena, Lessingstr. 8, Jena 07743, Germany
| |
Collapse
|
4
|
Fang C, Wang Y, Pan Z. Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments. RSC Adv 2025; 15:5476-5506. [PMID: 39967882 PMCID: PMC11833604 DOI: 10.1039/d4ra07212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Traditional Chinese Medicine (TCM) formulas, based on the principles of Chinese medicine, have a long history and are widely applied in the treatment of diseases. Compared to single-component drugs, TCM formulas demonstrate superior therapeutic efficacy and fewer side effects owing to their synergistic effects and mechanisms of detoxification and efficacy enhancement. However, various drawbacks, such as the uncertainty of functional targets and molecular mechanisms, poor solubility of components, and low bioavailability, have limited the global promotion and application of TCM formulas. To overcome these limitations, self-assembled aggregate (SA) nanotechnology has emerged as a promising solution. SA nanotechnology significantly enhances the bioavailability and anti-tumor efficacy of TCM by improving its absorption, distribution, and precise targeting capabilities, thereby providing an innovative solution for the modernization and internationalization of TCM. This review delves into the nature and common interactions of SAs based on the latest research developments. The structural characteristics of SAs in TCM formulas, paired-herb decoctions, and single-herb decoctions are analyzed and their self-assembly mechanisms are systematically elucidated. In addition, this article elaborates on the advantages of SAs in cancer treatment, particularly in enhancing the bioavailability and targeting capabilities. Furthermore, this review aims to provide new perspectives for the study of TCM compatibility and its clinical applications, thereby driving the innovative development of nanomaterials in this field. On addressing the technological challenges, SAs are expected to further promote the global application and recognition of TCM in the healthcare sector.
Collapse
Affiliation(s)
- Chunqiu Fang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613844993950
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| |
Collapse
|
5
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Yan L, Liu H, Wang Y, Zhang L, Ma C, Abd El-Aty AM. Fabrication of polysaccharide-coated oleanolic acid-curcumin-coassembled nanoparticles (OA/Cur NPs): Enhancement of colloidal stability and water solubility. Food Chem 2024; 451:139482. [PMID: 38688096 DOI: 10.1016/j.foodchem.2024.139482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Natural terpenoid carriers, such as oleanolic acid (OA), can enhance the water solubility and stability of hydrophobic compounds such as curcumin (Cur). However, improving the colloidal stability of nanoparticle emulsions and resolving the redispersion problem of freeze-dried nanoparticle powders remain significant challenges. In this study, we fabricated coassembled oleanolic acid-curcumin nanoparticles (OA/Cur NPs) and applied a polysaccharide surface coating method to improve their colloidal stability and water solubility. The results showed that the optimal ratio of Cur/OA for preparing OA/Cur NPs was 4:10, resulting in a high encapsulation efficiency (EE) of Cur (75.2%). Additionally, TEM, contact angle tests, Turbiscan TOWER optical stability analysis of the polysaccharide-coated OA/Cur NP emulsions and redispersion tests of their lyophilized powders verified the advantages of carboxymethyl chitosan/β-cyclodextrin (CMC/β-CD) coating over other polysaccharides. This study indicated that polysaccharide coating is an effective method for enhancing the colloidal stability, water solubility, and redispersibility of OA/Cur NPs.
Collapse
Affiliation(s)
- Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Han Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhui Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
7
|
Wang T, Fu ZY, Li YJ, Zi L, Song CZ, Tao YX, Zhang M, Gu W, Yu J, Yang XX. Recognition on pharmacodynamic ingredients of natural products. Saudi Pharm J 2024; 32:102124. [PMID: 38933713 PMCID: PMC11201352 DOI: 10.1016/j.jsps.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Zhong-Yu Fu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Cheng-Zhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
8
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
9
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
10
|
He C, Jiang J, Liu J, Zhou L, Ge Y, Yang Z. Pseudostellaria heterophylla polysaccharide mitigates Alzheimer's-like pathology via regulating the microbiota-gut-brain axis in 5 × FAD mice. Int J Biol Macromol 2024; 270:132372. [PMID: 38750854 DOI: 10.1016/j.ijbiomac.2024.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuroinflammation, for which gut dysbiosis may be implicated. Our previous study showed that treatment with Pseudostellaria heterophylla aqueous extract and one of its cyclopeptides, heterophyllin B, attenuate memory deficits via immunomodulation and neurite regeneration. However, whether Pseudostellaria heterophylla polysaccharide (PH-PS) exerts neuroprotective effects against AD and its underlying mechanisms remain unclear. The infrared spectrum, molecular weight, and carbohydrate composition of the PH-PS were determined. The results showed that PH-PS (Mw 8.771 kDa) was composed of glucose (57.78 %), galactose (41.52 %), and arabinose (0.70 %). PH-PS treatment ameliorated learning and spatial memory deficits, reduced amyloid β build-up, and suppressed reactive glia and astrocytes in 5 × FAD mice. 16S rRNA sequencing further showed that PH-PS remodelled the intestinal flora composition by promoting probiotic microbiota, such as Lactobacillus, Muribaculum, Monoglobus, and [Eubacterium]_siraeum_group, and suppressing inflammation-related UCG-009 and Blautia. Additionally, PH-PS restored intestinal barrier function; ameliorated peripheral inflammation by reducing the secretion of inflammatory cytokines, thereby converting M1 microglia and A1 astrocyte toward beneficial M2 and A2 phenotypes; and contributed to Aβ plaques clearance by upregulation of insulin degradation enzyme and neprilysin. Collectively, our findings demonstrate that PH-PS may prevent the progression of AD via modulation of the gut microbiota and regulation of glial polarisation, which could provide evidence to design a potential diet therapy for preventing or curing AD.
