1
|
Yao Z, Xue K, Chen J, Zhang Y, Zhang G, Zheng Z, Li Z, Li Z, Wang F, Sun X, Shen L, Mao C, Lin C. Biliverdin improved angiogenesis and suppressed apoptosis via PI3K/Akt-mediated Nrf2 antioxidant system to promote ischemic flap survival. Free Radic Biol Med 2024; 225:35-52. [PMID: 39332540 DOI: 10.1016/j.freeradbiomed.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Plastic and reconstructive surgeons frequently utilize random skin flap transplantation to repair skin defects. However, the procedure carries a substantial risk of necrosis. Previous research has suggested that Biliverdin (Bv), the main component of Calculus Bovis, possessed potent anti-ischemic properties, making it a potential therapeutic agent for skin flap survival. Hence, in this study, the potential of Bv in promoting flap survival has been comprehensively investigated. Network pharmacology analysis revealed that the pharmacological effects of Bv on ischemic diseases may be attributed to its modulation of various signaling molecules, including the PI3K-Akt pathway. In vitro results demonstrated that Bv treatment significantly promoted angiogenesis in human umbilical vein endothelial cells (HUVEC), even in the presence of H2O2. This was evident by the increased cell proliferation, enhanced migration, and improved tube formation. Bv also effectively attenuated the intracellular generation of reactive oxygen species (ROS) induced by H2O2, which was achieved by suppressing mitochondrial ROS production through the PI3K/Akt-mediated activation of Nrf2/HO-1 signaling pathway. Consequently, Bv treatment led to a significant reduction in apoptosis and an increase in cell viability of HUVEC. Furthermore, in vivo experiment demonstrated that Bv treatment vastly elevated flap survival through enhancing angiogenesis while decreasing oxidative stress and apoptosis, which was comparable to the results of positive control of N-acetylcysteine (Nac). In conclusion, this study not only established a solid foundation for future study on therapeutic potential of Bv, but also proposed a promising treatment approach for enhancing the success rate of flap transplants and other ischemic-related tissue repair.
Collapse
Affiliation(s)
- Zhe Yao
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaikai Xue
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinghao Chen
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Zhang
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Guojian Zhang
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zimin Zheng
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zihao Li
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zi Li
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fulin Wang
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqi Sun
- Department of Psychiatry, Ruian Fifth People's Hospital, China
| | - Liyan Shen
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Cong Mao
- Zhejiang Provincial Key Laboratory of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Cai Lin
- Department of Burn, Wound Repair and Regenerative Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
3
|
Saha S, Sachivkina N, Kuznetsova O, Neborak E, Zhabo N. Advance in Nrf2 Signaling Pathway in Leishmaniasis. Biomedicines 2024; 12:2525. [PMID: 39595091 PMCID: PMC11591928 DOI: 10.3390/biomedicines12112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
One of the main components of innate defense against invasive parasites is oxidative stress, which is brought on by reactive oxygen species (ROS). On the other hand, oxidative stressors serve two purposes: free radicals aid in the elimination of pathogens, but they can also set off inflammation, which leads to tissue damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that controls the expression of numerous genes involved in the body's defense against oxidative stress brought on by aging, inflammation, tissue damage, and other pathological consequences. From cutaneous to visceral forms, Leishmania parasites invade macrophages and cause a wide range of human pathologies. Leishmania parasites have a wide range of adaptive mechanisms that disrupt several macrophage functions by altering host signaling pathways. An increasing amount of data are corroborating the idea that one of the primary antioxidant routes to counteract this oxidative burst against parasites is NRF2 signaling, which also interferes with immune responses. The nature and potency of the host immune response, as well as interactions between the invading Leishmania spp., will ascertain the course of infection and the parasites' eventual survival or eradication. The molecular processes via which Nrf2 coordinates such intricate networks comprising various pathways remain to be completely understood. In light of NRF2's significant contribution to oxidative stress, we examine the NRF2 antioxidant pathway's activation mechanism in Leishmania infection in this review. Thus, this review will examine the relationship between Nrf2 signaling and leishmaniasis, as well as explore potential therapeutic strategies for modifying this system.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Olga Kuznetsova
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (O.K.); (E.N.)
| | - Ekaterina Neborak
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (O.K.); (E.N.)
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| |
Collapse
|
4
|
Kaminski TW, Sivanantham A, Mozhenkova A, Smith A, Ungalara R, Dubey RK, Shrestha B, Hanway C, Katoch O, Tejero J, Sundd P, Novelli EM, Kato GJ, Pradhan-Sundd T. Hemoglobin scavenger receptor CD163 as a potential biomarker of hemolysis-induced hepatobiliary injury in sickle cell disease. Am J Physiol Cell Physiol 2024; 327:C423-C437. [PMID: 38682236 PMCID: PMC11427010 DOI: 10.1152/ajpcell.00386.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Sickle cell disease (SCD)-associated chronic hemolysis promotes oxidative stress, inflammation, and thrombosis leading to organ damage, including liver damage. Hemoglobin scavenger receptor CD163 plays a protective role in SCD by scavenging both hemoglobin-haptoglobin complexes and cell-free hemoglobin. A limited number of studies in the past have shown a positive correlation of CD163 expression with poor disease outcomes in patients with SCD. However, the role and regulation of CD163 in SCD-related hepatobiliary injury have not been fully elucidated yet. Here we show that chronic liver injury in SCD patients is associated with elevated levels of hepatic membrane-bound CD163. Hemolysis and increase in hepatic heme, hemoglobin, and iron levels elevate CD163 expression in the SCD mouse liver. Mechanistically we show that heme oxygenase-1 (HO-1) positively regulates membrane-bound CD163 expression independent of nuclear factor erythroid 2-related factor 2 (NRF2) signaling in SCD liver. We further demonstrate that the interaction between CD163 and HO-1 is not dependent on CD163-hemoglobin binding. These findings indicate that CD163 is a potential biomarker of SCD-associated hepatobiliary injury. Understanding the role of HO-1 in membrane-bound CD163 regulation may help identify novel therapeutic targets for hemolysis-induced chronic liver injury.
Collapse
MESH Headings
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Anemia, Sickle Cell/metabolism
- Anemia, Sickle Cell/blood
- Anemia, Sickle Cell/complications
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Animals
- Hemolysis
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Humans
- Biomarkers/metabolism
- Biomarkers/blood
- Heme Oxygenase-1/metabolism
- Hemoglobins/metabolism
- Mice
- Male
- Liver/metabolism
- Liver/pathology
- Female
- Mice, Inbred C57BL
- Adult
- NF-E2-Related Factor 2/metabolism
- Heme/metabolism
- Liver Diseases/metabolism
- Liver Diseases/pathology
- Signal Transduction
- Haptoglobins/metabolism
- Membrane Proteins
Collapse
Affiliation(s)
- Tomasz W Kaminski
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Ayyanar Sivanantham
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Anna Mozhenkova
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Ashley Smith
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Ramakrishna Ungalara
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Rikesh K Dubey
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Bibhav Shrestha
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Corrine Hanway
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Omika Katoch
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
| | - Jesús Tejero
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Prithu Sundd
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregory J Kato
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Tirthadipa Pradhan-Sundd
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Czarnecka-Herok J, Zhu K, Flaman JM, Goehrig D, Vernier M, Makulyte G, Lamboux A, Dragic H, Rhinn M, Médard JJ, Faury G, Bertolino P, Balter V, Debret R, Adnot S, Martin N, Bernard D. A non-canonical role of ELN protects from cellular senescence by limiting iron-dependent regulation of gene expression. Redox Biol 2024; 73:103204. [PMID: 38810421 PMCID: PMC11167390 DOI: 10.1016/j.redox.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
The ELN gene encodes tropoelastin which is used to generate elastic fibers that insure proper tissue elasticity. Decreased amounts of elastic fibers and/or accumulation of bioactive products of their cleavage, named elastokines, are thought to contribute to aging. Cellular senescence, characterized by a stable proliferation arrest and by the senescence-associated secretory phenotype (SASP), increases with aging, fostering the onset and progression of age-related diseases and overall aging, and has so far never been linked with elastin. Here, we identified that decrease in ELN either by siRNA in normal human fibroblasts or by knockout in mouse embryonic fibroblasts results in premature senescence. Surprisingly this effect is independent of elastic fiber degradation or elastokines production, but it relies on the rapid increase in HMOX1 after ELN downregulation. Moreover, the induction of HMOX1 depends on p53 and NRF2 transcription factors, and leads to an increase in iron, further mediating ELN downregulation-induced senescence. Screening of iron-dependent DNA and histones demethylases revealed a role for histone PHF8 demethylase in mediating ELN downregulation-induced senescence. Collectively, these results unveil a role for ELN in protecting cells from cellular senescence through a non-canonical mechanism involving a ROS/HMOX1/iron accumulation/PHF8 histone demethylase pathway reprogramming gene expression towards a senescence program.
Collapse
Affiliation(s)
- Joanna Czarnecka-Herok
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Kexin Zhu
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Mathieu Vernier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Gabriela Makulyte
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Aline Lamboux
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnements, CNRS UMR 5276, Ecole Normale supérieure de Lyon, Lyon, France
| | - Helena Dragic
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, 67404, France
| | - Jean-Jacques Médard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Gilles Faury
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Inserm U1300, 38000, Grenoble, France
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Vincent Balter
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnements, CNRS UMR 5276, Ecole Normale supérieure de Lyon, Lyon, France
| | - Romain Debret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/ Université Claude Bernard Lyon 1, 7 passage du Vercors, 69007, Lyon, France
| | - Serge Adnot
- Inserm U955, Département de Physiologie - Explorations fonctionnelles, Hôpital Henri Mondor, AP-HP, FHU SENEC, Créteil, France; Institute of Lung Health, Justus Liebig University, Giessen, Germany
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| |
Collapse
|
6
|
Vatankhah M, Panahizadeh R, Safari A, Ziyabakhsh A, Mohammadi-Ghalehbin B, Soozangar N, Jeddi F. The role of Nrf2 signaling in parasitic diseases and its therapeutic potential. Heliyon 2024; 10:e32459. [PMID: 38988513 PMCID: PMC11233909 DOI: 10.1016/j.heliyon.2024.e32459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In response to invading parasites, one of the principal arms of innate immunity is oxidative stress, caused by reactive oxygen species (ROS). However, oxidative stresses play dual functions in the disease, whereby free radicals promote pathogen removal, but they can also trigger inflammation, resulting in tissue injuries. A growing body of evidence has strongly supported the notion that nuclear factor erythroid 2-related factor 2 (NRF) signaling is one of the main antioxidant pathways to combat this oxidative burst against parasites. Given the important role of NRF2 in oxidative stress, in this review, we investigate the activation mechanism of the NRF2 antioxidant pathway in different parasitic diseases, such as malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, schistosomiasis, entamoebiasis, and trichinosis.
