1
|
Zou W, Liu X, Wang W, Zou N, Sun D. A renewable thermochromic phase change material encapsulated within a wood-based cellulose/sodium methylsilicate framework. Int J Biol Macromol 2025; 307:142047. [PMID: 40090280 DOI: 10.1016/j.ijbiomac.2025.142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Thermochromic phase change material (TC) is a temperature-responsive heat storage material. However, few TCs are renewable. In the present study, a renewable TC (RTC) composed of alizarin, myristyl myristate, and 1-hexadecanol was synthesized, demonstrating a color shift between orange and orange-red during phase transitions. To maintain the shape stability, the RTC was encapsulated within a wood-based cellulose/sodium methylsilicate framework, termed thermochromic wood composite-smart material (TWC-SM). This framework altered the chemical structure of alizarin, resulting in a color shift between greyish-purple (L: 26 ± 1, a: 4 ± 1, b: -6 ± 1) and deep-purple (L: 14 ± 2, a: 1 ± 1, b: -3 ± 1) for TWC-SM during phase changes, indicating a distinct thermochromic mechanism compared to RTC. Specifically, TWC-SM appears greyish-purple below 52 °C, where the benzene ring of alizarin features two fixed O groups and an additional -OH group. At temperatures above 70 °C, it turns deep-purple as the -OH group loses a hydrogen ion. TWC-SM exerts a pronounced thermochromic effect, conferring temperature-responsive functionality. Moreover, the solid-liquid phase-changing enthalpy of RTC is 186.78 J/g, and the wood-based cellulose/sodium methylsilicate framework ensures the shape stability of RTC within TWC-SM. Consequently, the average temperature of TWC-SM is at least 5.56 °C higher than that of untreated wood over 60 min following identical thermal treatment. This finding shows the potential of the framework for practical applications in temperature-responsive heat storage materials. This study reveals the structure-activity relationship between RTC and the framework within TWC-SM, which is key to the development of practical applications of RTCs.
Collapse
Affiliation(s)
- Weihua Zou
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China.
| | - Xinze Liu
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China
| | - Wenhui Wang
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China
| | - Naike Zou
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China
| | - Delin Sun
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China.
| |
Collapse
|
2
|
Ding X, Du Q, Gao F, Chen L, Wang T, Chen F, Zeng Z, Wang Y, Cui H, Cui B. Multiresponsive Zein Nanospheres for Avermectin B 2 Delivery: Enhancing Root-Knot Nematode Control and Safety to Nontarget Organisms. ACS NANO 2025; 19:15651-15667. [PMID: 40228096 DOI: 10.1021/acsnano.4c18103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Root-knot nematodes are globally prevalent plant-parasitic pests, distinguished by their widespread distribution, extensive host range, and challenging control measures. Avermectin B2, one of the few effective nematicides available, faces limitations in efficacy and poses environmental concerns due to its eco-unfriendly composition and poor utilization in traditional emulsifiable concentrate (EC) formulations. In this study, we developed core-shell structured Ave B2-BS@Zein@SC nanospheres, incorporating zein as the carrier, sodium caseinate as the stabilizer, and butyl stearate as the temperature "switch". These nanospheres demonstrated multiresponsive characteristics to temperature, pH, and enzymatic conditions, facilitating rapid pesticide release under elevated temperatures, mildly acidic or alkaline conditions, and in the presence of protease. These controlled-release properties effectively responded to both environmental factors during nematode outbreaks and the intestinal conditions of the nematodes, enhancing pesticide targeting and utilization efficiency. The engineered nanospheres improved the mobility and stability of avermectin B2 in soil, enabling more comprehensive control of nematodes across broader and deeper soil layers. Additionally, the penetration capability of Ave B2-BS@Zein@SC into plant roots effectively eliminated nematodes that had already invaded the root system, thereby strengthening crop protection. Crucially, Ave B2-BS@Zein@SC demonstrated enhanced safety for nontarget organisms. This environmentally conscious, and multiresponsive pesticide nanodelivery system presents a promising strategy for sustainable subterranean pest management.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Long Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Tingyu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Fangyuan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Sivakumar R, Lim N, Park SK, Lee NY. Curcumin - a natural colorant-based pH indicator for molecular diagnostics. Analyst 2025; 150:1632-1641. [PMID: 40095609 DOI: 10.1039/d4an01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Loop-mediated isothermal amplification (LAMP) provides highly selective and sensitive DNA amplification and generates hydrogen ions as a byproduct under weakly buffered conditions, causing the solutions' pH to decrease from the initial basic to an acidic environment. This distinctive feature allows the color of the amplified DNA solution to change readily when suitable pH indicators are employed. In this study, curcumin, a biodegradable, non-toxic, and natural colorant, was used as a pH indicator to visually identify LAMP-amplified Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae). Curcumin (10 mM) displayed a unique color difference between negative (red) and positive (yellow) samples, and the detection process was completed within 30 s, demonstrating the effectiveness of using curcumin for on-site diagnostics. Under optimum conditions, curcumin enabled S. aureus and S. pneumoniae detection as low as 10 fg μL-1 and 1 pg μL-1, respectively, due to its unique halochromic properties. Owing to its adaptability, ease of use, and rapid visual detection, the introduced colorimetric pH-based LAMP method can be employed as a practical alternative to conventional colorimetry for infectious pathogen identification in both laboratory and field settings.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nahyung Lim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Seung Kyun Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
4
|
Zhang J, Zhang J, Zhang L, Qin Z, Wang T. Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety. Foods 2025; 14:1157. [PMID: 40238286 PMCID: PMC11989113 DOI: 10.3390/foods14071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for continuous freshness assessment. A key focus is natural compound-based chromogenic indicators, which establish visual spoilage detection via distinct color transitions. Concurrently, antimicrobial systems integrating inorganic compounds, organic bioactive agents, and natural antimicrobials effectively inhibit microbial growth. Strategic incorporation of these agents into polymeric matrices enhances meat safety, supported by standardized evaluation protocols for regulatory compliance and quality assurance. Future research should prioritize optimizing sensitivity, cost-efficiency, and sustainability, alongside developing biodegradable materials to balance food safety with reduced environmental impact, advancing sustainable food supply chains.
Collapse
Affiliation(s)
| | | | | | | | - Tianxing Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (J.Z.); (L.Z.); (Z.Q.)
| |
Collapse
|
5
|
Tang L, Liu Y, Liang Z, Chen M, Zhao L. Enhancing the stability of krill oil through microencapsulation with endogenous krill protein and chitosan and application in senior milk powder. Int J Biol Macromol 2025; 293:139224. [PMID: 39732231 DOI: 10.1016/j.ijbiomac.2024.139224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Krill oil (KO) exhibits several biological actions, particularly providing distinct advantages for cognitive health in the aged. Nonetheless, its inadequate water solubility, pronounced flavor, and vulnerability to oxidative degradation restrict its utilization in the food sector. Encapsulation provides a solution, and the study of natural, suitable wall materials is crucial. This study employs endogenous krill protein (KP) and krill chitosan (CS) as encapsulating agents. It utilizes a complex coacervation technique to encapsulate KO, thereby broadening its application and successfully incorporating it into senior milk powder. The microcapsules have the best properties when the KP + CS complex to krill oil ratio is 1:1. They are able to encapsulate 77.96 % of the oil, stay stable at high temperatures (with little mass loss), and stay stable over time (with a peroxide value increase of only 4.51 mmol/kg). Moreover, the release rate in simulated intestinal conditions reaches 83.26 %. When added at 0.8 % to senior milk powder, it imparts the highest nutritional value without significantly affecting the flavor. Thus, this study provides valuable insights for enhancing the stability of krill oil and its application in the food industry.