Collapse
Affiliation(s)
- Chuantong He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Jiahui Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Junxin Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Yuewei Ge
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China.
| |
Collapse
|
11
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
12
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Alavi F, Ciftci ON. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. Int J Biol Macromol 2024; 264:129945. [PMID: 38311127 DOI: 10.1016/j.ijbiomac.2024.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The high porosity and specific surface area of aerogels offer an ideal platform for loading bioactive molecules. In the present study, the microstructure of the bio-based starch aerogels was modulated by the incorporation of chitosan. The starch hydrogel precursors were prepared from high amylose corn starch in the presence of 0, 0.50, and 0.75 wt% chitosan. Afterward, a green single-step simultaneous aerogel formation-curcumin deposition method was applied to impregnate curcumin into the aerogels through supercritical carbon dioxide (SC-CO2) drying technology. Composite starch/chitosan aerogels showed a more open porous structure and lighter weight than the neat starch counterpart. Confocal microscopy and fluorescence spectroscopy analysis confirmed curcumin molecules' attachment to the aerogels' hydrophobic cavities. The impregnation capacity was 24-27 mg curcumin per gram of aerogel depending on the composition of the aerogels. The loading of curcumin in the aerogels significantly enhanced the bioaccessibility of curcumin in the simulated gastrointestinal fluid by almost 30-fold when compared to the unloaded curcumin. Furthermore, the bioaccessibility of the curcumin loaded in starch-chitosan composite aerogels was higher than that in neat starch aerogels. While unloaded curcumin showed an undetectable intestinal Caco-2 cell transportation, curcumin-loaded aerogels revealed a cumulative curcumin passing of 0.15-0.23 μg/mL.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
14
|
Liu H, Wang Z, Xu J, Ji F, Luo S, Zhong X, Zhao Y, Zheng Z. Self-assembled pea vicilin nanoparticles as nanocarriers for improving the antioxidant activity, environmental stability and sustained-release property of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2467-2476. [PMID: 37986244 DOI: 10.1002/jsfa.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The application of curcumin (Cur) in the food industry is usually limited by its low water solubility and poor stability. This study aimed to fabricate self-assembled nanoparticles using pea vicilin (7S) through a pH-shifting method (pH 7-pH 12-pH 7) to develop water-soluble nanocarriers of Cur. RESULTS Intrinsic fluorescence, far-UV circular dichroism spectra and transmission electron microscopy analysis demonstrated that the structure of 7S could be unfolded at pH 12.0 and refolded when the pH shifted to 7.0. The assembled 7S-Cur exhibited a high loading ability of 81.63 μg mg-1 for Cur and homogeneous particle distribution. Cur was encapsulated in the 7S hydrophobic nucleus in an amorphous form and combined through hydrophobic interactions and hydrogen bonding, resulting in the static fluorescence quenching of 7S. Compared with free Cur, the retention rates of Cur in 7S-Cur were approximately 1.12 and 1.70 times higher under UV exposure at 365 nm or heating at 75 °C for 120 min, respectively, as well as 7S-Cur showing approximately 1.50 times higher antioxidant activity. During simulated gastrointestinal experiments, 7S-Cur exhibited a better sustained-release property than free Cur. CONCLUSION The self-assembled 7S nanocarriers prepared using a pH-shifting method effectively improved the antioxidant activity, environmental stability and sustained-release property of Cur. Therefore, 7S isolated from pea protein could be used as potential nanocarriers for Cur. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huihui Liu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zijun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Jingjing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Fuyun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
15
|
Wang N, Wang W, Zhang H, Liu C, Wang L, Zhang N, Yu D. Self-assembly embedding of curcumin by alkylated rice bran protein. Int J Biol Macromol 2024; 262:129627. [PMID: 38266858 DOI: 10.1016/j.ijbiomac.2024.129627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Lysine-rich rice bran protein (RBP) can be used as raw material for alkylation modification to improve the self-assembly performance of protein. The results of 1H NMR, degree of alkylation, and DSC analysis showed that the alkyl chain was successfully attached to the RBP. The surface hydrophobicity and absolute ζ-potential increased. The three-dimensional structure of the alkylated RBP (ARBP) become more porous and ARBP-2 was selected as the material for embedding curcumin. The XRD results revealed that curcumin induced self-aggregation of ARBP-2 and the inclusion of curcumin was attained. The maximum encapsulation efficiency of curcumin was 82.67 % and the maximum loading amount was 171.37 g/100 g RBP. The results of atomic force microscopy (AFM), particle size, and polydispersity index (PDI) analyses revealed that the particles in the system were aggregated after curcumin was added. Curcumin was well protected by encapsulation in the self-assembled particles. Thus, this study provides a new strategy for the embedding and delivery of curcumin.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Weining Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chang Liu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
17
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
18
|
Wang W, Liu W, Wu J, Liu M, Wang Y, Liu H, Liu J. Preparation and characterization of particle-filled microgels by chemical cross-linking based on zein and carboxymethyl starch for delivering the quercetin. Carbohydr Polym 2024; 323:121375. [PMID: 37940242 DOI: 10.1016/j.carbpol.2023.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
This work aimed to develop novel particle-filled microgels based on zein and carboxymethyl starch for delivering quercetin (Que). The anti-solvent precipitation and chemical cross-linking methods were combined to produce the zein-carboxymethyl starch particle-filled microgels (SM-Z). The critical finding of the study was that adding zein nanoparticles significantly improved the strength, water holding capacity, and thermal stability of carboxymethyl starch microgel (SM). Besides, SM-Z had good biodegradability, and the particle size was about 44-61 μm. SM-Z successfully encapsulated Que with a high encapsulation efficiency of 86.7 %. Que-loaded SM-Z (Q/SM-Z) significantly enhanced 30 d storage and UV light stability (up to 89.4 % retention rate) of Que than the Que-loaded SM (Q/SM). Q/SM-Z exhibited pH-responsive swelling behavior, and the swelling was greatest in the simulated intestinal fluid (pH = 7). Besides, the Q/SM-Z showed good stability in simulated gastric fluids and sustained release of Que in simulated intestinal fluids, 72.5 % Que was released at 8 h. During Que transport in Caco-2 cell monolayers, Q/SM (5.8 %) and Q/SM-Z (9.7 %) were significantly higher than free Que (1.93 %). Therefore, as an oral delivery system for hydrophobic active substances, SM-Z possesses good biodegradability and pH-responsive intestinal-targeted delivery capability, providing a new strategy for designing starch-based encapsulation materials.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Wei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jinshan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