Collapse
Affiliation(s)
- Mohammadamin Vatankhah
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Feng G, Zhuge P, Zou Y, Zhang Z, Guo J, Ma J. Correlation Analysis of Serum Lipopolysaccharide, Nuclear Factor Erythroid 2-Related Factor 2 and Haem Oxygenase 1 Levels and Cognitive Impairment in Patients with Obstructive Sleep Apnoea. J Inflamm Res 2024; 17:2951-2958. [PMID: 38764500 PMCID: PMC11100511 DOI: 10.2147/jir.s455756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Objective To investigate the correlation between the levels of serum lipopolysaccharide (LPS), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1 (HO-1) and cognitive impairment in patients with obstructive sleep apnoea (OSA). Methods Serum LPS, Nrf2, HO-1 levels and cognitive impairment were measured using the Montreal Cognitive Assessment (MoCA) score in 56 patients in the "severe" group, 67 patients in the "mild-to-moderate" group and 100 healthy people in the "control" group. The differences in general conditions and serological indexes between the three groups were compared, the correlation between the MoCA scores and the serological indexes was explored and the independent predictors of the MoCA scores were analysed. Results Serum LPS, Nrf2 and HO-1 levels were higher in the severe group than in the mild-to-moderate group and the control group (p < 0.05). A total of 71 patients with OSA had combined cognitive impairment, accounting for 57.7%, and the MoCA scores were lower in the severe group than in the mild-to-moderate group and the control group (p = 0.018). Serum LPS, Nrf2 and HO-1 levels were significantly higher in the severe group and mild-to-moderate group than in the control group (p < 0.05) and were negatively correlated with the MoCA scores. Lipopolysaccharide (p < 0.001) and HO-1 (p = 0.002) could be considered independent predictors of the MoCA score. Conclusion Serum LPS and HO-1 levels are closely related to cognitive impairment in patients with OSA and have potential clinical value in the diagnosis.
Collapse
Affiliation(s)
- Guofei Feng
- Department of ENT, Jinhua Central Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Pan Zhuge
- Department of ENT, Jinhua Central Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Yaping Zou
- Department of ENT, Jinhua Central Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Zhifeng Zhang
- Department of ENT, Jinhua Central Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Jiandong Guo
- Department of ENT, Jinhua Central Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Junxiang Ma
- Department of ENT, Jinhua Central Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| |
Collapse
|
8
|
Zhang Y, Wang J, Wang Y, Lei K. Nrf2/HO-1 signaling activation alleviates cigarette smoke-induced inflammation in chronic obstructive pulmonary disease by suppressing NLRP3-mediated pyroptosis. J Cardiothorac Surg 2024; 19:58. [PMID: 38317168 PMCID: PMC10840299 DOI: 10.1186/s13019-024-02530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND This study examined the effect of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway on chronic obstructive pulmonary disease (COPD) and the potential molecular mechanism. METHODS A COPD mouse model was established by cigarette smoke exposure and administered with either ML385 or dimethyl fumarate (DMF). Airway resistance of mice was detected. IL-1β and IL-6 levels in mice alveolar lavage fluid were examined by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining and immunohistochemical of lung tissues were utilized to detect lung injury and NLRP3 expression. DMF was used to treat COPD cell model constructed by exposing normal human bronchial epithelial (NHBE) cells to cigarette smoke extract. NHBE cells were transfected by NLRP3-expression vectors. Expression of proteins was detected by Western blot. RESULTS COPD mice showed the enhanced airway resistance, the inactivated Nrf2/HO-1 pathway and the overexpressed NLRP3, Caspase-1 and GSDMD-N proteins in lung tissues, and the increased IL-1β and IL-6 levels in alveolar lavage fluid. ML385 treatment augmented these indicators and lung injury in COPD mice. However, DMF intervention attenuated these indicators and lung injury in COPD mice. Nrf2/HO-1 pathway inactivation and overexpression of NLRP3, Caspase-1 and GSDMD-N proteins were observed in COPD cells. DMF intervention activated Nrf2/HO-1 pathway and down-regulated NLRP3, Caspase-1 and GSDMD-N proteins in COPD cells. However, NLRP3 overexpression abolished the effect of DMF on COPD cells. CONCLUSION Nrf2/HO-1 pathway activation may alleviate inflammation in COPD by suppressing the NLRP3-related pyroptosis. Activating the Nrf2/HO-1 pathway may be an effective method to treat COPD.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, China.
| | | | | | - Kai Lei
- Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Ren Q, Bakker W, de Haan L, Rietjens IMCM, Bouwmeester H. Induction of Nrf2-EpRE-mediated gene expression by hydroxyanthraquinones present in extracts from traditional Chinese medicine and herbs. Food Chem Toxicol 2023; 176:113802. [PMID: 37116774 DOI: 10.1016/j.fct.2023.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 μM, 1.1 μM, 23 μM and 2.3 μM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 μM, 15 μM, 9.8 μM and 3.8 μM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
10
|
Xu M, Che L, Gao K, Wang L, Yang X, Wen X, Li M, Jiang Z. Taurine alleviates oxidative stress in porcine mammary epithelial cells by stimulating the Nrf2-MAPK signaling pathway. Food Sci Nutr 2023; 11:1736-1746. [PMID: 37051345 PMCID: PMC10084955 DOI: 10.1002/fsn3.3203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/23/2023] Open
Abstract
The high incidence of oxidative stress in sows during late gestation and lactation affects mammary gland health, milk yield, and milk quality. Recently, we found that supplementing maternal diets with 1% taurine improved antioxidant capability and enhanced growth performance in offspring; however, the mechanisms underlying these are unknown. This study aimed to investigate the cytoprotective effects and the mechanism of taurine in mitigating oxidative stress in porcine mammary epithelial cells (PMECs). PMECs were pretreated with 0-2.0 mM taurine for 12 h and then subjected to oxidative injury with 500 μM hydrogen peroxide (H2O2). Pretreatment with taurine attenuated decreased cell viability, enhanced superoxide dismutase, and reduced the intracellular reactive oxygen species accumulation after H2O2 exposure. Taurine also prevented H2O2-induced endoplasmic reticulum stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) was essential to the cytoprotective effects of taurine on PMECs, as Nrf2 knockdown significantly inhibited taurine-induced cytoprotection against oxidative stress. Moreover, we confirmed that Nrf2 induction by taurine was mediated through the inactivation of the p38/MAPK pathway. Overall, taurine supplementation has beneficial effects on redox balance regulation and may protect against oxidative stress in lactating animals.
Collapse
Affiliation(s)
- Mengmeng Xu
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Long Che
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Kaiguo Gao
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Li Wang
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xuefen Yang
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaolu Wen
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Mengyun Li
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
| | - Zongyong Jiang
- State Key Laboratory of Livestock and poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
11
|
Huang S, Li H, Xu J, Zhou H, Seeram NP, Ma H, Gu Q. Chemical constituents of industrial hemp roots and their anti-inflammatory activities. J Cannabis Res 2023; 5:1. [PMID: 36642726 PMCID: PMC9841654 DOI: 10.1186/s42238-022-00168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Although the chemical constituents of the aerial parts of Cannabis have been extensively studied, phytochemicals of Cannabis roots are not well characterized. Herein, we investigated the chemical constituents of industrial hemp (Cannabis sativa L.) roots and evaluated the anti-inflammatory activities of phytochemicals isolated from the hemp roots extract. METHODS An ethyl acetate extract of hemp roots was subjected to a combination of chromatographic columns to isolate phytochemicals. The chemical structures of the isolates were elucidated based on spectroscopic analyses (by nuclear magnetic resonance and mass spectrometry). The anti-inflammatory effects of phytochemicals from hemp roots were evaluated in an anti-inflammasome assay using human monocyte THP-1 cells. RESULTS Phytochemical investigation of hemp roots extract led to the identification of 32 structurally diverse compounds including six cannabinoids (1-6), three phytosterols (26-28), four triterpenoids (22-25), five lignans (17-21), and 10 hydroxyl contained compounds (7-16), three fatty acids (29-31), and an unsaturated chain hydrocarbon (32). Compounds 14-21, 23, 27, and 32 were identified from the Cannabis species for the first time. Cannabinoids (1-5) reduced the level of cytokine tumor necrosis-alpha (by 38.2, 58.4, 47.7, 52.2, and 56.1%, respectively) and 2 and 5 also decreased the interleukin-1β production (by 42.2 and 92.4%, respectively) in a cell-based inflammasome model. In addition, non-cannabinoids including 11, 13, 20, 25, 29, and 32 also showed selective inhibition of interleukin-1β production (by 23.7, 22.5, 25.6, 78.0, 24.1, 46.6, and 25.4%, respectively) in THP-1 cells. CONCLUSION The phytochemical constituent of a hemp roots extract was characterized and compounds from hemp roots exerted promising anti-inflammatory effects.
Collapse
Affiliation(s)
- Shijie Huang
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huifang Li
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Jun Xu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Huihao Zhou
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| | - Navindra P. Seeram
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Hang Ma
- grid.20431.340000 0004 0416 2242Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881 Kingston, RI USA
| | - Qiong Gu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, China
| |
Collapse
|
12
|
Ding C, Ni L, Liu Q, Zhou C, Wang G, Chu PK, Wu Z. Cold air plasma improving rheumatoid arthritis via mitochondrial apoptosis pathway. Bioeng Transl Med 2023; 8:e10366. [PMID: 36684093 PMCID: PMC9842019 DOI: 10.1002/btm2.10366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Rheumatoid arthritis (RA) has plagued physicians and patients for years due to the lack of targeted treatment. In this study, inspired by the commonality between rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and cancer cells, the therapeutic effects of cold air plasma (CAP) on RA are studied systematically and thoroughly. In/ex vivo results show that CAP with the proper dosage significantly relieves symptoms including synovial hyperplasia, inflammatory infiltration, and angiogenesis and eliminates the root cause by triggering the self-antioxidant capability of the surrounding tissue. The mechanism on the molecular and cellular level is also revealed that the spontaneous reactive oxygen species (ROS) cascade induces the mitochondrial apoptosis pathway on RA-FLS. This study reveals a new strategy for targeted treatment of RA and the mechanistic study provides the theoretical foundation for future development of plasma medicine.