Collapse
Affiliation(s)
- Lei Tang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yue Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangzhou College of Technology and Business, School of engineering, Guangzhou 510850, Guangdong, China
| | - Ziyin Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Mao Chen
- Bohai Seafood Co., Ltd., Binzhou 251907, Shandong, China
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
6
|
Najafi Z, Han S, Sumnu G, Kahyaoglu LN. Colorimetric core/shell ZIF-8/PEO/PDA nanofibers for detection of fish spoilage. Food Chem 2025; 466:142195. [PMID: 39603000 DOI: 10.1016/j.foodchem.2024.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Here, colorimetric nanofibers (NFs) based on polydiacetylene (PDA), zeolitic imidazolate framework-8 (ZIF-8), and poly(ethylene) oxide (PEO) were developed. First, the successful synthesis of ZIF-8 was illustrated with structural and morphological analysis. Next, shell/core PDA/PEO/ZIF-8 NFs, namely PPZ0, PPZ5, PPZ15, and PPZ25, were fabricated by coaxial electrospinning at various ZIF-8 concentrations in the core. PPZ5 NFs exhibited a 63 % increase in tensile strength while PPZ25 NFs showed the highest thermal resistance. PPZ15 NFs with the best physicochemical and colorimetric properties were selected to evaluate food spoilage. The change in color difference values of PPZ15 NFs was correlated well with total viable count (TVC) and total volatile basic nitrogenous (TVB-N) in fish samples during chilled storage, reaching TVC to 6.69 log CFU/g, and TVB-N to 33.13 mg N/100 g on day 6. Ultimately, the PPZ15 NFs were successfully utilized to provide a real-time, quantitative assessment of fish freshness.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye
| | - Sangil Han
- Department of Chemical Engineering, Changwon National University, Changwon 51140, South Korea
| | - Gülüm Sumnu
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye
| | - Leyla Nesrin Kahyaoglu
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye.
| |
Collapse
|
7
|
Xia F, Shi W, Yu Y, Jiang C, Zhang H, Zhang P, Sun W. Intelligent pH-responsive ratiometric fluorescent nanofiber films for visual and real-time seafood freshness monitoring. Food Chem 2025; 466:142240. [PMID: 39616698 DOI: 10.1016/j.foodchem.2024.142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
In this study, polyvinyl alcohol (PVA)-based ratiometric fluorescence nanofiber films with salicylamide (SA) as the response signal, rhodamine B (RhB) as the internal reference were prepared using electrospinning technique, and reducing their water solubility by glutaraldehyde (G) crosslinked. The RhB and SA were successfully immobilized in the PVA substrate. Moreover, RhB and SA improved the water resistance, water vapor barrier, and mechanical strength of the nanofiber films, among the PVA nanofiber films containing RhB and 400 mg SA (PVA/RhB/4SA-G) showed the best packaging performance. Meanwhile, it exhibited high sensitivity to ammonia (limit of detection was 0.97 ppm), and could effectively distinguish the freshness states of shrimp stored at 4 and 25 °C by displaying a distinct shift from light pink to bright purple fluorescence. Moreover, the migration studies confirmed the safety of PVA/RhB/4SA-G. Therefore, the fabricated PVA/RhB/4SA-G can be utilized as a promising intelligent packaging for monitoring seafood freshness in real-time.
Collapse
Affiliation(s)
- Fei Xia
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wanting Shi
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yaxin Yu
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chaoping Jiang
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hanyuan Zhang
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
8
|
Wang W, Liang J, Wu Y, Li W, Huang X, Li Z, Zhang X, Zou X, Shi J. Fish freshness monitoring based on bilayer cellulose acetate/polyvinylidene fluoride membranes containing ZIF-8 loaded curcumin. Food Chem 2025; 463:141054. [PMID: 39260177 DOI: 10.1016/j.foodchem.2024.141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
This study presented a dual-layer freshness indicator film produced through electrospinning, combining cellulose acetate and polyvinylidene fluoride with zeolitic imidazolate framework-8 (ZIF-8) loaded with curcumin as the indicator. Our findings demonstrated that ZIF-8 effectively preserved its metal-organic framework structure during curcumin loading, ensuring the inherent color-changing ability of curcumin. The resulting colorimetric film exhibited altered tensile properties and increased water vapor permeability. Improved light stability and storage performance were observed. Compared to single-layer films, the dual-layer structure improved the hydrophilicity and stability of the indicator film. Importantly, the introduced indicator label efficiently captured the dynamic changes of TVB-N during freshness monitoring, providing comprehensive visual information for assessing fish freshness. The synergistic properties of ZIF-8, curcumin, and the dual-layer film structure contributed to an advanced freshness indicator system, providing a multifunctional and effective approach for real-time freshness assessment of fish freshness.