19
|
Chang C, Li X, Li J, Su Y, Gu L, Xiong W, Yang Y. Fabrication mechanism and functional properties of ovalbumin fibrils prepared by acidic heat treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7127-7135. [PMID: 37380626 DOI: 10.1002/jsfa.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Ovalbumin (OVA), accounting for 50% of proteins in egg white, is a kind of high-quality protein with excellent nutritional and processing functions. Acid heat treatment will induce the deformation and filtration of OVA, endowing it with improved functionality. However, the molecular kinetic process during the fibrillation of OVA and the application of the fabricated OVA fibrils (OVAFs) have not been thoroughly studied and revealed. RESULTS In this study, the fabrication mechanism and the application OVAFs as an interfacial stabilizer and polyphenol protector were investigated. Acidic (pH 3.0) heat treatment was used to induce the fibrillation of OVA, and thioflavin T fluorescence intensity, molecular weight distribution, and the tertiary and secondary structures of OVAF samples were recorded to determine the fibrillation efficiency and the molecular mechanism. The results showed that, in the initial stage of fibrillation, OVA first hydrolyzed to oligopeptides, accompanied by the exposure of hydrophobic domains. Then, oligopeptides were connected by disulfide bonds to form primary fibril monomers. Hydrophobic interaction and hydrogen bonding may participate in the further polymerization of the fibrils. The fabricated OVAFs were characterized by a β-sheet-rich structure and possessed improved emulsifying, foaming, and polyphenol protection ability. CONCLUSION The research work was meaningful for exploring the application of globular water-soluble OVA in an emerging nutritious food with novel texture and sensory properties. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cuihua Chang
- Jiangnan University, Wuxi, People's Republic of China
| | - Xin Li
- School of Life Sciences, Yanti University, Yantai, People's Republic of China
| | - Junhua Li
- Jiangnan University, Wuxi, People's Republic of China
| | - Yujie Su
- Jiangnan University, Wuxi, People's Republic of China
| | - Luping Gu
- Jiangnan University, Wuxi, People's Republic of China
| | - Wen Xiong
- Hunan Jiapin Jiawei Technology Development Group Co. LTD, Hunan, People's Republic of China
| | - Yanjun Yang
- Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
20
|
Pi W, Han N, Wu L, Zhang X, Huang X, Wang Z, Yuan Z, Wang P. Discovery, traceability, formation mechanism, metal and organic components analysis of supramolecules from Maxing Shigan decoction. J Pharm Biomed Anal 2023; 234:115532. [PMID: 37352791 DOI: 10.1016/j.jpba.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Traditional Chinese medicine (TCM) decoction is a complex polydispersed phase system containing colloid solution, emulsion and suspension, which maybe induced by the supramolecular phenomenon in decoction. However, until now there is no systematic analysis of composition and formation mechanism of supramolecules in TCM decoction contained mineral drug and herb medicines. Maxing Shigan Decoction (MXSGT), one of the classic TCM recipes, has been widely used in the treatment of fever in clinic. In this study, we obtained the supramolecular part of MXSGT (MXSGT NPs). And its traceability, formation mechanism, metal and organic components were further analyzed. The morphology was characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS); and the lipopolysaccharides (LPS) induced rats' fever model was established to evaluate the antipyretic effect of MXSGT NPs. Furthermore, interaction of the disassembled groups was studied to explore the traceability and formation mechanism of MXSGT NPs by isothermal titration calorimeter (ITC). Due to the combination of mineral gypsum and herb medicines, both ICP-OES and UHPLC-Q-Orbitrap HRMS were used to analyze metal and organic components of MXSGT and MXSGT NPs, respectively. The results showed that MXSGT NPs was regular spherical nanoparticles and had the same antipyretic effect as MXSGT. Moreover, MXSGT NPs was formed by the interaction between metal and organic components, resulted in enriching the main active compounds of MXSGT. This study would provide a new idea of studying TCM decoction, especially clarifying the connotation with the participation of mineral gypsum.
Collapse
Affiliation(s)
- Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nana Han
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
21
|
Yu C, Shan J, Ju H, Chen X, Xu G, Wu Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods 2023; 12:2692. [PMID: 37509784 PMCID: PMC10379602 DOI: 10.3390/foods12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This work presents the fabrication of ternary nanoparticles (Z/S/C NPs) comprising zein (Z), soy protein isolate (SPI) and carboxymethylcellulose sodium (CMC-Na) through a pH-driven method. The results showed that the smallest particle size (71.41 nm) and the most stable zeta potential, measuring -49.97 mV, were achieved with the following ratio of ternary nanoparticles Z/SPI/CMC-Na (2:3:3). The surface morphology of the nanoparticles was further analyzed using transmission electron microscopy, and the synthesized nanoparticles were utilized to encapsulate curcumin (Cur), a hydrophobic, bioactive compound. The nanoparticles were characterized using a particle size analyzer, infrared spectroscopy, and X-ray diffraction (XRD) techniques. The results revealed that the formation of nanoparticles and the encapsulation of Cur were driven by electrostatic, hydrogen-bonding and hydrophobic interactions. The drug loading efficiency (EE%) of Z/S/C-cur nanoparticles reached 90.90%. The Z/S/C ternary nanoparticles demonstrated enhanced storage stability, photostability and simulated the gastrointestinal digestion of Cur. The release of Cur and variations in the particle size of nanoparticles were investigated across different stages of digestion. The biocompatibility of the Z/S/C ternary nanoparticles was assessed by conducting cell viability assays on HepG2 and L-O2 cells, which showed no signs of cytotoxicity. These results suggested that the ternary composite nanoparticles have potential in delivering nutritional foods and health-promoting bioactive substances.