Collapse
Affiliation(s)
- Chengbiao Ding
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
- Department of Rehabilitation MedicineThe Second Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Leying Ni
- Department of Rehabilitation MedicineThe Second Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Qi Liu
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
| | - Chenxu Zhou
- Department of Rehabilitation MedicineThe Second Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Guomin Wang
- Department of PhysicsCity University of Hong KongKowloon, Hong KongChina
- Department of Biomedical EngineeringCity University of Hong KongKowloon, Hong KongChina
- Department of Materials Science and EngineeringCity University of Hong KongKowloon, Hong KongChina
| | - Paul K. Chu
- Department of PhysicsCity University of Hong KongKowloon, Hong KongChina
- Department of Biomedical EngineeringCity University of Hong KongKowloon, Hong KongChina
- Department of Materials Science and EngineeringCity University of Hong KongKowloon, Hong KongChina
| | - Zhengwei Wu
- School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of ChinaHefeiChina
- Institute of Advanced TechnologyUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
13
|
Shin CY, Jeong KW. Photooxidation of A2E by Blue Light Regulates Heme Oxygenase 1 Expression via NF-κB and Lysine Methyltransferase 2A in ARPE-19 Cells. Life (Basel) 2022; 12:1698. [PMID: 36362853 PMCID: PMC9699413 DOI: 10.3390/life12111698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/31/2023] Open
Abstract
Background: N-retinylidene-N-retinylethanolamine (A2E) is a component of drusen that accumulates in retinal cells and induces oxidative stress through photooxidation, such as blue light (BL). We found that the heme oxygenase 1 (HMOX1) gene responds sensitively to photooxidation by the BL of A2E in retinal pigment epithelial (RPE) cells, and we sought to identify the transcription factors and coactivators involved in the upregulation of HMOX1 by A2E and BL. Methods: A2E-laden human RPE cells (ARPE-19) were exposed to BL (430 nm). RNA sequencing was performed to identify genes responsive to BL exposure. Chromatin immunoprecipitation and RT-qPCR were performed to determine the regulation of HMOX1 transcription. Clinical transcriptome data were used to evaluate HMOX1 expression in patients with age-related macular degeneration (AMD). Results: In ARPE-19 cells, the expression of HMOX1, one of the NF-κB target genes, was significantly increased by A2E and BL. The binding of RELA and RNA polymerase II to the promoter region of HMOX1 was significantly increased by A2E and BL. Lysine methyltransferase 2A (MLL1) plays an important role in H3K4me3 methylation, NF-κB recruitment, chromatin remodeling at the HMOX1 promoter, and, subsequently, HMOX1 expression. The retinal tissues of patients with late-stage AMD showed significantly increased expression of HMOX1 compared to normal retinal tissues. In addition, the expression levels of MLL1 and HMOX1 in retinal tissues were correlated. Conclusions: Taken together, our results suggest that BL induces HMOX1 expression by activating NF-κB and MLL1 in RPE cells.
Collapse
Affiliation(s)
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
14
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
Lin LY, Liao YL, Chen MH, Chang SF, Chen KC, Peng RY. Molecular Action Mechanism of Coixol from Soft-Shelled Adlay on Tyrosinase: The Future of Cosmetics. Molecules 2022; 27:4626. [PMID: 35889498 PMCID: PMC9325028 DOI: 10.3390/molecules27144626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Coix lacryma-jobi var. ma-yuen L. Gramineae is widely cultivated in Taiwan. Literature regarding the molecular action mechanism of coixol on tyrosinase and the application of coicis seed extracts to the processing of facial masks is still lacking. Solvent extractability analysis revealed that most of the polyphenolics in coicis seeds were water soluble (3.17 ± 0.12 to 3.63 ± 0.07 μg/mLGAE). In contrast, the methanolic extract contained the most flavonoids (0.06 ± 0.00~0.26 ± 0.03 μg/mL QE) and coixol (11.43 ± 0.13~12.83 ± 0.14 μg/mL), showing potent antioxidant capability. Additionally, the contents of coixenolide (176.77 ± 5.91 to 238.60 ± 0.21 μg/g), phytosterol (52.45 ± 2.05 to 58.23 ± 1.14 mg/g), and polysaccharides (3.42 ± 0.10 to 4.41 ± 0.10 mg/g) were rather high. The aqueous extract (10 μg/mL) and the ethanolic extract (1 mg/mL) showed no cytotoxicity to B16F10 melanocytes. More attractively, the ethanolic extract at 1 mg/mL caused 48.4% inhibition of tyrosinase activity in B16F10 melanocytes, and 50.7% on human tyrosinase (hTyr) fragment 369-377. Conclusively, the coicis seed extracts containing abundant nutraceuticals with promising anti-hTyr activity and moisturizing capability can serve as good ingredients for facial mask processing.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (S.-F.C.)
| | - Yi-Lun Liao
- Taiwan Seed Improvement and Propagation Station, COA. No. 6, Xingzhong St., Xinshe District, Taichung City 426017, Taiwan;
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture, Executive Yuan, Marketing and Processing Division, Taichung City 43302, Taiwan;
| | - Shih-Feng Chang
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (S.-F.C.)
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, 250, Wu-Xin St., Xin-Yi District, Taipei 11031, Taiwan
| | - Robert Y. Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- School of Medicine and Nursing, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
16
|
Yang Q, Wang W. The Nuclear Translocation of Heme Oxygenase-1 in Human Diseases. Front Cell Dev Biol 2022; 10:890186. [PMID: 35846361 PMCID: PMC9277552 DOI: 10.3389/fcell.2022.890186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/10/2022] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), free iron and biliverdin, which could then be converted to bilirubin by biliverdin reductase. HO-1 exhibits cytoprotective effects of anti-apoptosis, anti-oxidation, and anti-inflammation via these byproducts generated during the above process. In the last few years, despite the canonical function of HO-1 and possible biological significance of its byproducts, a noncanonical function, through which HO-1 exhibits functions in diseases independent of its enzyme activity, also has been reported. In this review, the noncanonical functions of HO-1 and its translocation in other subcellular compartments are summarized. More importantly, we emphasize the critical role of HO-1 nuclear translocation in human diseases. Intriguingly, this translocation was linked to tumorigenesis and tumor progression in lung, prostate, head, and neck squamous cell carcinomas and chronic myeloid leukemia. Given the importance of HO-1 nuclear translocation in human diseases, nuclear HO-1 as a novel target might be attractive for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenqian Wang,
| |
Collapse
|
17
|
Xiong W, Li Y, Yao Y, Xu Q, Wang L. Antioxidant mechanism of a newly found phenolic compound from adlay (NDPS) in HepG2 cells via Nrf2 signalling. Food Chem 2022; 378:132034. [PMID: 35026486 DOI: 10.1016/j.foodchem.2021.132034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/31/2021] [Indexed: 11/27/2022]
Abstract
An in-depth understanding of the bioactive mechanism of phytochemicals has a good guiding value for the design of related functional foods. Herein, the effect of N1, N5- di-[(E)-p-coumaroyl]-spermidine (NDPS) originated from adlay on protecting HepG2 cells from oxidative stress was evaluated by MTT assay, western blot and qRT-PCR. After pre-treatment of NDPS, the activities of antioxidant enzymes (including superoxide dismutase, glutathione peroxidase, γ-glutamyl cysteine synthetase and heme oxygenase-1) were increased, as well as the level of proteins and gene expressions were elevated. Moreover, the γ-GCS, HO-1, SOD and GPx protein level were enhanced for the cells with NDPS treatment compared to both positive control and negative control groups. These findings suggested that NDPS could protect HepG2 cells from oxidative stress by increasing the antioxidant enzymes regulated by Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Wenfei Xiong
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ya Li
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yijun Yao
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qian Xu
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Lifeng Wang
- College of Food Science and Engineering/ Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
18
|
Zhong T, Li M, Wu H, Wang D, Liu J, Xu Y, Fan Y. Novel Flavan-3,4-diol vernicidin B from Toxicodendron Vernicifluum (Anacardiaceae) as potent antioxidant via IL-6/Nrf2 cross-talks pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154041. [PMID: 35306369 DOI: 10.1016/j.phymed.2022.154041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Oxidative stress is considered to be a pathological factor of various neurodegenerative diseases. Studies have confirmed the antioxidant activity of T. vernicifluum. However, the main active components responsible for antioxidant activity remain unknown. OBJECTIVE The aim of this study is to explore the activities of vernicidin B on oxidative stress injury induced by H2O2 in SH-SY5Y cells, and the underlying mechanism of vernicidin B in oxidative stress-related neurological diseases is further discussed. METHODS Various separation methods were used to isolate and identify the compounds in an EtOAc extract of T. vernicifluum. The structures of the isolates were clarified by HR-TOF-MS and 1D/2D NMR data and compared with findings in previous literature. The MTT assay was used to evaluate the potential antioxidant activity of the isolated flavonoids. The apoptosis rate, mitochondrial reactive oxygen species (ROS) level and mitochondrial potential were measured by flow cytometry and fluorescence microscope. The levels of related proteins were detected by Western blotting. RESULTS Four new flavan-3,4-diols (1-4, vernicidins A-D) and 11 known flavonoids (5-15) were purified from the EtOAc extract of T. vernicifluum. Among these compounds, vernicidin B showed the most promising potential for protecting SH-SY5Y cells from H2O2-induced oxidative stress. Moreover, pretreatment with vernicidin B decreased ROS production and mitochondrial membrane potential and significantly attenuated H2O2-induced apoptosis in a dose-dependent manner. Mechanistically, the antioxidant stress activities of vernicidin B were confirmed to be related to the IL-6/Nrf2 cross-talks pathway and its downstream pathways, including PI3K/Akt/mToR-Gsk3β, JAK2/STAT3 and MAPKs. CONCLUSIONS Our findings suggested that vernicidin B can improve the oxidative stress injury induced by H2O2 through IL-6/Nrf2 cross-talks pathway, indicating that it may be a potential candidate drug for the treatment of oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China
| | - Meichen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongshan Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
| | - Jianyu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China.
| |
Collapse
|
19
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
20
|
Tao F, Zhou Y, Wang M, Wang C, Zhu W, Han Z, Sun N, Wang D. Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:95-111. [PMID: 35203060 PMCID: PMC8890943 DOI: 10.4196/kjpp.2022.26.2.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.