Collapse
Affiliation(s)
- Wei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jing Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenlong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Forghani S, Almasi H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem 2024; 457:140072. [PMID: 38905838 DOI: 10.1016/j.foodchem.2024.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The aim of research was to fabricate a novel indicator by using κ-carrageenan and quince seed mucilage (QSM) hydrogels and red cabbage anthocyanin. The porosity of the hydrogel was controlled using different ratios of κ-carrageenan(C):QSM(Q) (C90:Q10, C70:Q30, and C50:Q50). The hardness of hydrogels decreased from 28.6 ± 0.3 N for C90Q10 to 11.0 ± 1.0 N for C50Q50 sample. However, according to field emission scanning electron microscopy (FE-SEM) analysis, the C50R50 sample had the best morphology with smooth surface and uniform interconnected porous network. Hydrogen bonding interactions among anthocyanins, QSM, and κ-carrageenan were confirmed by Fourier transforms infrared (FT-IR) spectroscopy. The indicator showed a color variation from red to yellow over the pH range of 2-12. Also, the indicator exhibited high sensitivity to ammonia vapors (SRGB = 115%) and good color stability. The C50QRA indicator was used for monitoring rainbow trout fillet spoilage and revealed a visually-detectable color change from red to green upon detecting total volatile basic nitrogen (TVB-N) content produced throughout storage at 4 °C. Generally, the halochromic hydrogel developed in this research can be suggested as a more sensitive and accurate freshness indicator than conventional indicator solid supports.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
10
|
Amjadi S, Almasi H, Gholizadeh S, Hamishehkar H. Double layer packaging based on active black chickpea protein isolate electrospun nanofibers and intelligent salep film containing black chickpea peel anthocyanins for seafood products. Int J Biol Macromol 2024; 278:134897. [PMID: 39168199 DOI: 10.1016/j.ijbiomac.2024.134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
In this study, a double-layer active and intelligent packaging system was developed based on two main natural macromolecules i.e. protein and carbohydrate with green perspective. Firstly, the salep-based films containing different concentrations (0-8 % w/w) of the inclusion complex of β-cyclodextrin/black chickpea anthocyanins (βCD/BCPA) were produced. The salep film containing 8 % of βCD/BCPA complex was specified as the optimized film sample based on its performance as a color indicator. The electrospinning of black chickpea protein isolate nanofibers (BCPI NFs) containing citral nanoliposomes (NLPs) was done on the optimized salep film. The cross-sectional field emission scanning electron microscopy approved the creation of double-layer structure of the developed film. The study of chemical and crystalline structure, as well as the thermal properties of the film exhibited the physical attachment of BCPI electrospun NFs on salep film. The effectiveness of the developed system was studied in detection of spoilage and increasing the shelf life of seafood products, including shrimp and fish fillet. The performance of the intelligent layer in detection of freshness/spoilage was acceptable for both seafood products. In addition, the active layer of the film controlled the changes of pH, total volatile basic nitrogen, oxidation, and microbial load in samples during storage time.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| | - Sara Gholizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Mehrzad A, Verdian A, Sarabi-Jamab M. Smart nano-inks based on natural food colorant for screen-printing of dynamic shelf life of shrimp. Food Chem 2024; 447:138963. [PMID: 38492301 DOI: 10.1016/j.foodchem.2024.138963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Intelligent packaging embedded with food freshness indicators can monitor food quality and be deployed for food safety and cutting food waste. The innovative nano-inks for dynamic shelf-life printing based on natural food colorant with application in real-time monitoring of shrimp freshness were prepared. Co-assembly of saffron petal anthocyanin (SPA) with hydrophobic curcumin (Cur) into chitin nano-scaffold (particle sizes around 26 ± 8 nm) could deliver hindering SPA leaching, confirmed by FT-IR, FE-SEM, AFM, and color stability test. The best response to pH-sensitivity was found in a ratio of (1:4) Cur/SPA (30% (v/w) in ChNFs that was correlated with the chemical and microbial changes of shrimp during shrimp freshness. However, smart screen-printed inks signified higher responsiveness to pH changes than FFI films. Therefore, smart-printed indicators introduced the excellent potential for a short response time, easy, cost-effective, eco-friendly, co-assembly, great color stabilities, and lifetime for nondestructively freshness monitoring foods and supplements.
Collapse
Affiliation(s)
- Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran; Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Mahboobe Sarabi-Jamab
- Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
12
|
Hajieghrary F, Ghanbarzadeh B, Pezeshki A, Dadashi S, Falcone PM. Development of Hybrid Electrospun Nanofibers: Improving Effects of Cellulose Nanofibers (CNFs) on Electrospinnability of Gelatin. Foods 2024; 13:2114. [PMID: 38998620 PMCID: PMC11241272 DOI: 10.3390/foods13132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Cellulose nanofibers (CNFs) were used to improve the electrospinnability of the gelatin protein in a water/ethanol/acetic acid (3:2:3, v/v) solution. The effects of different concentrations of CNFs (0.5-4%) on the important physical properties of the gelatin solution (15%), including rheology, conductivity, and surface tension, were investigated. The apparent viscosity and shear-thinning behavior were increased by increasing the CNF concentration from 0 to 4% at a low shear rate (<10 s-1). CNFs also increased the electrical conductivity and surface tension of the gelatin solution. Scanning electron microscopy (SEM) images revealed uniformly ordered structures with good continuity without fracture or bead formation in all hybrid nanofibers. They also showed that the average diameters of fibers decreased from 216 nm in the pure gelatin nanofibers to 175.39 nm in the hybrid gelatin/CNF (4%) ones. Differential scanning calorimetry (DSC) results showed that CNFs increased Tg, and X-ray diffraction (XRD) analysis showed that the electrospinning process caused the formation of more amorphous structures in the gelatin/CNF hybrid nanofibers. The tensile test indicated that by adding 2% CNFs, the ultimate tensile strength (UTS) and strain at break (SB) of nanofiber mats increased from 4.26 to 10.5 MPa and 3.3% to 6.25%, respectively. The current study indicated that incorporating CNFs at the optimal concentration into a gelatin solution can improve the resulting hybrid nanofibers' morphology, average diameter, and mechanical properties.
Collapse
Affiliation(s)
- Farnaz Hajieghrary
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Akram Pezeshki
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Saeed Dadashi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food, and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
13
|
Khan J, An H, Alam S, Kalsoom S, Huan Chen S, Ayano Begeno T, Du Z. Smart colorimetric indicator films prepared from chitosan and polyvinyl alcohol with high mechanical strength and hydrophobic properties for monitoring shrimp freshness. Food Chem 2024; 445:138784. [PMID: 38387319 DOI: 10.1016/j.foodchem.2024.138784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
This work aimed to develop and characterize a colorimetric indicator films based on chitosan (CS), polyvinyl alcohol (PVA), and shikonin (SKN) from radix Lithospermi by casting method. The prepared films can serve as smart packaging for monitoring shrimp freshness which having excellent antimicrobial and antioxidant activity. The shikonin containing films have better hydrophobicity, barrier properties, and tensile strength. The release kinetics analysis shows that the loading amount causes a prolonged release of SKN from the prepared films. Increasing SKN in the CS/PVA film from 1 wt% to 2 wt% improved antibacterial effect for 24 h. Additionally, pH-sensitive color shifts from reddish (pH 2) to purple-bluish (pH 13) were visually seen in shikonin based solutions as well as films. The CS/PVA/SKN film detected shrimp deterioration at three temperatures (25, -20, and 4 °C) through color change. This study introduces a favorable approach for smart packaging in the food industry using multifunctional films.