Collapse
Affiliation(s)
- Chong Yu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
22
|
Ai C, Zhao C, Xiang C, Zheng Y, Zhong S, Teng H, Chen L. Gum arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem X 2023; 18:100724. [PMID: 37397193 PMCID: PMC10314165 DOI: 10.1016/j.fochx.2023.100724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
In this study, a kind of nanoparticle prepared using gum arabic as a sole wall material for loading curcumin was obtained. The properties and digestive characteristics of the curcumin-loaded nanoparticle were determined. Results showed that the maximum loading amount of the nanoparticle was 0.51 µg/mg with an approximately 500 nm size. The Fourier transform infrared (FTIR) spectrum showed that the complexation was mainly related to the -C[bond, double bond]O, -CH, and -C-O-C- groups. The curcumin-loaded nanoparticle exhibited good stability under highly concentrated salinity stress, and the stability of the curcumin loaded in nanoparticles was significantly higher than that of free curcumin under ultraviolet radiation. The curcumin loaded in nanoparticle was released mainly in the intestinal digestion stage, and the release process was sensitive to the pH changes rather than protease. In conclusion, these nanoparticles can be a potential nanocarrier for enhancing the stability of curcumin which can be applied in the salt-containing food system.
Collapse
Affiliation(s)
| | | | - Chunhong Xiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
23
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
24
|
Li X, He Y, Zhang S, Gu Q, McClements DJ, Chen S, Liu X, Liu F. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18166-18181. [PMID: 36893425 DOI: 10.1021/acsami.2c20816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Curcumin has been reported to exhibit free radical antioxidant, anti-inflammatory, and anticancer activities, which are beneficial for nutraceutical applications. However, its application for this purpose is limited by its poor water solubility, stability, and bioavailability. These problems can be overcome using food-grade colloidal particles that encapsulate, protect, and deliver curcumin. These colloidal particles can be assembled from structure-forming food components that may also exhibit protective effects, such as proteins, polysaccharides, and polyphenols. In this study, lactoferrin (LF), (-)-epigallocatechin gallate (EGCG), and hyaluronic acid (HA) were used to fabricate composite nanoparticles using a simple pH-shift method. We showed that curcumin could be successfully loaded into these LF-EGCG-HA nanoparticles (d = 145 nm). The encapsulation efficiency (86%) and loading capacity (5.8%) of curcumin within these nanoparticles were relatively high. Encapsulation improved the thermal, light, and storage stabilities of the curcumin. Moreover, the curcumin-loaded nanoparticles exhibited good redispersibility after dehydration. The in vitro digestion properties, cellular uptake, and anticancer effects of the curcumin-loaded nanoparticles were then explored. Compared to free curcumin, the bioaccessibility and cellular uptake of the curcumin were significantly improved after encapsulation in the nanoparticles. Furthermore, the nanoparticles significantly promoted the apoptosis of colorectal cancer cells. This study suggests that food-grade biopolymer nanoparticles can be used to improve the bioavailability and bioactivity of an important nutraceutical.
Collapse
Affiliation(s)
- Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyang He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430000, Hubei, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
25
|
Wang L, Wei Z, Xue C, Yang L. Co-delivery system based on multilayer structural nanoparticles for programmed sequential release of fucoxanthin and curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Preparation, structure and stability of protein-pterostilbene nanocomplexes coated by soybean polysaccharide and maltodextrin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Soy protein isolate (SPI)-hemin complex nanoparticles as a novel water-soluble iron-fortifier: Fabrication, formation mechanism and in vitro bioavailability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Lin S, Cai X, Chen H, Xu Y, Wu J, Wang S. Development of fish gelatin-chitooligosaccharide conjugates through the Maillard reaction for the encapsulation of curcumin. Curr Res Food Sci 2022; 5:1625-1639. [PMID: 36164327 PMCID: PMC9507993 DOI: 10.1016/j.crfs.2022.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The poor water solubility, bioavailability and stability of bioactive compounds have become the bottleneck restricting their wide application, thus developing a functional carrier to realize the efficient encapsulation and activity improvement of active hydrophobic substances has become a research hotspot. In this work, a functional glycosylated fish gelatin (called FG-COS conjugates) carrier based on fish gelatin (FG) and chitooligosaccharide (COS) via Maillard reaction was developed. The functional carrier exhibited good antioxidant activity and high encapsulation of curcumin (Cur). Enhanced antioxidant effect of Cur loaded in FG-COS conjugates (called FG-COS-Cur nanoparticles) was achieved, showing remarkable UV protection on Cur and enhanced intracellular antioxidant activity of FG-COS-Cur nanoparticles. Remarkably, FG-COS-Cur nanoparticles increased the cell viability of H2O2-induced oxidative damage Caco-2 cells, drastically reduced the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), and significantly increased intracellular antioxidant enzyme activities, which all exhibited a dose-response relationship. These findings suggested that the FG-COS conjugates with intrinsic antioxidant activity could effectively encapsulate Cur and improved bioavailability for hydrophobic active molecules in functional food field.