Collapse
Affiliation(s)
- Fulin Tao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuanyuan Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Mengwen Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chongyang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wentao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhili Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Nianxia Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Dianlei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
21
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
22
|
Li IC, Chang FC, Kuo CC, Chu HT, Li TJ, Chen CC. Pilot Study: Nutritional and Preclinical Safety Investigation of Fermented Hispidin-Enriched Sanghuangporus sanghuang Mycelia: A Promising Functional Food Material to Improve Sleep. Front Nutr 2022; 8:788965. [PMID: 35111796 PMCID: PMC8801445 DOI: 10.3389/fnut.2021.788965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Sleep disturbances have been the hallmark of the recent coronavirus disease 2019 pandemic. Studies have shown that once sleep is disrupted, it can lead to psychological and physical health issues which can, in turn, disrupt circadian rhythm and induce further sleep disruption. As consumers are trying to establish healthy routines, nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia (GKSS) as a novel food material for spontaneous sleep in Sprague-Dawley rats is conducted for the first time. Results showed that the nutritional analysis of GKSS including moisture, ash, crude lipid, crude protein, carbohydrate, and energy were found to be 2.4 ± 0.3%, 8.0 ± 2.5%, 1.7 ± 0.3%, 22.9 ± 1.2%, 65.1 ± 3.1%, and 367.1 ± 10.2 kcal/100 g respectively. In the 28-day repeated-dose oral toxicity study, only Sprague-Dawley male rats receiving 5 g/kg showed a slight decrease in feed consumption at week 3, but no associated clinical signs of toxicity or significant weight loss were observed. Although a significant reduction of the platelet count was found in mid- and high-dose GKSS treated male groups, such changes were noted to be within the normal range and were not correlated with relative spleen weight changes. Hence, the no observed adverse effect level (NOAEL) of GKSS was identified to be higher than 5 g/kg in rats. After the safety of GKSS is confirmed, the sleep-promoting effect of GKSS ethanolic extract enriched with hispidin was further assessed. Despite 75 mg/kg of GKSS ethanolic extract does not affect wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep, GKSS ethanolic extract at 150 mg/kg significantly decreased wakefulness and enhanced NREM and REM sleep. Interestingly, such effects seem to be mediated through anti-inflammatory activities via NF-E2-related factor-2 (Nrf2) signaling pathway. Taken together, these findings provide the preliminary evidence to studies support the claims suggesting that GKSS contained useful phytochemical hispidin could be considered as and is safe to use as a functional food agent or nutraceutical for relieving sleep problems mediated by Nrf2 pathway, which the results are useful for future clinical pilot study.
Collapse
Affiliation(s)
- I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- *Correspondence: Tsung-Ju Li
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
- Chin-Chu Chen
| |
Collapse
|
23
|
Saikosaponin-D Mitigates Oxidation in SH-SY5Y Cells Stimulated by Glutamate Through Activation of Nrf2 Pathway: Involvement of PI3K. Neurotox Res 2022; 40:230-240. [PMID: 34994954 DOI: 10.1007/s12640-021-00438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a typical neurodegenerative disease. Well-established studies have shown an elevated level of ROS (reactive oxygen species) that induces oxidative stress in AD. Saikosaponin-D exhibited significant therapeutic effects on neurodegenerative diseases. However, its in-depth molecular mechanisms against neurotoxicity remain not fully uncovered. Herein, the possible protective effects of saikosaponin-D on glutamate-induced neurotoxicity in SH-SY5Y cells and the underlying mechanism were elucidated. Saikosaponin-D pretreatment could ameliorate glutamate-induced cytotoxicity according to MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and depress apoptosis according to Hoechst 33,342 staining and Annexin V-FITC/PI double staining in SH-SY5Y cells. Additionally, saikosaponin-D administration suppressed oxidative stress in response to glutamate indicated by diminished intracellular ROS formation and reduced MDA (malondialdehyde) content in SH-SY5Y cells. These phenomena, appeared to correlate with the recovered cellular antioxidant enzyme activities and inducted HO-1 (heme oxygenase-1) expression accompanying the nuclear translocation of Nrf2 conduct by saikosaponin-D preconditioning which had been altered by glutamate, were correlated with its neuroprotective. Furthermore, addition of LY294002, a selective inhibitor of PI3K (phosphatidylinositol 3 kinase), blocked saikosaponin-D-caused Nrf2 nuclear translocation and reversed the protection of saikosaponin-D against glutamate in SH-SY5Y cells. Moreover, saikosaponin-D exhibited antioxidant potential with high free radical-scavenging activity as confirmed by a DPPH (2,2-diphenyl-1-picrylhydrazyl) and TEAC (Trolox equivalent antioxidant capacity) in a cell-free system in vitro. Taken together, our results indicated that saikosaponin-D enhanced cellular antioxidant capacity through not only intrinsic free radical-scavenging activity but also induction of endogenous antioxidant enzyme activities and HO-1 expression mediated, at least in part, by activating PI3K and subsequently Nrf2 nuclear translocation, thereby protecting the SH-SY5Y cells from glutamate-induced oxidative cytotoxicity. In concert, these data raise the possibility that saikosaponin-D may be an attractive candidate for prevention and treatment of AD and other diseases related to oxidation in the future.
Collapse
|
24
|
Zhao Y, Liu X, Zheng Y, Liu W, Ding C. Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT1/NF-κB signaling pathway and gut microbiota. Sci Rep 2021; 11:20558. [PMID: 34663844 PMCID: PMC8523697 DOI: 10.1038/s41598-021-00071-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Aronia melanocarpa is a natural medicinal plant that has a variety of biological activities, its fruit is often used for food and medicine. Aronia melanocarpa polysaccharide (AMP) is the main component of the Aronia melanocarpa fruit. This research evaluated the delay and protection of AMP obtained from Aronia melanocarpa fruit on aging mice by D-Galactose (D-Gal) induction and explored the effect of supplementing AMP on the metabolism of the intestinal flora of aging mice. The aging model was established by intraperitoneal injection of D-Gal (200 mg/kg to 1000 mg/kg) once per 3 days for 12 weeks. AMP (100 and 200 mg/kg) was given daily by oral gavage after 6 weeks of D-Gal-induced. The results showed that AMP treatment significantly improved the spatial learning and memory impairment of aging mice determined by the eight-arm maze test. H&E staining showed that AMP significantly reversed brain tissue pathological damage and structural disorders. AMP alleviated inflammation and oxidative stress injury in aging brain tissue by regulating the AMPK/SIRT1/NF-κB and Nrf2/HO-1 signaling pathways. Particularly, AMP reduced brain cell apoptosis and neurological deficits by activating the PI3K/AKT/mTOR signaling pathway and its downstream apoptotic protein family. Importantly, 16S rDNA analysis indicated the AMP treatment significantly retarded the aging process by improving the composition of intestinal flora and abundance of beneficial bacteria. In summary, this study found that AMP delayed brain aging in mice by inhibiting inflammation and regulating intestinal microbes, which providing the possibility for the amelioration and treatment of aging and related metabolic diseases.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
25
|
Cajas YN, Cañón-Beltrán K, Núñez-Puente C, Gutierrez-Adán A, González EM, Agirregoitia E, Rizos D. Nobiletin-induced partial abrogation of deleterious effects of AKT inhibition on preimplantation bovine embryo development in vitro. Biol Reprod 2021; 105:1427-1442. [PMID: 34617564 DOI: 10.1093/biolre/ioab184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
During preimplantational embryo development, PI3K/AKT regulates cell proliferation and differentiation and nobiletin modulates this pathway to promote cell survival. Therefore, we aimed to establish whether, when the AKT cascade is inhibited using inhibitors III and IV, nobiletin supplementation to in vitro culture media during the minor (2 to 8-cell stage, MNEGA) or major (8 to 16-cell stage, MJEGA) phases of EGA is able to modulate the development and quality of bovine embryos. In vitro zygotes were cultured during MNEGA or MJEGA phase in SOF + 5% FCS or supplemented with: 15 μM AKT-InhIII; 10 μM AKT-InhIV; 10 μM nobiletin; nobiletin+AKT-InhIII; nobiletin+AKT-InhIV; 0.03% DMSO. Embryo development was lower in treatments with AKT inhibitors, while combination of nobiletin with AKT inhibitors was able to recover their adverse developmental effect and also increase blastocyst cell number. The mRNA abundance of GPX1, NFE2L2, and POU5F1 was partially increased in 8- and 16-cell embryos from nobiletin with AKT inhibitors. Besides, nobiletin increased the p-rpS6 level whether or not AKT inhibitors were present. In conclusion, nobiletin promotes bovine embryo development and quality and partially recovers the adverse developmental effect of AKT inhibitors which infers that nobiletin probably uses another signalling cascade that PI3K/AKT during early embryo development in bovine.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Carolina Núñez-Puente
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Alfonso Gutierrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| |
Collapse
|
26
|
Li G, Xiang S, Pan Y, Long X, Cheng Y, Han L, Zhao X. Effects of Cold-Pressing and Hydrodistillation on the Active Non-volatile Components in Lemon Essential Oil and the Effects of the Resulting Oils on Aging-Related Oxidative Stress in Mice. Front Nutr 2021; 8:689094. [PMID: 34195220 PMCID: PMC8236505 DOI: 10.3389/fnut.2021.689094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the non-volatile composition and antioxidant differences of lemon essential oils (LEOs) obtained by cold-pressing vs. hydrodistillation. Pathological observations showed that LEO effectively inhibited liver injury caused by oxidative stress, and CPLEO was more effective than HDLEO. CPLEO increased serum T-AOC, SOD, GSH, and GSH-Px levels while decreasing NO, COX-2, IL-6, IL-1β, IFN-γ, and TNF-α levels in mice with oxidative damage. The effects of CPLEO were stronger than those of HDLEO and similar to those of vitamin C. CPLEO upregulated mRNA and protein expressions of Cu/Zn-SOD, Mn-SOD, CAT, HO-1, Nrf2, and NQO1 while downregulating nNOS, iNOS, IL-1β, COX-2, TNF-α, and NF-κB mRNA expression and nNOS, eNOS, iNOS, and COX-2 protein expression in mice with oxidative damage. The results demonstrate that LEO has good antioxidant effects and that CPLEO has a better antioxidant effect than HDLEO as it retains more active non-volatile substances.