Collapse
Affiliation(s)
- Jehangir Khan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haoyue An
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shah Alam
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Saima Kalsoom
- Department of Chemistry, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Shu Huan Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Teshale Ayano Begeno
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
14
|
Chiu I, Yang T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2300065. [PMID: 38948319 PMCID: PMC11210745 DOI: 10.1002/ansa.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024]
Abstract
Increasing concerns about global food safety and security demands innovative solutions, particularly in food packaging technologies. This review paper investigates the advanced integration of natural colourimetric sensors with biopolymer-based packaging materials, with a focus on developments over the past 5 years. These sensors change colour in response to environmental stimuli such as oxygen, temperature, pH and relative humidity, intuitively indicating food freshness and safety. The paper emphasizes the recent advancements in using natural colourants, such as alizarin, anthocyanins, betacyanins, chlorophyll, curcumin and shikonin. When combined with either natural or synthetic biopolymers, these colourants contribute to a sustainable and eco-friendly approach to food packaging. Such technological advances could notably decrease the incidence of foodborne illnesses by signaling potential spoilage or contamination, while also addressing food wastage by providing clear indications of edibility. Although challenges remain in sensor longevity and widespread adoption, the prospects for biopolymer-based food packaging with embedded natural colourimetric sensors are promising.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| |
Collapse
|
15
|
Tavana F, Hematian Sourki A, Golmakani MT. Enhancing the accuracy, speed, and efficiency of kafirin-PEO electrospun bio-nanocomposite pH indicators with red beetroot extract using image processing. Food Sci Nutr 2024; 12:2874-2885. [PMID: 38628193 PMCID: PMC11016433 DOI: 10.1002/fsn3.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 04/19/2024] Open
Abstract
Intelligent electrospun pH indicators were produced from bio-nanocomposite kafirin-polyethylene oxide (PEO) containing red beetroot extract. The aim was to evaluate the performance and stability of the electrospun pH indicators via image processing. Red beetroot extract was added to a mixture of kafirin and PEO at various concentrations. The mixtures were electrospun, and infrared Fourier transform spectroscopy confirmed the presence of kafirin, PEO, and red beetroot extract in the resulting pH indicator. The results showed that the pH indicators had high stability and reversibility at different temperatures, pHs, and environmental conditions. The results showed that the color of the indicators was significantly reversible after pH changes, with highly desirable reversibility observed at pH values of 1, 3, 4, 5, 7, 9, and 10. The findings proved that the red beetroot extract loaded bio-nanocomposite pH indicator accompanied by evaluation of color characteristics through image processing technique, can serve as a time-efficient, accurate tool for detecting and tracking pH changes caused by food spoilage.
Collapse
Affiliation(s)
- Fatemeh Tavana
- Department of Food Science and Technology, Faculty of Agriculture Jahrom University Jahrom Iran
| | | | | |
Collapse
|
16
|
Akhavan-Mahdavi S, Mirbagheri MS, Assadpour E, Sani MA, Zhang F, Jafari SM. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv Colloid Interface Sci 2024; 325:103111. [PMID: 38367336 DOI: 10.1016/j.cis.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Food contamination reveals a major health risk globally and presents a significant challenge for the food industry. It can stem from biological contaminants like pathogens, parasites, and viruses, or chemical contaminants such as heavy metals, pesticides, drugs, and hormones. There is also the possibility of naturally occurring hazardous chemicals. Consequently, the development of sensing platforms has become crucial to accurately and rapidly identify contaminants and hazards in food products. Electrospun nanofibers (NFs) offer a promising solution due to their unique three-dimensional architecture, large specific surface area, and ease of preparation. Moreover, NFs exhibit excellent biocompatibility, degradability, and adaptability, making monitoring more convenient and environmentally friendly. These characteristics also significantly reduce the detection process of contaminants. NF-based sensors have the ability to detect a wide range of biological, chemicals, and physical hazards. Recent research on NFs-based sensors for the detection of various food contaminants/hazards, such as pathogens, pesticide/drugs residues, toxins, allergens, and heavy metals, is presented in this review.
Collapse
Affiliation(s)
- Sahar Akhavan-Mahdavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mahnaz Sadat Mirbagheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
17
|
Elmizadeh A, Goli SAH, Mohammadifar MA, Rahimmalek M. Fabrication and characterization of pectin-zein nanoparticles containing tanshinone using anti-solvent precipitation method. Int J Biol Macromol 2024; 260:129463. [PMID: 38237820 DOI: 10.1016/j.ijbiomac.2024.129463] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Tanshinone compounds are secondary metabolites which their application in food and pharmaceutical industry is limited due to the low solubility in water and sensitivity to heat. This study aimed to develop a novel biopolymer nanocarriers system based on pectin/zein for the encapsulation of tanshinone compounds using the anti-solvent precipitation method. The concentration of pectin and mass ratio of tanshinone/zein in the final formulation of nanoparticles were optimized. According to the results, a pectin concentration of 1 g/L and a tanshinone/zein ratio of 0.1:1 g/g were considered the optimal nanoparticle formulation. The resulting nanoparticles exhibited a spherical core-shell structure, with approximate values for size, zeta potential, TSI, and encapsulation efficiency of 132 ± 0.002 nm, -38.6 ± 0.019 mV, 0.600 ± 0.084, and 79.41 ± 0.62 %, respectively. The FTIR test confirmed the presence of hydrophobic, hydrogen, and electrostatic interactions among the constituents within the nanoparticles. Additionally, XRD and DSC tests verified the amorphous nature of the nanoparticles. Morphological examination conducted through TEM, and SEM revealed the characteristics of the resulting nanoparticles. Furthermore, this carrier system significantly enhanced the solubility of tanshinone compounds in water.
Collapse
Affiliation(s)
- Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran; Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
18
|
Aliakbari FS, Kashiri M, Ghorani B, Khomeiri M, Jafari SM. Development of halochromic electrospun labels for non-invasive shelf life assessment of rainbow trout ( Oncorhynchus mykiss): Incorporation of barberry anthocyanin extract in protein-based smart packaging. FOOD SCI TECHNOL INT 2024:10820132231219779. [PMID: 38374619 DOI: 10.1177/10820132231219779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Using barberry (Berberis vulgaris L.) as a natural dye in combination with electrospinning technology represents a promising approach for the development of intelligent packaging systems. In this study, the influence of different concentrations of zein (16, 18, and 20%) and barberry anthocyanin-rich powder (BARP) (16, 18, and 20%) on the surface tension and rheological properties of the solution were evaluated. The most favorable nanofibers (NFs) were obtained from a solution containing 18% (w/w) zein under constant voltage. The surface morphology, size, and color-changing properties of electrospun NFs derived from zein polymers containing different concentrations of BARP (16, 18, and 20%) under various electrical fields (20, 22, and 24 kV) were evaluated. The Fourier-transform infrared spectroscopy analysis confirmed the interaction of BARP within the zein-based NFs. The results indicated that the concentration of BARP had a noticeable impact on the physicochemical properties of the NFs. Furthermore, efficacy of the appropriately fabricated halochromic label was evaluated for monitoring the packed rainbow trout fillet during refrigerated storage. On the 10th day, a noticeable visual color turned from pink to pale yellow was observed in response to pH variations. Additionally, the TVN value confirmed the effectiveness of halochromic electrospun labels for non-invasive assessment of fish fillet quality.