Collapse
Affiliation(s)
- Sheng Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Yizhou Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| |
Collapse
|
30
|
Guo S, Zhao Y, Luo S, Mu D, Li X, Zhong X, Jiang S, Zheng Z. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5121-5131. [PMID: 35275410 DOI: 10.1002/jsfa.11862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Gliadin nanoparticles are used as a delivery system for active substances because of their amphiphilicity and bioavailability. However, they are susceptible to destabilization by external agents. In this study, gliadin nanoparticles stabilized by soluble soybean polysaccharide (SSPS) were prepared by antisolvent precipitation. Formed stable complex nanoparticles were applied to protect and deliver curcumin (Cur). RESULTS Gliadin/SSPS nanoparticles with the smallest particle size (196.66 nm, polydispersity index < 0.2) were fabricated when the mass ratio of gliadin to SSPS was 1:1 at pH 5.0. SSPS-stabilized gliadin nanoparticles had excellent stability at pH 3.0-8.0, 0.02-0.1 mol L-1 NaCl and at 90 °C heat. Gliadin/SSPS nanoparticles were used to encapsulate the Cur. The encapsulation efficiency of the Cur-loaded gliadin/SSPS nanoparticles was 84.59%. Fourier transform infrared spectroscopy and fluorescence spectrophotometry showed that the main forces were hydrogen bonds, electrostatic interactions and hydrophobic interactions between gliadin and SSPS. The X-ray diffraction patterns exhibited that the crystalline form of Cur converted to an amorphous substance. The retention rates of Cur-loaded gliadin/SSPS nanoparticles reached 79.03%, 73.43% and 87.92% after ultraviolet irradiation for 4 h, heating at 90 °C and storage at 25 °C for 15 days, respectively. Additionally, simulated digestion demonstrated that the bioavailability of gliadin/SSPS-Cur nanoparticles was four times higher than that of free Cur. CONCLUSION This study showed that SSPS improved the stability of gliadin nanoparticles. Gliadin/SSPS nanoparticles have the function of loading and delivering Cur. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siyan Guo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
31
|
Liu Q, Li Y, Zhou Y, Jiang L, Lyu Q, Liu G, Wang X, Chen X, Chen L. Zein-whey protein isolate-carboxymethyl cellulose complex as carrier of apigenin via pH-driven method: Fabrication, characterization, stability, and in vitro release property. Food Chem 2022; 387:132926. [DOI: 10.1016/j.foodchem.2022.132926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
|
32
|
Deng J, Feng X, Zhou L, He C, Li H, Xia J, Ge Y, Zhao Y, Song C, Chen L, Yang Z. Heterophyllin B, a cyclopeptide from Pseudostellaria heterophylla, improves memory via immunomodulation and neurite regeneration in i.c.v.Aβ-induced mice. Food Res Int 2022; 158:111576. [DOI: 10.1016/j.foodres.2022.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
33
|
Liu S, Liu J, He L, Liu L, Cheng B, Zhou F, Cao D, He Y. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144400. [PMID: 35889273 PMCID: PMC9319031 DOI: 10.3390/molecules27144400] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.
Collapse
Affiliation(s)
- Siyu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Jie Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Lan He
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Liu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Bo Cheng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Fangliang Zhou
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Deliang Cao
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Correspondence: (D.C.); (Y.H.)
| | - Yingchun He
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Correspondence: (D.C.); (Y.H.)
| |
Collapse
|
34
|
Li X, Yin C, Liu B, Zou L, Xu Q, Li CM. Glycerol-compressed self-assembly nanogel based on ovomucin and chito-oligosaccharide: A novel green strategy for curcumin delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Wang ZJ, Xu JJ, Ji FY, Luo SZ, Li XJ, Mu DD, Jiang ST, Zheng Z. Fabrication and characterization of soy β-conglycinin-dextran-polyphenol nanocomplexes: Improvement on the antioxidant activity and sustained-release property of curcumin. Food Chem 2022; 395:133562. [PMID: 35763923 DOI: 10.1016/j.foodchem.2022.133562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
In this study, glycated soy β-conglycinin (β-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of β-conglycinin-dextran conjugates (β-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of β-CG in the pH-shifting treatment. The structure of β-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, β-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of β-CG-Cur. Moreover, the reassembled β-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with β-CG-Cur, β-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, β-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.