Collapse
Affiliation(s)
- Guijie Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Sha Xiang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yujiao Cheng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Leng Han
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
27
|
Liu M, Li H, Zhang L, Xu Z, Song Y, Wang X, Chu R, Xiao Y, Sun M, Ma Y, Mi W. Cottonseed Oil Alleviates Ischemic Stroke-Induced Oxidative Stress Injury Via Activating the Nrf2 Signaling Pathway. Mol Neurobiol 2021; 58:2494-2507. [PMID: 33443681 DOI: 10.1007/s12035-020-02256-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023]
Abstract
Oxidative stress is believed to be one of the primary causes in ischemic stroke injury, and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is the most important endogenous antioxidative stress damage pathway. Cottonseed oil (CSO), which is used mostly as a solvent for lipid-soluble drugs, has been shown to exert antioxidative effects against peripheral tissue injury. However, the effects and mechanisms of CSO on ischemic stroke-induced oxidative stress injury and the Nrf2 signaling pathway remain largely unknown. In this study, we investigated the potential of CSO in regulating oxidative stress injury induced by middle cerebral artery occlusion and reperfusion (MCAO-R), or oxygen and glucose deprivation and reperfusion (OGD-R). We found that 1.3 mL/kg CSO treatment of male rats with a subcutaneous injection once every other day for 3 weeks significantly improved neurological deficit; reduced infarction volume; alleviated neuronal injuries; reduced the content of ROS and MDA; increased the activity of SOD, GSH, and GSH-PX; and markedly increased the expression of Nrf2. Furthermore, treatment with 10-9 μL/mL CSO to a neuron cell line (HT-22) for 24 h significantly increased cell viability and decreased cell apoptosis after OGD-R injury; significantly reduced the levels of ROS and MDA; increased the activity of SOD, GSH, and GSH-PX; and induced an increase in Nrf2 nuclear translocation. Based on our findings, we conclude that CSO treatment alleviates ischemic stroke injury-induced oxidative stress via activating the Nrf2 signaling pathway, highlighting the potential that CSO has as a therapeutic for ischemic strokes.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Zhipeng Xu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuxiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Wang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruitong Chu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunming Xiao
- Medical School of Chinese PLA, Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Miao Sun
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
28
|
Plotnikov MB, Plotnikova TM. Tyrosol as a Neuroprotector: Strong Effects of a "Weak" Antioxidant. Curr Neuropharmacol 2021; 19:434-448. [PMID: 32379590 PMCID: PMC8206466 DOI: 10.2174/1570159x18666200507082311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
The use of neuroprotective agents for stroke is pathogenetically justified, but the translation of the results of preclinical studies of neuroprotectors into clinical practice has been a noticeable failure. One of the leading reasons for these failures is the one-target mechanism of their activity. p-Tyrosol (Tyr), a biophenol, is present in a variety of natural sources, mainly in foods, such as olive oil and wine. Tyr has a wide spectrum of biological activity: antioxidant, stress-protective, anti-inflammatory, anticancer, cardioprotective, neuroprotective and many others. This review analyzes data on the neuroprotective, antioxidant, anti-inflammatory, anti-apoptotic and other kinds of Tyr activity as well as data on the pharmacokinetics of the substance. The data presented in the review substantiate the acceptability of tyr as the basis for the development of a new neuroprotective drug with multitarget activity for the treatment of ischemic stroke. Tyr is a promising molecule for the development of an effective neuroprotective agent for use in ischemic stroke.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk 634028, Russian Federation
| | | |
Collapse
|
29
|
Fan J, Li L, Qu P, Diao Y, Sun Y. κ‑opioid receptor agonist U50488H attenuates postoperative cognitive dysfunction of cardiopulmonary bypass rats through the PI3K/AKT/Nrf2/HO‑1 pathway. Mol Med Rep 2021; 23:293. [PMID: 33649775 PMCID: PMC7931006 DOI: 10.3892/mmr.2021.11933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/29/2020] [Indexed: 02/04/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following cardiopulmonary bypass (CPB). U50488H, a κ‑opioid receptor (KOR) agonist, can specifically activate KORs on hippocampal nerve cells, resulting in neuroprotective effects. The present study established a CPB rat model, observed the protective effect of U50488H on CPB‑induced POCD and brain damage and explored the regulatory mechanism of the PI3K/AKT/nuclear factor erythroid 2‑related factor 2 (Nrf2)/heme oxygenase (HO)‑1 pathway. Sprague‑Dawley rats were divided into the following groups: Sham operation (Sham group), CPB (CPB group), KOR agonist (U50488H) + CPB (U50488H group), CPB + U50488H + HO‑1 antagonist (ZnPP‑IX; ZnPP group) and CPB + U50488H + PI3K antagonist (LY294002; LY294002 group), with 10 rats in each group. Neurological scores and the Morris water maze test were used to evaluate cognitive function; hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling assays were performed to observe hippocampal neuron damage in rats. Immunofluorescence was used to detect reactive oxygen species, glial fibrillary acidic protein and Nrf2 expression in the hippocampus. Enzyme‑linked immunosorbent assays were used to detect inflammatory and oxidative stress factors. Western blotting was used to examine the expression of PI3K/AKT/Nrf2/HO‑1‑related proteins. It was demonstrated that U50488H significantly reduced the neural function score of rats with POCD induced by CPB, relieved cognitive dysfunction, reduced hippocampal neuron damage, inhibited the rate of apoptosis, repaired oxidative stress injury and protected against brain damage caused by CPB. In addition, U50488H could promote Nrf2 entry into the nucleus and upregulate HO‑1 and thioredoxin 1 (Trx1) expression. In CPB rats treated with PI3K inhibitors, less Nrf2 was detected in the nucleus and HO‑1 and Trx‑1 expression levels were reduced in the nucleus. Therefore, U50488H, a KOR agonist, can activate Nrf2/HO‑1 via the PI3K/AKT pathway to improve cognitive function and reduce brain damage in CPB rats.
Collapse
Affiliation(s)
- Jianing Fan
- Postgraduate Training Base of The General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121013, P.R. China
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Long Li
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Pengxia Qu
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yingjie Sun
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
30
|
Li YL, Zhou DJ, Cui ZG, Sun L, Feng QW, Zakki SA, Hiraku Y, Wu CA, Inadera H. The molecular mechanism of a novel derivative of BTO-956 induced apoptosis in human myelomonocytic lymphoma cells. Apoptosis 2021; 26:219-231. [PMID: 33738673 DOI: 10.1007/s10495-021-01664-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant cancer of the hematopoietic system. Although the effectiveness of arsenic compounds has been recognized and applied clinically, some patients are still found resistant to this chemotherapy. In this study, we investigated that a synthetic thyroid hormone analog (TA), 2-iodo-4-nitro-1-(o-tolyloxy) benzene, had a strong apoptosis effect on U937 cells. U937 cells were treated with TA, and examinted the generation of reactive oxygen species (ROS), dysfunction of mitochondria, expression of pro-apoptosis and anti-apoptosis, and cleavage of caspase-3 and Poly (ADP-ribose) polymerase (PARP). Further, it is also evaluated that insight molecular mechanism and signaling pathways involved in the study. It is found that TA significantly induced apoptosis in U937 cells through production of ROS, dysfunction of mitochondria, and activation of caspase cascade. It was also observed that MAPK signaling pathway including ERK, JNK, and P38 signals are involved in the induction of apoptosis. Moreover, marked activation of autophagy and ER stress markers such as LC3, P62, Beclin1 and GRP78, CHOP were observed, respectively. Pretreatment with ER stress inhibitor tauroursodeoxycholic acid (TUDCA) and autophagy inhibitor 3-Methyladenine (3-MA) have successfully attenuated and aggravated TA-induced apoptosis, respectively. We further confirmed the active involvement of ER stress and autophagy signals. In conclusion, TA induced apoptosis through ER stress and activation of autophagy, and the latter is not conducive to TA-induced cell death. Our results may provide a new insight into the strategic development of novel therapy for the treatment of AML.
Collapse
Affiliation(s)
- Yu-Lin Li
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - De-Jun Zhou
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka Shimoaizuki Eiheiji, Fukui, 910-1193, Japan
| | - Lu Sun
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qian-Wen Feng
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shahbaz Ahmad Zakki
- Department of Public Health and Nutrition, The University of Haripur, Hattar Road, Haripur, KP, Pakistan
| | - Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Sciences, 23-3 Matsuoka Shimoaizuki Eiheiji, Fukui, 910-1193, Japan
| | - Cheng-Ai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Xicheng District Xinjiekou East Street on the 31st, Beijing, 100035, China.
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
31
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, Chen YT, Tsai FY, Lin SF, Chuang YJ, Kuo CC. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics 2021; 11:5232-5247. [PMID: 33859744 PMCID: PMC8039948 DOI: 10.7150/thno.53417] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: NRF2, a redox sensitive transcription factor, is up-regulated in head and neck squamous cell carcinoma (HNSCC), however, the associated impact and regulatory mechanisms remain unclear. Methods: The protein expression of NRF2 in HNSCC specimens was examined by IHC. The regulatory effect of c-MYC on NRF2 was validated by ChIP-qPCR, RT-qPCR and western blot. The impacts of NRF2 on malignant progression of HNSCC were determined through genetic manipulation and pharmacological inhibition in vitro and in vivo. The gene-set enrichment analysis (GSEA) on expression data of cDNA microarray combined with ChIP-qPCR, RT-qPCR, western blot, transwell migration/ invasion, cell proliferation and soft agar colony formation assays were used to investigate the regulatory mechanisms of NRF2. Results: NRF2 expression is positively correlated with malignant features of HNSCC. In addition, carcinogens, such as nicotine and arecoline, trigger c-MYC-directed NRF2 activation in HNSCC cells. NRF2 reprograms a wide range of cancer metabolic pathways and the most notable is the pentose phosphate pathway (PPP). Furthermore, glucose-6-phosphate dehydrogenase (G6PD) and transketolase (TKT) are critical downstream effectors of NRF2 that drive malignant progression of HNSCC; the coherently expressed signature NRF2/G6PD/TKT gene set is a potential prognostic biomarker for prediction of patient overall survival. Notably, G6PD- and TKT-regulated nucleotide biosynthesis is more important than redox regulation in determining malignant progression of HNSCC. Conclusions: Carcinogens trigger c-MYC-directed NRF2 activation. Over-activation of NRF2 promotes malignant progression of HNSCC through reprogramming G6PD- and TKT-mediated nucleotide biosynthesis. Targeting NRF2-directed cellular metabolism is an effective strategy for development of novel treatments for head and neck cancer.