Collapse
Affiliation(s)
- Faezeh Sadat Aliakbari
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahboobeh Kashiri
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Morteza Khomeiri
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
19
|
Lv H, Wang C, He D, Zhao H, Zhao M, Xu E, Jin Z, Yuan C, Guo L, Wu Z, Liu P, Cui B. Intelligent food tag: A starch-anthocyanin-based pH-sensitive electrospun nanofiber mat for real-time food freshness monitoring. Int J Biol Macromol 2024; 256:128384. [PMID: 38029905 DOI: 10.1016/j.ijbiomac.2023.128384] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
A starch-based nanofiber mat was prepared for real-time monitoring of food freshness for the first time. UV-vis results showed that roselle anthocyanins (RS) conferred a wide pH sensing range on the nanofiber mat. The prepared nanofiber mats demonstrated good color visibility (total color difference value (ΔE) increased to 56.4 ± 0.7) and a reversible response (within 120 s). Scanning electron microscopy and Fourier transform infrared spectroscopy results suggested that the nanofibers had smooth surfaces without beaded fibers and that RS was well embedded into the nanofibers. The introduction of RS improved the thermal stability of the nanofibers. Color stability tests revealed that the nanofibers exhibited excellent color stability (maximum change ΔE = 1.57 ± 0.03) after 14 days of storage. Pork and shrimp freshness tests verified that the nanofibers could effectively reflect the dynamic freshness of pork and shrimp. Nontoxic, degradable and responsive characteristics make the pH-sensitive nanofiber mat a smart food label with great application potential.
Collapse
Affiliation(s)
- Haowei Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chenxi Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Deyun He
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
20
|
Zhang Z, Tang H, Cai K, Liang R, Tong L, Ou C. A Novel Indicator Based on Polyacrylamide Hydrogel and Bromocresol Green for Monitoring the Total Volatile Basic Nitrogen of Fish. Foods 2023; 12:3964. [PMID: 37959082 PMCID: PMC10650302 DOI: 10.3390/foods12213964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
An intelligent indicator was developed by immobilizing bromocresol green (BCG) within the polyacrylamide (PAAm) hydrogel matrix to monitor the total volatile basic nitrogen (TVB-N) content of fish. The FTIR analysis indicated that BCG was effectively incorporated into the PAAm through the formation of intermolecular hydrogen bonds. A thermogravimetric analysis (TGA) showed that the PAAm/BCG indicator had a mere 0.0074% acrylamide monomer residue, meanwhile, the addition of BCG improved the thermal stability of the indicator. In vapor tests with various concentrations of trimethylamine, the indicator performed similarly at both 4 °C and 25 °C. The total color difference values (ΔE) exhibited a significant linear response to TVB-N levels ranging from 4.29 to 30.80 mg/100 g at 4 °C (R2 = 0.98). Therefore, the PAAm/BCG indicator demonstrated stable and sensitive color changes based on pH variations and could be employed in smart packaging for real-time assessment of fish freshness.
Collapse
Affiliation(s)
- Zhepeng Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo 315100, China;
| | - Keyan Cai
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Ruiping Liang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Li Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (Z.Z.); (K.C.); (R.L.); (L.T.)
| |
Collapse
|
21
|
Zhang J, Liu S, Xie C, Wang C, Zhong Y, Fan K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: a review. Crit Rev Food Sci Nutr 2023; 64:12800-12819. [PMID: 37702748 DOI: 10.1080/10408398.2023.2257327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
As a new type of packaging method, natural pigment-based pH-sensitive indicator film packaging can be used to intelligently monitor food freshness, provide consumers with intuitive food freshness information, and own the advantages of small size, low cost and intuitive accuracy. Based on the introduction of the principle of natural pigment in pH-sensitive indicator film intelligent packaging, this paper reviews the types of natural pigment indicators (such as anthocyanins, curcumin) and film-forming matrix materials, and systematically discusses the research progress of their application in freshness monitoring in various foods, and points out the limitations of this intelligent packaging in practical applications. In order to provide natural pigment in the application and promotion of pH-sensitive indicator film packaging for monitoring food freshness, further research and development works are required to overcome the current limitations. The needs for further research and developments are outlined.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shengmao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chenxue Xie
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chengyang Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhong
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
22
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023; 64:12448-12472. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
23
|
Shen D, Zhang M, Mujumdar AS, Ma Y. Consumer-oriented smart dynamic detection of fresh food quality: recent advances and future prospects. Crit Rev Food Sci Nutr 2023; 64:11281-11301. [PMID: 37462236 DOI: 10.1080/10408398.2023.2235703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Since fresh foods include a significant amount of water, fat, and protein, it is more likely to become infected by microorganisms causing a major loss of quality. Traditional detection techniques are less able to meet customer expectations owing to the limitations of high cost, slow response time, and inability to permit dynamic monitoring. Intelligent non-destructive detection technologies have emerged in recent years, which offer the advantages of small size and fast response at low cost. However, dynamic monitoring of fresh food quality based on intelligent detection technologies on the consumer side has not been rigorously evaluated yet. This paper discussed the application of intelligent detection technologies based on the consumer side in the dynamic monitoring of fresh food freshness, microorganisms, food additives, and pesticide residues. Furthermore, the application of intelligent detection technologies combined with smartphones for quality monitoring and detection of fresh foods is evaluated. Moreover, the challenges and development trends of intelligent fresh food quality detection technologies are also discussed. Intelligent detection technologies based on the consumer side are designed to detect in real-time the quality of fresh food through visual color changes in combination with smartphones. This paper provides ideas and recommendations for the application of intelligent detection technologies based on the consumer side in food quality detection/monitoring and future research trends.
Collapse
Affiliation(s)
- Dongbei Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
24
|
Zdraveva E, Gaurina Srček V, Kraljić K, Škevin D, Slivac I, Obranović M. Agro-Industrial Plant Proteins in Electrospun Materials for Biomedical Application. Polymers (Basel) 2023; 15:2684. [PMID: 37376328 DOI: 10.3390/polym15122684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Plant proteins are receiving a lot of attention due to their abundance in nature, customizable properties, biodegradability, biocompatibility, and bioactivity. As a result of global sustainability concerns, the availability of novel plant protein sources is rapidly growing, while the extensively studied ones are derived from byproducts of major agro-industrial crops. Owing to their beneficial properties, a significant effort is being made to investigate plant proteins' application in biomedicine, such as making fibrous materials for wound healing, controlled drug release, and tissue regeneration. Electrospinning technology is a versatile platform for creating nanofibrous materials fabricated from biopolymers that can be modified and functionalized for various purposes. This review focuses on recent advancements and promising directions for further research of an electrospun plant protein-based system. The article highlights examples of zein, soy, and wheat proteins to illustrate their electrospinning feasibility and biomedical potential. Similar assessments with proteins from less-represented plant sources, such as canola, pea, taro, and amaranth, are also described.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28, 10000 Zagreb, Croatia
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Klara Kraljić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Igor Slivac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Obranović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Liu D, Zhong Y, Pu Y, Li X, Chen S, Zhang C. Preparation of pH-Responsive Films from Polyvinyl Alcohol/Agar Containing Cochineal for Monitoring the Freshness of Pork. Foods 2023; 12:2316. [PMID: 37372526 DOI: 10.3390/foods12122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This study reported the production of pH-responsive films based on 8 wt% polyvinyl alcohol solution/0.2 wt% agar solution incorporated with cochineal-loaded starch particles (CSN) (2, 4, 6 and 8 wt% on agar basis) by a casting process. Results revealed that CSN presented obvious color changes over the pH range of 2-12. FTIR, XRD spectra and SEM micrographs presented that the incorporation of CSN formed new hydrogen bonds with a matrix and a tighter network structure. A certain improvement was observed in the color stability, swelling index and functional properties (antimicrobial and antioxidant activities) but water solubility, water vapor permeability and water contact angle of the pH-responsive films were decreased by the addition of CSN. The release of cochineal was a rate-limiting step following the Korsmeyer-Peppas model. The agar/polyvinyl alcohol film containing 6% CSN (PVA/GG-6) exhibited the best sensitivity for ammonia detection and its limit of detection was 35.4 ppm (part per million) for ammonia. The application trials showed that the PVA/GG-6 film presented different color changes for pork freshness. Hence, these pH-responsive films can be used as potential packaging materials for tracking the freshness of protein-rich fresh food in a non-destructive way.