Collapse
Affiliation(s)
- Zi-Jun Wang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jing-Jing Xu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Fu-Yun Ji
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xing-Jiang Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dong-Dong Mu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Shao-Tong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products, Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
36
|
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, Bai D. Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules 2022; 27:3268. [PMID: 35630743 PMCID: PMC9144598 DOI: 10.3390/molecules27103268] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
With the application of the concept of supramolecular chemistry to various fields, a large number of supramolecules have been discovered. The chemical components of traditional Chinese medicine have various sources and unique structures. During the high-temperature boiling process, various active components form supramolecules due to complex interactions. The supramolecular structure in a traditional Chinese medicine decoction can not only be used as a drug carrier to promote the absorption and distribution of medicinal components but may also have biological activities superior to those of single active ingredients or their physical mixtures. By summarizing the relevant research results over recent years, this paper introduces the research progress regarding supramolecules in various decoctions, laying a foundation for further research into supramolecules in traditional Chinese medicine decoctions, and provides a new perspective for revealing the compatibility mechanisms of traditional Chinese medicine, guiding clinical medications, and developing new nanometers materials.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Yingying Dong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Qin Guo
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Huanhuan Wang
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Mei Feng
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Zhengshen Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Dong Bai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| |
Collapse
|
37
|
Su Y, Chen Y, Zhang L, Adhikari B, Xu B, Li J, Zheng T. Synthesis and characterization of lotus seed protein-based curcumin microcapsules with enhanced solubility, stability, and sustained release. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2220-2231. [PMID: 34611905 DOI: 10.1002/jsfa.11560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lotus seed protein (LSP) was extracted from lotus seed and used to encapsulate curcumin with or without complexing with pectin. The physicochemical properties of LSP-based microcapsules, including solubility, stability, and in vitro sustained release, were determined. The mechanism of interaction between curcumin, LSP, and pectin was revealed. RESULTS The encapsulation efficiency of curcumin was found to depend on LSP concentration and was highest (86.32%, w/w) at 50 mg mL-1 . The curcumin in curcumin-LSP and curcumin-LSP-pectin powder particles achieved a solubility of 75.15% and 81.39%, respectively, which was a remarkable enhancement. The microencapsulation with LSP and LSP-pectin matrix showed a significant improvement in the antioxidant activity, photostability, thermostability, and storage stability of free curcumin. The microencapsulated curcumin showed sustained control release at the gastric stage and burst-type release in the subsequent intestinal stage, presenting cumulative release rates of 64.3% and 72.4% from curcumin-LSP and curcumin-LSP-pectin particles after gastrointestinal digestion. The LSP-pectin complex produced microcapsules with higher solubility, smaller particle size, enhanced physicochemical stability, and increased bioaccessibility. Fourier transform infrared, circular dichroism spectra, and differential scanning calorimetry data indicated that the encapsulated curcumin interacted with LSP and pectin mainly through hydrogen bonding, hydrophobic, and electrostatic interactions. CONCLUSION This work shows that LSP can be an alternative encapsulant for the delivery of hydrophobic nutraceuticals with enhanced solubility, stability, and sustained release. The results may contribute to the design of novel food-grade delivery systems based on LSP vehicles, thereby broadening the applications of LSP in the fields of functional food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Li Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
38
|
Yu N, Wang J, Jiang C, Nie X, Hu Z, Ye Q, Meng X, Xiong H. Development of composite nanoparticles from gum Arabic and carboxymethylcellulose-modified Stauntonia brachyanthera seed albumin for lutein delivery. Food Chem 2022; 372:131269. [PMID: 34655829 DOI: 10.1016/j.foodchem.2021.131269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022]
Abstract
Lutein is a carotenoid with several beneficial functions, but its poor water solubility, chemical instability, and low bioavailability limits its application. To overcome these shortcomings, self-assembly composite nanoparticles from Stauntonia brachyanthera seed albumin (SBSA), gum Arabic (GA), and carboxymethylcellulose (CMC) were developed for lutein encapsulation. Firstly, SBSA was extracted from seeds and its physicochemical properties were evaluated. Followingly, the nanoparticles were prepared with SBSA through a heat induced self-assembly method which were modified by GA and CMC. The nanoparticles exhibited good storage, pH, and salt stability. Hydrogen bonds, hydrophobic interactions, and electrostatic interactions were proved to derive the formation of nanoparticles. The maximum effective loading capacity (LC) of the lutein in nanoparticles was 0.92 ± 0.01% with an encapsulation efficiency (EE) at 83.95 ± 0.98%. Heat stability and storage stability of lutein were significantly enhanced after encapsulation into nanoparticles. In addition, the bioaccessibility of lutein increased from 17.50 ± 2.60% to 46.80 ± 4.70% after encapsulation into nanoparticles.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jinshuang Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Chengjia Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qin Ye
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
39
|
Zhao Y, Han X, Yin H, Li Q, Zhou J, Zhang H, Zhang W, Zhao C, Liu J. Preparation and characterisation of curcumin‐loaded pea protein‐zein nanocomplexes using pH‐driven method. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yilin Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Xinxin Han
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Huanhuan Yin
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Qi Li
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Jingyi Zhou
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Hao Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Wenge Zhang
- Particle Laboratory Center for Environmental Metrology National Institute of Metrology Beijing 100022 China
| | - Chengbin Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Jingsheng Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| |
Collapse
|
40
|
Chang C, Li J, Su Y, Gu L, Yang Y, Zhai J. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Enhanced Stability and Oral Bioavailability of Cannabidiol in Zein and Whey Protein Composite Nanoparticles by a Modified Anti-Solvent Approach. Foods 2022; 11:foods11030376. [PMID: 35159526 PMCID: PMC8833932 DOI: 10.3390/foods11030376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Wide applications of cannabidiol (CBD) in the food and pharmaceutical industries are limited due to its low bioavailability, sensitivity to environmental pressures and low water solubility. Zein nanoparticles were stabilized by whey protein (WP) for the delivery of cannabidiol (CBD) using a modified anti-solvent approach. Particle size, surface charge, encapsulation efficiency, and re-dispersibility of nanoparticles were influenced by the zein to WP ratio. Under optimized conditions at 1:4, zein–WP nanoparticles were fabricated with CBD (200 μg/mL) and further characterized. WP absorbed on zein surface via hydrogen bond, hydrophobic forces, and electrostatic attraction. The zein–WP nanoparticles showed excellent storage stability (4 °C, dark) and effectively protected CBD degradation against heat and UV light. In vivo pharmacokinetic study demonstrated that CBD in zein–WP nanoparticles displayed 2-times and 1.75-fold enhancement in maximum concentration (C max) and the area under curve (AUC) as compared to free-form CBD. The data indicated the feasibility of developing zein–WP based nanoparticles for the encapsulation, protection, and delivery of CBD.