Collapse
|
33
|
Alam B, Lǐ J, Gě Q, Khan MA, Gōng J, Mehmood S, Yuán Y, Gǒng W. Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? FRONTIERS IN PLANT SCIENCE 2021; 12:791033. [PMID: 34975976 PMCID: PMC8718612 DOI: 10.3389/fpls.2021.791033] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Endophytic fungi (EF) are a group of fascinating host-associated fungal communities that colonize the intercellular or intracellular spaces of host tissues, providing beneficial effects to their hosts while gaining advantages. In recent decades, accumulated research on endophytic fungi has revealed their biodiversity, wide-ranging ecological distribution, and multidimensional interactions with host plants and other microbiomes in the symbiotic continuum. In this review, we highlight the role of secondary metabolites (SMs) as effectors in these multidimensional interactions, and the biosynthesis of SMs in symbiosis via complex gene expression regulation mechanisms in the symbiotic continuum and via the mimicry or alteration of phytochemical production in host plants. Alternative biological applications of SMs in modern medicine, agriculture, and industry and their major classes are also discussed. This review recapitulates an introduction to the research background, progress, and prospects of endophytic biology, and discusses problems and substantive challenges that need further study.
Collapse
Affiliation(s)
- Beena Alam
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mueen Alam Khan
- Department of Plant Breeding & Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shahid Mehmood
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Wànkuí Gǒng,
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Yǒulù Yuán,
| |
Collapse
|
34
|
Soleymani S, Habtemariam S, Rahimi R, Nabavi SM. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Laying Diet Supplementation with Ricinus communis L. leaves and Evaluation of Productive Performance and Potential Modulation of Antioxidative Status. J Poult Sci 2020; 57:259-269. [PMID: 33132725 PMCID: PMC7596032 DOI: 10.2141/jpsa.0190077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study evaluated the antioxidant capacity of Ricinus communis L. (RC) leaves and powder when used as a feed additive for laying hens. Results showed that the total phenolic content of the aqueous leaf extract of Ricinus communis L. (RCE) was 48.39 mg gallic acid equivalent (GAE) per gram dry weight (DW). The flavonoid content was 9.76 mg quercetin dihydrate equivalent (QE)/g DW. Ferrous chelating activity was approximately 56.2% with an RCE concentration of 1 mg/mL; the highest chelating activity was 91.2% with 4 mg/mL extract. The reducing power of 1 mg/mL RC was 1.17 times better than 1 mg/mL butylated hydroxytoluene (BHT). The Trolox equivalent antioxidant capacity (TEAC) value of 12.5 mg/mL RCE was equivalent to 3.09 mg/mL Trolox. RCE (10 mg/mL) had a lipid oxidative inhibition capacity of 35.3%. A total of 80 ISA brown laying hens at twenty-nine weeks of age were randomly allocated into the control or 1 of 3 treatment groups; the latter received 0.5%, 1% or 2% of RC, respectively, for 12 weeks. Results showed that the RC supplementation improved the feed conversion rate and 0.5% RC generated the best results. Additionally, the egg yolk score was significantly increased in all RC-supplemented groups. Moreover, there was no significant difference in serum characteristics between the treatment groups. Serum antioxidant enzyme activity showed that superoxide dismutase (SOD) activity increased in the RC-supplemented groups relative to the control but was not significantly different. mRNA expression levels of the antioxidant regulatory genes GCLC, GST, HO-1, SOD1, and SOD2 were significantly increased with 2% RC supplementation. In summary, RC is a suitable feed additive for laying hens and the addition of 0.5% RC leaf powder resulted in the greatest benefits.
Collapse
|
36
|
Antonia P, Erica C, Alessio F, Mirko P, Francesca D, Oriana T, Marcella R. Short ELF-EMF Exposure Targets SIRT1/Nrf2/HO-1 Signaling in THP-1 Cells. Int J Mol Sci 2020; 21:E7284. [PMID: 33023074 PMCID: PMC7582394 DOI: 10.3390/ijms21197284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extremely low frequency electromagnetic fields (ELF-EMFs) have been known to modulate inflammatory responses by targeting signal transduction pathways and influencing cellular redox balance through the generation of oxidants and antioxidants. Here, we studied the molecular mechanism underlying the anti-oxidative effect of ELF-EMF in THP-1 cells, particularly with respect to antioxidant enzymes, such as heme oxygenase-1 (HO-1), regulated transcriptionally through nuclear factor E2-related factor 2 (Nrf2) activation. Cells treated with lipopolysaccharides (LPS) were exposed to a 50 Hz, 1 mT extremely low frequency electromagnetic fields for 1 h, 6 h and, 24 h. Our results indicate that ELF-EMF induced HO-1 mRNA and protein expression in LPS-treated THP-1 cells, with peak expression at 6 h, accompanied with a concomitant migration to the nucleus of a truncated HO-1 protein form. The immunostaining analysis further verified a nuclear enrichment of HO-1. Moreover, ELF-EMF inhibited the protein expressions of the sirtuin1 (SIRT1) and nuclear factor kappa B (NF-kB) pathways, confirming their anti-inflammatory/antioxidative role. Pretreatment with LY294002 (Akt inhibitor) and PD980559 (ERK inhibitor) inhibited LPS-induced Nrf2 nuclear translocation and HO-1 protein expression in ELF-EMF-exposed cells. Taken together, our results suggest that short ELF-EMF exposure exerts a protective role in THP-1 cells treated with an inflammatory/oxidative insult such as LPS, via the regulation of Nrf-2/HO-1 and SIRT1 /NF-kB pathways associated with intracellular glutathione (GSH) accumulation.
Collapse
Affiliation(s)
- Patruno Antonia
- Department of Medicine and Science of Aging, University “G. D’Annunzio”, 66100 Chieti, Italy; (P.A.); (F.A.); (P.M.)
| | - Costantini Erica
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio”, 66100 Chieti, Italy; (D.F.); (T.O.); (R.M.)
| | - Ferrone Alessio
- Department of Medicine and Science of Aging, University “G. D’Annunzio”, 66100 Chieti, Italy; (P.A.); (F.A.); (P.M.)
| | - Pesce Mirko
- Department of Medicine and Science of Aging, University “G. D’Annunzio”, 66100 Chieti, Italy; (P.A.); (F.A.); (P.M.)
| | - Diomede Francesca
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio”, 66100 Chieti, Italy; (D.F.); (T.O.); (R.M.)
| | - Trubiani Oriana
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio”, 66100 Chieti, Italy; (D.F.); (T.O.); (R.M.)
| | - Reale Marcella
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio”, 66100 Chieti, Italy; (D.F.); (T.O.); (R.M.)
| |
Collapse
|
37
|
Wu J, Ni Y, Yang Q, Mao J, Zhu X, Tao S, Kato K, Zhang J, Wang D, Yamanaka K, An Y. Long-term arsenite exposure decreases autophagy by increased release of Nrf2 in transformed human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139425. [PMID: 32450402 DOI: 10.1016/j.scitotenv.2020.139425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Autophagy dysfunction in arsenite toxicity plays critical roles in cancer development and progression. However, the precise mechanisms of arsenite-induced skin cancer by blocking autophagy remain uncertain. Herein, this study investigated molecular mechanisms of arsenite-induced autophagy dysfunction mediated by nuclear factor erythroid-2 related factor 2 (Nrf2) in human keratinocyte (HaCaT) cells. The effects of long-term arsenite exposure on Nrf2 activation and autophagy were established using a siRNA interference assay and western blots. A specific siRNA of Nrf2 was used to verify that autophagy induced by arsenite can be influenced by Nrf2. Specific inhibitors of PI3K (LY294002) and mTOR (Rapamycin) and siRNA of Nrf2 were employed to verify that upregulation of Nrf2 correlated with activating the PI3K/Akt pathway. Downstream mTOR and Bcl2 were upregulated by Nrf2 signaling, inhibiting autophagy initiation in arsenite-exposed HaCaT cells. In conclusion, our data suggest that long-term exposure to arsenite promotes Nrf2 upregulation via the PI3K/Akt pathway and, along with upregulation of downstream mTOR and Bcl2, contributes to autophagy dysfunction in transformed HaCaT cells. This work provides new insights into the mechanisms underlying arsenite-induced autophagy dysfunction in cancer promotion and malignancy progression.