Collapse
Affiliation(s)
- Danfei Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunfei Zhong
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yumei Pu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Xiaoxuan Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Siyuan Chen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Changfan Zhang
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
26
|
Duan M, Sun J, Yu S, Zhi Z, Pang J, Wu C. Insights into electrospun pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging. Int J Biol Macromol 2023; 233:123433. [PMID: 36709819 DOI: 10.1016/j.ijbiomac.2023.123433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Nisin, a natural substance from Lactococcus lactis, displays a promising antibacterial ability against the gram-positive bacteria. However, it is susceptible to the external environment, i.e. temperature, pH, and food composition. In this study, a dual stabilization method, coaxial electrospinning, was applied to protect nisin in food packaging materials and the effect of nisin concentration on the properties of the nanofibers was investigated. The core-shell nanofibers with pullulan as a core layer and carboxymethyl chitosan (CMCS)/polyethylene oxide (PEO) as shell layer were prepared, and then the prepared CMCS-nisin nanogels (CNNGs) using a self-assembly method were loaded into the core layer of the nanofibers as antibacterial agents. The result revealed that the smooth surface can be observed on the nanofibers by microstructure characterization. The CNNGs-loaded nanofibers exhibited enhanced thermal stability and mechanical strength, as well as excellent antibacterial activity. Importantly, the as-formed nanofibers were applied to preserve bass fish and found that the shelf life of bass fish packed by CNNGSs with nisin at a concentration of 8 mg/mL was effectively extended from 9 days to 15 days. Taken together, the CNNGs can be well stabilized with the core-shell nanofibers, thus exerting significantly improved antimicrobial stability and bioactivity. This special structure exerts a great potential for application as food packaging materials to preserve aquatic products.
Collapse
Affiliation(s)
- Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jishuai Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, East Flanders 9000, Belgium.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
27
|
Gelatin-based films and mats as electro-sensoactive layers for monitoring volatile compounds related to meat spoilage. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
28
|
Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
30
|
Khan A, Ezati P, Rhim JW. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf B Biointerfaces 2023; 223:113169. [PMID: 36738702 DOI: 10.1016/j.colsurfb.2023.113169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Active and intelligent food packaging has emerged to ensure food safety, quality, or spoilage monitoring and extend the shelf life of food. The development of intelligent packaging has accelerated significantly in recent years with a focus on monitoring changes in the quality of packaged products in real-time throughout the food supply chain. As one of the popular natural colorants, alizarin has attracted much consideration due to its excellent functional properties and quality to color change under varying pH. Alizarin is an efficient and cost-effective biomaterial with numerous biological features such as antioxidant, antibacterial, non-cytotoxic, and antitumor. This review focuses on an in-depth summary and prospects for alizarin as a natural and safe colorant that has the potential to be incorporated into intelligent packaging to track the freshness of packaged foodstuffs. The use of alizarin as an intelligent packaging agent shows huge potential for the application of food packaging and brings it one step closer to real-time monitoring of food quality throughout the supply chain. Finally, various limitations and future requirements are discussed to underscore the importance of developing alizarin-based intelligent functional food packaging systems.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
31
|
Abedi-Firoozjah R, Salim SA, Hasanvand S, Assadpour E, Azizi-Lalabadi M, Prieto MA, Jafari SM. Application of smart packaging for seafood: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1438-1461. [PMID: 36717376 DOI: 10.1111/1541-4337.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Nowadays, due to the changes in lifestyle and great interest of consumers in a healthy life, people have started increasing their seafood consumption. But due to their short shelf life, experts are looking for a new packaging called smart packaging (SMP) for seafood. There are different indicators/sensors in SMP; one of the effective indices is time-temperature, which can show consumers the best time of using seafood based on their shelf life and experienced temperature. Another one is radio-frequency identification (RFID) that is a transmission device that represents a separate form of the electronic information-based SMP systems. RFID does not belong to any of the categories of markers or sensors; it is an auto recognition system that applies cordless sensors to indicate segments and collect real-time information without manual interposition. This review covers the use of SMP in all marine foods, including fish, due to its high consumption and high content of polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3), which are the considerable factors of n-3 polyunsaturated fatty acids for human.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamimeh Azimi Salim
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
32
|
Bahrami Z, Pedram‐Nia A, Saeidi‐Asl M, Armin M, Heydari‐Majd M. Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior. Food Sci Nutr 2023; 11:307-319. [PMID: 36655099 PMCID: PMC9834846 DOI: 10.1002/fsn3.3062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to produce electrospun gliadin nanofibers containing Zataria multiflora Boiss essential oil (ZMEO) (5, 10, and 15% w/w), thereby developing active, sustained-release antimicrobial mats. By increasing the level of the ZMEO, the zeta potential and electrical conductivity increased, but the viscosity and consistency index decreased. All feed solutions demonstrated shear-thinning behavior, and the power law model was the best model. Field emission scanning electron microscopy (FESEM) images proved that the gliadin nanofibers showed a uniform, beaded-free structure at different levels of ZMEO, with an average diameter of between 403.87 ± 15.29 and 522.19 ± 11.23 nm. Increments in the level of ZMEO decreased the mats' tensile strength and Young's modulus but increased their elongation at break. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analysis confirmed that the ZMEO was well loaded within these structures, augmenting its thermal stability. The studied Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were more resistant to the ZMEO than the Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). The Peleg model was the most suitable model for describing the ZMEO release behavior, the mechanism of which was primarily Fickian diffusion.