Collapse
|
42
|
Chen H, Xu B, Zhou C, Yagoub AEGA, Cai Z, Yu X. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Elbialy NS, Aboushoushah SF, Mohamed N. Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy. Int J Pharm 2021; 613:121420. [PMID: 34958897 DOI: 10.1016/j.ijpharm.2021.121420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Curcumin is a promising anticancer agent, but its clinical utilization has been hindered by its low solubility and bioaccessibility. To overcome these obstacles, we developed a natural protein-polysaccharide nanocomplex made from casein nanoparticles coated with a double layer of alginate and chitosan and decorated with folic acid (fCs-Alg@CCasNPs) for use as a nanocarrier for curcumin. The developed nanoformulation showed a drug encapsulation efficiency = 75%. The measured size distribution of fCs-Alg@CCasNPs was 333.8 ± 62.35 nm with a polydispersity index (PDI) value of 0.179. The recorded zeta potential value of fCs-Alg@CCasNPs was 28.5 mV. Morphologically, fCs-Alg@CCasNPs appeared spherical, as shown by transmission electron microscopy (TEM). The successful preparation of fCs-Alg@CCasNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy of all the constituents forming the nanoformulation. Further in vitro investigations indicated the stability of fCs-Alg@CCasNPs as well as their controlled and sustained release of curcumin in the tumor microenvironment. Compared with free curcumin, fCs-Alg@CCasNPs induced a higher cytotoxic effect against a pancreatic cancer cell line. The in vivo pharmacokinetics of fCs-Alg@CCasNPs showed a significant AUC0-24 = 2307 ng.h/ml compared to 461 ng.h/ml of free curcumin; these results indicated high curcumin bioavailability in plasma. The in vivo results of tumor weight, the amount of DNA damage measured by comet assay and histopathological examination revealed that treating mice with fCs-Alg@CCasNPs (either intratumorally or intraperitonially) prompted higher therapeutic efficacy against Ehrlich carcinoma than treatment with free curcumin. Therefore, the incorporation of curcumin with protein/polysaccharide/folate is an innovative approach that can synergistically enhance curcumin bioavailability and potentiate cancer therapy with considerable biosafety.
Collapse
Affiliation(s)
- Nihal S Elbialy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Noha Mohamed
- Associate Professor Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
44
|
Poloxamer 188-based nanoparticles improve the anti-oxidation and anti-degradation of curcumin. Food Chem 2021; 375:131674. [PMID: 34848087 DOI: 10.1016/j.foodchem.2021.131674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022]
Abstract
Curcumin (CUR) is a food additive approved by World Health Organization. But the shortcomings, such as poor water solubility, easy oxidation and degradation, limit its application. In this study, the CUR-loaded poloxamer188-based nanoparticles (CUR/PTT NPs) were fabricated to improve the stability and water solubility of CUR. Studies found the spherical CUR/PTT NPs had an average size of 98.71 ± 0.64 nm. Stability experiments displayed CUR/PTT NPs were extremely stable in different conditions. XRD analysis indicated the changes of crystal structures of CUR might be the main cause of the improved water solubility. Reducing power and anti-degradation tests suggested CUR/PTT NPs could improve the anti-oxidation and anti-degradation of CUR. Additionally, the results of body weight gains, hematological examination, organ coefficients, hematoxylin and eosin staining demonstrated CUR/PTT NPs bearing the excellent in vivo bio-security. Therefore, this study may provide a new idea for the combination of food industry and nanoparticles.
Collapse
|
45
|
Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin. Int J Biol Macromol 2021; 193:1471-1480. [PMID: 34742837 DOI: 10.1016/j.ijbiomac.2021.10.210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Curcumin has a wide range of pharmacological activities, but its poor water solubility, chemical instability, and low bioavailability extensively limit the further application in food and pharmaceutical systems. In this study, the potential of using soy protein (SP) to interact with, encapsulate and protect hydrophobic curcumin (Cur) by pH-shift method was evaluated. Results indicated that SP structure experienced a typical pathway from unfolding to refolding during the pH-shifting process (pH 7-12-7), which clearly expressed the encapsulation process of Cur by pH-shift method into SP. Then the physicochemical and morphological properties of soy protein-encapsulated curcumin nanoparticles (SP-Cur) were investigated. Fluorescence measurements and Isothermal Titration Calorimetry showed that the combination of Cur and SP was a spontaneous reaction with a decrease in Gibbs free energy, which was mainly driven by hydrophobic interaction. Fourier Transform Infra-Red and Ultraviolet Spectroscopy further showed that the Cur had successfully embedded into SP. SP-Cur had a spherical shape-like structure and relatively small size (d < 100 nm). The encapsulation efficiency of Cur showed a concentration-dependent manner, which could be as high as 97.43%. In addition, the SP-Cur exhibited enhanced thermal stability and photostability.
Collapse
|
46
|
The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res 2021; 12:1306-1325. [PMID: 34260049 DOI: 10.1007/s13346-021-01029-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 01/12/2023]
Abstract
Fast development of combination of nanotechnology with traditional Chinese medicine (TCM) broadens the field of application of TCM. Besides, it increases the research ideas and contributes to TCM modernization. As expected, TCM will be developed into the nanodrug delivery system by nanotechnology with careful design, which will enhance the medicinal value of TCM to cure and prevent disease based on benefits brought by nanometer scale. Here, formulations, relevant preparations methods, and characteristics of nano-TCM were introduced. In addition, the main excellent performances of nano-TCM were clearly elaborated. What is more, the review was intended to address the studies committed to application of nanotechnology in TCM over the years, including development of Chinese medicine active ingredients, complete TCM, and Chinese herbal compounds based on nanotechnology. Finally, this review discussed the safety of nano-TCM and presented future development trends in the way to realize the modernization of TCM. Overall, using the emerging nanotechnology in TCM is promising to promote progress of TCM in international platform. Recent researches on modernization of traditional Chinese medicine (TCM) urged by nanotechnology are introduced, and formulations, advantages, and applications of nano-TCM are reviewed to provide strong proofs.