Collapse
Affiliation(s)
- Jing Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yiping Ni
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Xuerui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
38
|
Osrodek M, Rozanski M, Czyz M. Insulin Reduces the Efficacy of Vemurafenib and Trametinib in Melanoma Cells. Cancer Manag Res 2020; 12:7231-7250. [PMID: 32982400 PMCID: PMC7501594 DOI: 10.2147/cmar.s263767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the progress made in the clinical management of metastatic melanoma, a patient's response to treatment cannot be fully predicted, and intrinsic or acquired resistance that is developed in most melanoma patients warrants further research efforts. In addition to genetic factors, microenvironmental input should be considered to explain the diversity of response to treatment among melanoma patients. In this study, we evaluated the impact of insulin on patient-derived BRAFV600E melanoma cells, either untreated or treated with vemurafenib or trametinib, inhibitors of BRAFV600 and MEK1/2, respectively. METHODS Cells were cultured in serum-free conditions, either with or without insulin. The activity of the MAPK/ERK and PI3K/AKT pathways was assessed by Western blotting, cell viability, and percentages of Ki-67- and NGFR-positive cells by flow cytometry. Transcript levels were analyzed using qRT-PCR, and γ-H2AX levels by immunoblotting and confocal microscopy. A luminescence-based assay was used to measure glutathione content. RESULTS While insulin did not influence the MAPK/ERK pathway activity, it had a strong influence on melanoma cells, in which this pathway was suppressed by either vemurafenib or trametinib. In the presence of insulin, both drugs were much less efficient in 1) inhibiting proliferation and reducing the percentage of Ki-67-positive cells, and 2) inducing apoptosis and phosphorylation of histone H2AX in melanoma cells. Changes induced by vemurafenib and trametinib in glutathione homeostasis and DNA repair gene expression were also attenuated by insulin. Moreover, insulin impaired the combined effects of targeted drugs and doxorubicin in melanoma cells. In addition to insulin-induced PI3K/AKT activity, which was either transient or sustainable depending on the cell line, an insulin-triggered increase in the percentage of cells expressing NGFR, a marker of neural crest stem-like cells, may contribute to the reduced drug efficacy. CONCLUSION Our results demonstrate the role of insulin in reducing the efficacy of vemurafenib and trametinib. This needs clinical assessment.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Michal Rozanski
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
39
|
Wang H, Zhang K, Ruan Z, Sun D, Zhang H, Lin G, Hu L, Zhao S, Fu Q. Probucol enhances the therapeutic efficiency of mesenchymal stem cells in the treatment of erectile dysfunction in diabetic rats by prolonging their survival time via Nrf2 pathway. Stem Cell Res Ther 2020; 11:302. [PMID: 32693824 PMCID: PMC7374958 DOI: 10.1186/s13287-020-01788-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Intracavernous injection of mesenchymal stem cells (MSCs) is a promising method for diabetic mellitus-induced erectile dysfunction (DMED), but short survival time of MSCs in cavernous is a fatal defect for therapy. This study investigated therapeutic efficiency and potential mechanism of probucol combined with MSCs. METHODS In vivo study, a total of forty-eight 10-week-old male Sprague-Dawley (SD) rats were used. Twelve rats received intraperitoneal injection of PBS as the sham group; the rest received intraperitoneal injection of 60 mg/kg streptozotocin to establish DM models. DM rats were randomly divided into three groups: received intracavernosal (IC) injection of either PBS (DM group), MSCs (M group), or administrated probucol after intracavernosal injection of MSCs (P + M group). Erectile function was assessed by electrical stimulation of the cavernous nerves with real-time intracavernous pressure measurement. After euthanasia, penile tissue was investigated for histologic examination and Western blotting. In in vitro experiment, H2O2 was used to create oxidative stress environment to detect changes in cell viability. CCK8 was used to measure cell viability of MSCs treated with or without probucol. Intracellular ROS changes were detected by flow cytometry. Autophagy and apoptosis were detected by Western blotting and confocal microscopy. RESULTS Recovery of erectile function was observed in the P + M group. The combination therapy decreased fibrosis and increased endothelial function compared with MSC therapy alone. Western blotting results confirmed the increased expression of Nrf2 and HO-1 in cavernous body. H2O2 induced high oxidative stress and reduced cell viability in vitro, which was gradually reversed with increased concentration of probucol. H2O2 reduced Nrf2 expression, which was reversed by probucol's intervention. Furthermore, the expression of Bax, Caspase3, and Cleaved-Caspase3 decreased, and the expression of Bcl-2 increased in a dose-dependent manner because of probucol's intervention. In addition, Beclin1 and LC3II both increased in a dose-dependent manner. Meanwhile, the expression of P62 decreased. In the study of autophagy flux, we found probucol did not block it. CONCLUSION Probucol enhanced therapeutic efficiency of MSCs in DMED by prolonging their survival time, which mediated through improving the transplanted microenvironment of MSCs, increasing self-antioxidant ability of MSCs, strengthening protective autophagy, and inhibiting apoptosis of MSCs via Nrf2 pathway. Schematic model showing combined probucol and MSCs to improve DMED. Probucol increases self-antioxidant ability of MSCs, strengthening protective autophagy and inhibiting apoptosis via Nrf2/HO-1 and Nrf2/autophagy pathways.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Tai'an City Central Hospital, Tai'an, 271000, People's Republic of China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Liangliang Hu
- Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, 277000, People's Republic of China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
40
|
Kao YT, Chen YS, Tang KW, Lee JC, Tseng CH, Tzeng CC, Yen CH, Chen YL. Discovery of 4-Anilinoquinolinylchalcone Derivatives as Potential NRF2 Activators. Molecules 2020; 25:molecules25143133. [PMID: 32650607 PMCID: PMC7396997 DOI: 10.3390/molecules25143133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Activation of nuclear factor erythroid-2-related factor 2 (NRF2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent NRF2 activator and cancer chemopreventive agent. In this study, we have synthesized a series of 4-anilinoquinolinylchalcone derivatives, and used a NRF2 promoter-driven firefly luciferase reporter stable cell line, the HaCaT/ARE cells, to screen a panel of these compounds. Among them, (E)-3-{4-[(4-acetylphenyl)amino]quinolin-2-yl}-1-(4-fluorophenyl)prop-2-en-1-one (13b) significantly increased NRF2 activity in the HaCaT cell with a half maximal effective concentration (EC50) value of 1.95 μM. Treatment of compound 13b upregulated HaCaT cell NRF2 expression at the protein level. Moreover, the mRNA level of NRF2 target genes, heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glucose-6-phosphate dehydrogenase (G6PD) were significantly increased in HaCaT cells upon the compound 13b treatment. The molecular docking results exhibited that the small molecule 13b is well accommodated by the bound region of Kelch-like ECH-associated protein 1 (Keap1)-Kelch and NRF2 through stable hydrogen bonds and hydrophobic interaction, which contributed to the enhancement of affinity and stability between the ligand and receptor. Compound 13b has been identified as the lead compound for further structural optimization.
Collapse
Affiliation(s)
- Yu-Tse Kao
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.K.); (C.-C.T.)
| | - Yi-Siao Chen
- Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kai-Wei Tang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-W.T.); (C.-H.T.)
| | - Jin-Ching Lee
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-W.T.); (C.-H.T.)
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.K.); (C.-C.T.)
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-H.Y.); (Y.-L.C.); Tel.: +886-7-3121101 (ext. 2684) (C.-H.Y.); Fax: +886-7-3125339 (C.-H.Y.)
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.K.); (C.-C.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-H.Y.); (Y.-L.C.); Tel.: +886-7-3121101 (ext. 2684) (C.-H.Y.); Fax: +886-7-3125339 (C.-H.Y.)
| |
Collapse
|
41
|
Talabnin C, Talabnin K, Wongkham S. Enhancement of piperlongumine chemosensitivity by silencing heme oxygenase-1 expression in cholangiocarcinoma cell lines. Oncol Lett 2020; 20:2483-2492. [PMID: 32782567 DOI: 10.3892/ol.2020.11784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Piperlongumine (PL) produces reactive oxygen species (ROS) and induces G2/M-phase arrest in cholangiocarcinoma (CCA) cells via the JNK/ERK pathway. A differential response to PL was observed among all CCA cell lines However, the underlying mechanisms have remained to be fully elucidated. The aim of the present study was to investigate the molecular mechanisms of PL-induced heme oxygenase-1 (HO-1) expression in CCA cell lines. The anti-proliferative action of PL in the CCA cell lines KKU-100 and KKU-213A was analyzed using sulforhodamine B assays. Reverse transcription-quantitative PCR and western blot analyses were used to examine mRNA and protein expression. HO-1 inhibition was achieved using the chemical inhibitor zinc protophoryn or specific small interfering RNA to HO-1. Intracellular ROS was detected using a 2,7-dichlorodihydrofluorescein diacetate fluorescence assay. High expression of phase-II detoxification enzymes, including NADPH quinone oxidoreductase-1, heme oxygenase-1, superoxide dismutases and aldo-keto reductase 1 subunits C-1 and 3, were detected in the KKU-100 cell line. Of the CCA cell lines tested, KKU-100 was the least sensitive to PL. Dose-dependent upregulation of HO-1 expression via PI3K/Akt activation was detected in PL-treated CCA cells. Inhibition of HO-1 eliminated the antioxidant defense mechanisms, leading to increased anti-cancer activity of PL in the CCA cell lines via an increase in intracellular ROS levels and apoptotic protein expression. These observations indicated that HO-1 inhibition had a chemosensitizing effect on CCA to PL.
Collapse
Affiliation(s)
- Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Krajang Talabnin
- School of Pathology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
42
|
Devaraj RD, Jeepipalli SP, Xu B. Phytochemistry and health promoting effects of Job's tears (Coix lacryma-jobi) - A critical review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Paunkov A, Chartoumpekis DV, Ziros PG, Chondrogianni N, Kensler TW, Sykiotis GP. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Curr Pharm Des 2020; 25:1828-1846. [PMID: 31267862 DOI: 10.2174/1381612825666190701165821] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Natural compounds with potential antioxidant properties have been used in the form of food supplements or extracts with the intent to prevent or treat various diseases. Many of these compounds can activate the cytoprotective Nrf2 pathway. Besides, some of them are known to impact the thyroid gland, often with potential side-effects, but in other instances, with potential utility in the treatment of thyroid disorders. OBJECTIVE In view of recent data regarding the multiple roles of Nrf2 in the thyroid, this review summarizes the current bibliography on natural compounds that can have an effect on thyroid gland physiology and pathophysiology, and it discusses the potential implication of the Nrf2 system in the respective mechanisms. METHODS & RESULTS Literature searches for articles from 1950 to 2018 were performed in PubMed and Google Scholar using relevant keywords about phytochemicals, Nrf2 and thyroid. Natural substances were categorized into phenolic compounds, sulfur-containing compounds, quinones, terpenoids, or under the general category of plant extracts. For individual compounds in each category, respective data were summarized, as derived from in vitro (cell lines), preclinical (animal models) and clinical studies. The main emerging themes were as follows: phenolic compounds often showed potential to affect the production of thyroid hormones; sulfur-containing compounds impacted the pathogenesis of goiter and the proliferation of thyroid cancer cells; while quinones and terpenoids modified Nrf2 signaling in thyroid cell lines. CONCLUSION Natural compounds that modify the activity of the Nrf2 pathway should be evaluated carefully, not only for their potential to be used as therapeutic agents for thyroid disorders, but also for their thyroidal safety when used for the prevention and treatment of non-thyroidal diseases.