Collapse
Affiliation(s)
- Zohreh Bahrami
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Ahmad Pedram‐Nia
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mohammadreza Saeidi‐Asl
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mohammad Armin
- Department of Agronomy and Plant Breeding, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mojtaba Heydari‐Majd
- Department of Nutrition, Research Center for Clinical ImmunologyZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
33
|
Zou Y, Sun Y, Shi W, Wan B, Zhang H. Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chem 2023; 399:133962. [DOI: 10.1016/j.foodchem.2022.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
|
34
|
Ghorani B, Emadzadeh B, Fooladi E, Tucker N. Designing a colorimetric nanosensor based on dithizone and cholesteric liquid crystals loaded in electrospun cellulose acetate nanofibers: Monitoring the quality of pistachio as a case study. J Appl Polym Sci 2022. [DOI: 10.1002/app.53472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Behrouz Ghorani
- Department of Food Nanotechnology Research Institute of Food Science and Technology Mashhad Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology Research Institute of Food Science and Technology Mashhad Iran
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control Research Institute of Food Science and Technology Mashhad Iran
| | - Nick Tucker
- University of Lincoln School of Engineering, Brayford Pool Lincoln UK
| |
Collapse
|
35
|
Quality evaluation and shelf-life prediction model establishment of frozen Chinese mitten crab (Eriocheir sinensis). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
36
|
Ehsani N, Rostamabadi H, Dadashi S, Ghanbarzadeh B, Kharazmi MS, Jafari SM. Electrospun nanofibers fabricated by natural biopolymers for intelligent food packaging. Crit Rev Food Sci Nutr 2022; 64:5016-5038. [PMID: 36419371 DOI: 10.1080/10408398.2022.2147900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An "intelligent" or smart packaging is able to continuously monitor physicochemical and/or biological variations of packaged food materials, providing real-time information concerning their quality, maturity, and safety. Electrospun nanofiber (ENF) structures, nowadays, reckon as versatile biomaterial platforms in designing intelligent packaging (IP) systems. Natural biopolymer-based ENF traits, for example, surface chemistry, rate of degradation, fiber diameter, and degree of alignment, facilitate the development of unique, tunable IP, enhancing food quality, and safety. In this review, after a brief overview of the electrospinning process, we review food IP systems, which can be utilized to detect variations in food features, for example, those based on alterations in temperature, O2 level, time, humidity, pH, or microbial contamination. Different intelligent approaches that are applicable in engineering IP materials are then highlighted, that is, indicators, data carriers, and sensors. The latest research on the application of ENFs made with natural biopolymers in food IP and their performance on different packaged food types (i.e. meat, fruits and vegetables, dairy products, etc.) are underlined. Finally, the challenges and outlook of these systems in the food industry are discussed.
Collapse
Affiliation(s)
- Niloufar Ehsani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Dadashi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
37
|
Aman Mohammadi M, Dakhili S, Mirza Alizadeh A, Kooki S, Hassanzadazar H, Alizadeh-Sani M, McClements DJ. New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2601-2617. [PMID: 36123813 DOI: 10.1080/10408398.2022.2124506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Packaging plays a critical role in determining the quality, safety, and shelf-life of many food products. There have been several innovations in the development of more effective food packaging materials recently. Polymer nanofibers are finding increasing attention as additives in packaging materials because of their ability to control their pore size, surface energy, barrier properties, antimicrobial activity, and mechanical strength. Electrospinning is a widely used processing method for fabricating nanofibers from food grade polymers. This review describes recent advances in the development of electrospun nanofibers for application in active and smart packaging materials. Moreover, it highlights the impact of these nanofibers on the physicochemical properties of packaging materials, as well as the application of nanofiber-loaded packaging materials to foods, such as dairy, meat, fruit, and vegetable products.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food safety and hygiene, Department of Environmental Health Engineering, School of public health, Tehran University of medical sciences, Tehran, Iran
| | | |
Collapse
|
38
|
Forghani S, Zeynali F, Almasi H, Hamishehkar H. Characterization of electrospun nanofibers and solvent-casted films based on Centaurea arvensis anthocyanin-loaded PVA/κ-carrageenan and comparing their performance as colorimetric pH indicator. Food Chem 2022; 388:133057. [PMID: 35483293 DOI: 10.1016/j.foodchem.2022.133057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
In this research, PVA/Ҡ-carrageenan-based colorimetric indicators incorporated with Centaurea arvensis anthocyanin (CAE) were fabricated by two electrospinning and solvent casting methods and their performance as pH indicators were assessed. Chemical immobilization of CAE on PVA and PVA/Ҡ-carrageenan matrixes was approved by FT-IR analysis. According to SEM images, Ҡ-carrageenanaddition improved the homogeneity of films and decreased the diameter of nanofibers. The crystalline structure and thermal properties of polymeric matrixes were affected by anthocyanin incorporation. CAE had an adverse effect on mechanical properties of films and nanofibers. The preparation method and type of solid matrix affected the responsiveness and the tonality of responded color. Electrospun nanofibers showed high responsiveness (10 s) than colorimetric films (15-40 min) to pH changes. The indicators displayed color variations from heather violet to green over the 2-12 pH range. The designed indicators have potential to be applied as visual pH label in food intelligent packaging.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Abdullah, Fang J, Liu X, Javed HU, Cai J, Zhou Q, Huang Q, Xiao J. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:1015-1042. [PMID: 36004584 DOI: 10.1080/10408398.2022.2113031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jieping Fang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xidong Liu
- National Intellectual Property Information Service Center of Universities, Library, South China Agricultural University, Guangdong, China
| | - Hafiz Umer Javed
- School of Chemistry and Chemical Engineering, Zhongkai University of Agricultural and Engineering, Guangzhou, Guangdong, China
| | - Jiyang Cai
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qize Zhou
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Ye P, Li X, Xie YN, Wu P. Facile monitoring of meat freshness with a self-constructed photosensitization colorimetric instrument. Food Chem 2022; 385:132676. [PMID: 35294903 DOI: 10.1016/j.foodchem.2022.132676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Total volatile basic nitrogen (TVB-N) produced from the decomposition of amino acids is an important indicator for meat freshness. Various pH-sensitive colorimetric films have been incorporated as intelligent packaging for meat freshness during food transportation. However, methods and instruments capable of on-site end-point detection of meat freshness are still needed for places that provide raw meat without packaging. Herein, based on amine-induced pH change that led to decreased color output of the 3,3',5,5'-tetramethylbenzidine (TMB)-based photosensitization colorimetric assay, a simple yet convenient instrument employing colorimetric indicator paper (CIP) was constructed for facile monitoring of meat freshness. Owing to the background color provided by the photosensitizer erythrosine (2',4',5',7'-tetraiodofluorescein, TIF), the color changed from blue to pink upon amine adsorption. A bespoke cellphone App was employed for image capture and color analysis of the CIP for freshness monitoring. The analytical results of amine (released from meat during storage) by the proposed method agreed well with those by a standard Conway dish method. In addition, the whole analytical process could be completed in about 5 min. The developed instrument may be potentially useful for on-site monitoring of meat freshness.
Collapse
Affiliation(s)
- Peiqi Ye
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ya-Ni Xie
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
42
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|
43
|
Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods 2022; 11:foods11131897. [PMID: 35804712 PMCID: PMC9265959 DOI: 10.3390/foods11131897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affected by micro-organisms and endogenous enzymes, fish are highly perishable during storage, processing and transportation. Efficient evaluation of fish freshness to ensure consumer safety and reduce raw material losses has received an increasing amount of attention. Several of the conventional freshness assessment techniques have plenty of shortcomings, such as being destructive, time-consuming and laborious. Recently, various sensors and spectroscopic techniques have shown great potential due to rapid analysis, low sample preparation and cost-effectiveness, and some methods are especially non-destructive and suitable for online or large-scale operations. Non-destructive techniques typically respond to characteristic substances produced by fish during spoilage without destroying the sample. In this review, we summarize, in detail, the principles and applications of emerging approaches for assessing fish freshness including visual indicators derived from intelligent packaging, active sensors, nuclear magnetic resonance (NMR) and optical spectroscopic techniques. Recent developments in emerging technologies have demonstrated their advantages in detecting fish freshness, but some challenges remain in popularization, optimizing sensor selectivity and sensitivity, and the development of algorithms and chemometrics in spectroscopic techniques.