Collapse
|
47
|
Zhang QQ, Yang Y, Ren RR, Chen QQ, Wu JJ, Zheng YY, Hou XH, Zhang YF, Xue MS, Yin DK. Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer's patch-associated immunity. CHINESE HERBAL MEDICINES 2021; 13:370-380. [PMID: 36118921 PMCID: PMC9476751 DOI: 10.1016/j.chmed.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/13/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate the dynamic regulation of self-assembled aggregations (SAA) in Coptidis Rhizoma decoction on the permeability of intestinal tissue and the mechanism underlying. Methods The effects of SAA on berberine (Ber) absorption were respectively analyzed in an in situ intestinal perfusion model and in an Ussing Chamber jejunum model with or without Peyer's patches (PPs). The expression levels of ZO-1, Occludin and Claudin-1 were detected by immunofluorescence to evaluate the tight junction (TJ) between intestinal epithelium cells. The expression levels of T-box-containing protein expressed in T cells, signal transducers and activators of tranion-6, retinoic acid receptor-related orphan receptor γt and forkhead box P3 in PPs were detected by the reverse transcription-polymerase chain reaction and the secretions of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-17 (IL-17) and transforming growth factor-β (TGF-β) in PPs were evaluated by immunohistochemistry, to reflect the differentiation of T lymphocyte in PPs to helper T (Th) cell 1, Th2, Th17 and regulatory T (Treg) cell. To confirm the correlation between SAA in Coptidis Rhizoma decoction, PPs-associated immunity and intestinal epithelium permeability, SAA were administrated on an Ussing Chamber jejunum model with immunosuppressed PPs and evaluated its influences on intestinal tissue permeability and TJ proteins expression. Results SAA in Coptidis Rhizoma decoction could dose-dependently promote Ber absorption in jejunum segment, with the participation of PPs. The dose-dependent and dynamical regulations of SAA on permeability of intestinal tissue and TJ proteins expression level between intestinal epithelium cells occurred along with the dynamically changed T lymphocyte differentiation and immune effectors secretion in PPs. The administration of SAA on immunosuppressed PPs exhibited dose-dependent PPs activation, inducing dynamic promotion on intestinal tissue permeability and inhibition on TJ proteins expression. Conclusion SAA can improve the Ber absorption in small intestine, through the PPs-associated immunity induced dynamic regulation on intestinal tissue permeability and TJ proteins expression. These findings might enlighten the research of traditional Chinese medicine decoction.
Collapse
Affiliation(s)
- Qing-qing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei 230012, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| | - Rong-rong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qing-qing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing-jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu-yu Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiao-hui Hou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu-feng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ming-song Xue
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Deng-ke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei 230012, China
- Corresponding authors.
| |
Collapse
|
48
|
Properties and Applications of Nanoparticles from Plant Proteins. MATERIALS 2021; 14:ma14133607. [PMID: 34203348 PMCID: PMC8269707 DOI: 10.3390/ma14133607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
Nanoparticles from plant proteins are preferred over carbohydrates and synthetic polymeric-based materials for food, medical and other applications. In addition to their large availability and relatively low cost, plant proteins offer higher possibilities for surface modifications and functionalizing various biomolecules for specific applications. Plant proteins also avoid the immunogenic responses associated with the use of animal proteins. However, the sources of plant proteins are very diverse, and proteins from each source have distinct structures, properties and processing requirements. While proteins from corn (zein) and wheat (gliadin) are soluble in aqueous ethanol, most other plant proteins are insoluble in aqueous conditions. Apart from zein and gliadin nanoparticles (which are relatively easy to prepare), soy proteins, wheat glutenin and proteins from several legumes have been made into nanoparticles. The extraction of soluble proteins, hydrolyzing with alkali and acids, conjugation with other biopolymers, and newer techniques such as microfluidization and electrospraying have been adopted to develop plant protein nanoparticles. Solid, hollow, and core-shell nanoparticles with varying sizes and physical and chemical properties have been developed. Most plant protein nanoparticles have been used as carriers for drugs and as biomolecules for controlled release applications and for stabilizing food emulsions. This review provides an overview of the approaches used to prepare nanoparticles from plant proteins, and their properties and potential applications. The review's specific focus is on the preparation methods and applications, rather than the properties of the proteins, which have been reported in detail in other publications.
Collapse
|
49
|
Zhang H, Jiang L, Tong M, Lu Y, Ouyang XK, Ling J. Encapsulation of curcumin using fucoidan stabilized zein nanoparticles: Preparation, characterization, and in vitro release performance. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin. Food Chem Toxicol 2021; 151:112110. [PMID: 33713747 DOI: 10.1016/j.fct.2021.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Radix Pseudostellariae protein (RPP) with satisfactory antioxidant activity and self-assembled ability was extracted from dried Radix Pseudostellariae. In this study, RPP-curcumin nanocomplex (RPP-Cur) was fabricated, and its improvement on the stability, cellular uptake and antioxidant activity of curcumin was investigated. RPP-Cur with homogeneously spherical structure exhibited good stability, which could maintain the morphology against simulated gastrointestinal digestion and up to 300 mM ionic concentration. After RPP nanoparticles encapsulation, the retention of curcumin increased 1.45 times under UV irradiation for 6 h. Besides, RPP-Cur exhibited additive reducing power of curcumin and RPP. The transport efficiency of hydrophobic curcumin across Caco-2 cells monolayer was greatly improved by RPP nanoparticle by 3.7 folds. RPP-Cur was able to be internalized by Caco-2 cells dose-dependently via macropinocytosis and clathrin-mediated endocytosis. The cellular uptake efficiency of embedded curcumin in RPP nanoparticles by Caco-2 cells was significantly higher than that of free curcumin, which might contribute to the enhanced intracellular antioxidant activity of RPP-Cur. These findings suggest that the proteins from Radix Pseudostellariae have potential to be developed into novel delivery system with intrinsic antioxidant activity for the hydrophobic active molecules in healthy food field.
Collapse
|