Collapse
Affiliation(s)
- Ana Paunkov
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Department of Internal Medicine, Endocrinology Unit, Patras University Medical School, Patras, Greece
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Li Q, Xing S, Chen Y, Liao Q, Li Q, Liu Y, He S, Feng F, Chen Y, Zhang J, Liu W, Guo Q, Sun Y, Sun H. Reasonably activating Nrf2: A long-term, effective and controllable strategy for neurodegenerative diseases. Eur J Med Chem 2019; 185:111862. [PMID: 31735576 DOI: 10.1016/j.ejmech.2019.111862] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are a variety of debilitating and fatal disorder in central nervous system (CNS). Besides targeting neuronal activity by influencing neurotransmitters or their corresponding receptors, modulating the underlying processes that lead to cell death, such as oxidative stress and mitochondrial dysfunction, should also be emphasized as an assistant strategy for neurodegeneration therapy. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been closely verified to be related to anti-inflammation and oxidative stress, rationally regulating its belonging pathway and activating Nrf2 is emphasized to be a potential treatment approach. There have existed multiple Nrf2 activators with different mechanisms and diverse structures, but those applied for neuro-disorders are still limited. On the basis of research arrangement and compound summary, we put forward the limitations of existing Nrf2 activators for neurodegenerative diseases and their future developing directions in enhancing the blood-brain barrier permeability to make Nrf2 activators function in CNS and designing Nrf2-based multi-target-directed ligands to affect multiple nodes in pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuaishuai Xing
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qihang Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yang Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siyu He
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, No.4 Meicheng Road, Huai'an, 223003, PR China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenyuan Liu
- Department of Analytical Chemistry, School of Pharmacy, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuan Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817, USA
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Food and Pharmaceutical Science College, No.4 Meicheng Road, Huai'an, 223003, PR China.
| |
Collapse
|
45
|
Sha JY, Zhou YD, Yang JY, Leng J, Li JH, Hu JN, Liu W, Jiang S, Wang YP, Chen C, Li W. Maltol (3-Hydroxy-2-methyl-4-pyrone) Slows d-Galactose-Induced Brain Aging Process by Damping the Nrf2/HO-1-Mediated Oxidative Stress in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10342-10351. [PMID: 31461273 DOI: 10.1021/acs.jafc.9b04614] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Maltol, a maillard reaction product from ginseng (Panax ginseng C. A. Meyer), has been confirmed to inhibit oxidative stress in several animal models. Its beneficial effect on oxidative stress related brain aging is still unclear. In this study, the mouse model of d-galactose (d-Gal)-induced brain aging was employed to investigate the therapeutic effects and potential mechanisms of maltol. Maltol treatment significantly restored memory impairment in mice as determined by the Morris water maze tests. Long-term d-Gal treatment reduced expression of cholinergic regulators, i.e., the cholineacetyltransferase (ChAT) (0.456 ± 0.10 vs 0.211 ± 0.03 U/mg prot), the acetylcholinesterase (AChE) (36.4 ± 5.21 vs 66.5 ± 9.96 U/g). Maltol treatment prevented the reduction of ChAT and AChE in the hippocampus. Maltol decreased oxidative stress levels by reducing levels of reactive oxygen species (ROS) and malondialdehyde (MDA) production in the brain and by elevating antioxidative enzymes. Furthermore, maltol treatment minimized oxidative stress by increasing the phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1). The above results clearly indicate that supplementation of maltol diminishes d-Gal-induced behavioral dysfunction and neurological deficits via activation of the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in brain. Maltol might become a potential drug to slow the brain aging process and stimulate endogenous antioxidant defense capacity. This study provides the novel evidence that maltol may slow age-associated brain aging.
Collapse
Affiliation(s)
- Ji-Yue Sha
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Yan-Dan Zhou
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jia-Yu Yang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jing Leng
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jian-Hao Li
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Wei Liu
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Shuang Jiang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development , Changchun 130118 , China
| | - Chen Chen
- School of Biomedical Sciences , The University of Queensland , Brisbane 4072 , Australia
| | - Wei Li
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun 130118 , China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development , Changchun 130118 , China
| |
Collapse
|
46
|
Xia T, Zhang B, Duan W, Li Y, Zhang J, Song J, Zheng Y, Wang M. Hepatoprotective efficacy of Shanxi aged vinegar extract against oxidative damage in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Zhang XL, Wang ZZ, Shao QH, Zhang Z, Li L, Guo ZY, Sun HM, Zhang Y, Chen NH. RNAi-mediated knockdown of DJ-1 leads to mitochondrial dysfunction via Akt/GSK-3ß and JNK signaling pathways in dopaminergic neuron-like cells. Brain Res Bull 2019; 146:228-236. [PMID: 30634017 DOI: 10.1016/j.brainresbull.2019.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/27/2022]
Abstract
Deletions or some mutations in the gene encoding the multifunctional protein, DJ-1, have been considered to be linked with autosomal recessive early onset Parkinson's disease (PD). Current emerging evidence suggests that DJ-1 is involved in the protection against oxidative stress-induced mitochondrial damage. However, the exact molecular mechanisms underlying this are not completely clear. The aim of this study was to investigate the effects of DJ-1 on the Akt pathway, nuclear factor erythroid 2-related factor (Nrf2), and c-Jun N-terminal kinase (JNK) with regard to modulating mitochondrial function. Here we showed that knockdown of DJ-1 resulted in mitochondrial dysfunction, including a decrease in active mitochondrial mass, complex I deficits, and inhibition of cellular adenosine 5'-triphosphate (ATP) content in the dopaminergic neuron-like cells PC12 and SH-SY5Y. Additionally, loss of DJ-1 impaired Akt signaling, and reduced nuclear translocation of Nrf2, thereby inhibiting activity of Nrf2-regulated downstream antioxidant enzymes such as heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. Moreover, DJ-1 knockdown also led to a significant increase in the mitochondrial reactive oxygen species, and then promoted the activation of JNK pathways. Furthermore, oxidative stress and mitochondrial dysfunction induced by knockdown of DJ-1 were blocked by a JNK inhibitor, which confirmed the important role of JNK activation in mitochondrial dysfunction. In conclusion, the present study indicates that DJ-1 knockdown leads to mitochondrial dysfunction in dopaminergic neuron-like cells, at least in part, through suppressing the Akt/GSK3β pathway and impairing the oxidative stress response, as well as through the subsequent increased JNK activation in dopaminergic neuron-like cells.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Li
- Key Laboratory of Neurodegenerative Diseases of Ministry of Education, Capital Medical University, Beijing 100053, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
48
|
Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2018; 120:10248-10272. [PMID: 30592328 DOI: 10.1002/jcb.28309] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sona Refieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
49
|
Antioxidant Potential of Herbal Preparations and Components from Galactites elegans (All.) Nyman ex Soldano. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9294358. [PMID: 30410560 PMCID: PMC6206561 DOI: 10.1155/2018/9294358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
Abstract
Galactites is a genus of flowering plants belonging to Asteraceae family. This genus is mainly represented by the Galactites elegans (All.) Nyman ex Soldano, the milky thistle, a plant of Mediterranean origin. Galactites elegans is consumed as a monofloral boar thistle honey. Chromatography separation of CHCl3 and n-BuOH extracts of aerial parts of G. elegans led to isolation of 18 pure compounds. Their structures were elucidated by 1D-and 2D-NMR spectroscopy and confirmed by mass spectrometry analysis. Sinapic aldehyde, abietin, chlorogenic acid, neochlorogenic acid, 8α-hydroxypinoresinol, 9α-hydroxypinoresinol, pinoresinol, 4-ketopinoresinol, nortrachelogenin, and erythro-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol were isolated from CHCl3 extract, while luteolin 4'-O-glucuronide, naringenin-7-O-neohesperidoside, kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, apigenin-7-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, quercitrin, quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, ciwujiatone, and nortrachelogenin-4,4'-di-O-β-D-glucopyranoside were obtained from n-BuOH extract. The majority of isolated compounds displayed a significant antioxidant potential in vitro test (DPPH). The ability of compounds to reduce the level of peroxides in control and BHP-treated Jurkat cells was studied. The lignan derivatives were also able to reduce at 50 μM the basal level of peroxides in Jurkat cells as well as counteract peroxide increase induced by BHP treatment. Particularly 8α-hydroxypinoresinol was the most active showing 70% of peroxide level inhibition.
Collapse
|
50
|
Ding M, Shu P, Gao S, Wang F, Gao Y, Chen Y, Deng W, He G, Hu Z, Li T. Schisandrin B protects human keratinocyte-derived HaCaT cells from tert-butyl hydroperoxide-induced oxidative damage through activating the Nrf2 signaling pathway. Int J Mol Med 2018; 42:3571-3581. [PMID: 30272282 DOI: 10.3892/ijmm.2018.3901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 11/05/2022] Open
Abstract
Schisandrin B (Sch B), an active extract of Schisandra chinensis, has demonstrated antioxidant activity in a number of in vitro and in vivo models. In the present study, the capacity of Sch B to protect against oxidative injury in keratinocytes using the human keratinocyte‑derived HaCaT cell line was investigated. To induce oxidative injury, tert‑Butyl hydroperoxide (tBHP) was employed. The results indicate that Sch B efficiently reduced tBHP‑induced cell death, reactive oxygen species (ROS) generation, protein oxidation, lipid peroxidation and DNA damage. Sch B also effectively attenuated the loss of mitochondrial membrane potential (MMP), and restored adenosine triphosphate (ATP) levels in tBHP‑injured HaCaT cells. Furthermore, Sch B enhanced the expression of key antioxidant enzymes, including catalase, heme oxygenase‑1, glutathione peroxidase, and superoxide dismutase, and further engaged the nuclear factor‑erythroid 2‑related factor 2 (Nrf2) signaling pathway by modulating its phosphorylation through activating multiple upstream kinases, including protein kinase B, adenosine monophosphate‑activated protein kinase and mitogen‑activated protein kinases (MAPKs). The present study suggests that Sch B provides a protective effect in keratinocytes in response to oxidative injury via reinforcing the endogenous antioxidant defense system. Therefore, it may be applied as an adjuvant therapy or in health foods to delay the skin aging process and the onset of skin diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Ming Ding
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| | - Peng Shu
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Shuang Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fenglou Wang
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Yitian Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Chen
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjuan Deng
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Gaiying He
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Zhenlin Hu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianduo Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| |
Collapse
|