Collapse
|
44
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Electrospinning as a Promising Process to Preserve the Quality and Safety of Meat and Meat Products. COATINGS 2022. [DOI: 10.3390/coatings12050644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fresh and processed meat products are staple foods worldwide. However, these products are considered perishable foods and their deterioration depends partly on the inner and external properties of meat. Beyond conventional meat preservation approaches, electrospinning has emerged as a novel effective alternative to develop active and intelligent packaging. Thus, this review aims to discuss the advantages and shortcomings of electrospinning application for quality and safety preservation of meat and processed meat products. Electrospun fibres are very versatile, and their features can be modulated to deliver functional properties such as antioxidant and antimicrobial effects resulting in shelf-life extension and in some cases product quality improvement. Compared to conventional processes, electrospun fibres provide advantages such as casting and coating in the fabrication of active systems, indicators, and sensors. The approaches for improving, stabilizing, and controlling the release of active compounds and highly sensitive, rapid, and reliable responsiveness, under changes in real-time are still challenging for innovative packaging development. Despite their advantages, the active and intelligent electrospun fibres for meat packaging are still restricted to research and not yet widely used for commercial products. Industrial validation of lab-scale achievements of electrospinning might boost their commercialisation. Safety must be addressed by evaluating the impact of electrospun fibres migration from package to foods on human health. This information will contribute into filling knowledge gaps and sustain clear regulations.
Collapse
|
46
|
Abelti AL, Teka TA, Fikreyesus Forsido S, Tamiru M, Bultosa G, Alkhtib A, Burton E. Bio-based smart materials for fish product packaging: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alemu Lema Abelti
- Batu Fish and other Aquatic Life Research Center, Oromia Agricultural Research Institute, Batu, Ethiopia
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Tilahun A. Teka
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Sirawdink Fikreyesus Forsido
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Metekia Tamiru
- Department of Animal Science, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Geremew Bultosa
- Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Ashraf Alkhtib
- Nottingham Trent University, School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Southwell, UK, NG25 0QF
| | - Emily Burton
- Nottingham Trent University, School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Southwell, UK, NG25 0QF
| |
Collapse
|
47
|
Gao R, Hu H, Shi T, Bao Y, Sun Q, Wang L, Ren Y, Jin W, Yuan L. Incorporation of gelatin and Fe 2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr Res Food Sci 2022; 5:677-686. [PMID: 35434649 PMCID: PMC9011025 DOI: 10.1016/j.crfs.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 10/26/2022] Open
Abstract
In this study, blueberry anthocyanins, gelatin and Fe2+ were incorporated into zein matrix via electrospinning method to prepare colorimetric indicator films for monitoring milk freshness. Gelatin and Fe2+ were incorporated into the film to improve visual discrimination of indicator films' color changes in milk with different freshness degrees and in solution with pH 3-7. Results of SEM, FT-IR and XRD showed that there were intermolecular hydrogen bonds among components, which associated with the larger color difference of indicator films. UV-vis spectral analysis showed that blueberry anthocyanin solutions containing both gelatin and Fe2+ displayed the highest intensity absorption peaks. The optimal ability to distinguish the pH (3-7) of solutions was presented by the indicator film incorporating gelatin (1% (w/v)) and Fe2+ (0.07 mg/mL). Gelatin and Fe2+ increased the color-responsive sensitivity of the indicator film to pH. The film could be successfully used to detect the freshness of milk, whose color changes were visually perceivable: from purple black (fresh milk) to royal purple (spoiling milk) and then to violet red (spoiled milk). The color parameters (L*, a*, R, G and B) of the film revealed a high correlation with the pH/acidity of the milk during storage. The successful application of the indicator film embedding gelatin and Fe2+ for monitoring milk quality changes indicated that the addition of special substances could provide great potential for monitoring freshness and preparing intelligent packaging of food.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.,Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Huiling Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Lin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuhan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
48
|
Luo X, Zaitoon A, Lim LT. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr Rev Food Sci Food Saf 2022; 21:2489-2519. [PMID: 35365965 DOI: 10.1111/1541-4337.12942] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional "Best Before" date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Canada
| |
Collapse
|
49
|
Wang G, Cheng J, Ma J, Huang S, Zhang T, Li Y, Li H. Preparation and application of an olfactory visualization freshness sensor array based on microfluid paper‐based chip. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guannan Wang
- School of Printing and Packaging Wuhan University Wuhan China
| | - Jiawei Cheng
- School of Printing and Packaging Wuhan University Wuhan China
| | - Jun Ma
- School of Printing and Packaging Wuhan University Wuhan China
| | - Shaoyun Huang
- Department of Graphic Information Processing Jingchu University of Technology Jingmen China
| | - Tao Zhang
- School of Printing and Packaging Wuhan University Wuhan China
| | - Yanwei Li
- School of Printing and Packaging Wuhan University Wuhan China
| | - Houbin Li
- School of Printing and Packaging Wuhan University Wuhan China
| |
Collapse
|
50
|
Ghadiri Alamdari N, Forghani S, Salmasi S, Almasi H, Moradi M, Molaei R. Ixiolirion tataricum anthocyanins-loaded biocellulose label: Characterization and application for food freshness monitoring. Int J Biol Macromol 2022; 200:87-98. [PMID: 34998041 DOI: 10.1016/j.ijbiomac.2021.12.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A new intelligent pH-sensitive colorimetric label was fabricated by immobilizing Ixiolirion tataricum anthocyanins (ITA) into biocellulose (bacterial nanocellulose; BNC) film and was then studied to determine how it can be used as a label for monitoring freshness/spoilage of shrimp during storage at 4 °C. The formation of new interactions between ITA and BNC film and disruption of crystalline structure of BNC after anthocyanins immobilization were approved by FT-IR and XRD analyses, respectively. According to FE-SEM observations, the porosity of the BNC network decreased after ITA incorporation. The fabricated BNC-ITA label showed a distinct color change from violet to green over the pH range of 4-12. The pH, total volatile basic nitrogen (TVB-N), total psychrophiles count (TPC), and the quantity of biogenic amines (histamine, cadaverine, putrescine, and tyramine) in the shrimp samples and their correlation with color changes on the label were measured over a 4-day storage period. Consistent with changes in levels of TVB-N, TPC, pH, and biogenic amines, a visually distinguishable color change occurred on the BNC-ITA label as blue (fresh), dark green (medium fresh), and kelly green (spoiled). This research showed that ITA as a novel pH-sensitive dye is a promising candidate for developing pH labels for seafood intelligent packaging.
Collapse
Affiliation(s)
- Nima Ghadiri Alamdari
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sorour Salmasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|