1
|
Qian S, Tan G, Lei G, Zhang X, Xie Z. Programmed cell death in nasopharyngeal carcinoma: Mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2025; 1880:189265. [PMID: 39809344 DOI: 10.1016/j.bbcan.2025.189265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Programmed cell death is a type of autonomic and orderly cell death mode controlled by genes that maintain homeostasis and growth. Tumor is a typical manifestation of an imbalance in environmental homeostasis in the human body. Currently, several tumor treatments are designed to trigger the death of tumor cells. Nasopharyngeal carcinoma is one of the most common malignant tumors in China. It displays obvious regional and ethnic differences in its incidence, being typically high in the south and low in the north of China. Nasopharyngeal carcinoma is currently considered to be a polygenic inherited disease and is often mediated by the interaction between multiple genes or between genes and the environment. Apoptosis has long been considered the key to tumor treatment, while other cell death pathways have often been overlooked. The current study provides an overview of the relationship among apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and nasopharyngeal carcinoma, and the regulatory pathways of nasopharyngeal carcinoma based on five cell death modes were synthesized from the view of molecule. We hope this review will help explore additional, novel programmed cell death targets for the treatment of nasopharyngeal carcinoma and thus promote in-depth research.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School Of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Laboratory of Otolaryngology Head and Neck Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Otology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Ding X, Liu Y, Wan S, Yang Y, Liang R, Yang S, Zhang J, Cao X, Zhou M, Chen W. Cross-sectional and longitudinal associations of PAHs exposure with serum uric acid and hyperuricemia among Chinese urban residents: The potential role of oxidative damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124664. [PMID: 39098642 DOI: 10.1016/j.envpol.2024.124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
A few studies found polycyclic aromatic hydrocarbons (PAHs) were associated with serum uric acid (SUA) or hyperuricemia (HUA). However, the longitudinal study is vacant, and the underlying mechanisms remain unclear. We aimed to assess the cross-sectional and longitudinal associations of urinary PAHs metabolites with SUA levels and HUA risk, and explore the mediating effects of oxidative stress and inflammation. 10 urinary mono-hydroxylated PAHs metabolites and SUA levels were measured among 4047 Chinese urban residents at baseline and 1496 individuals at 6-year follow-up. Biomarkers of oxidative damage and inflammation in urine/plasma were determined at baseline. We adopted generalized linear mixed models and logistic regression to assess the associations of PAHs metabolites with SUA and HUA, weighted quantile sum regression and adaptive elastic net regression to evaluate the overall effects of multi-PAHs mixture, and mediation analysis to estimate the mediating roles of the biomarkers. In the cross-sectional study, each 1-unit increase in the ln-transformed values of 2-OHNa, 2-OHFlu, 4-OHPh, 9-OHPh, 3-OHPh, 2-OHPh, ΣOHNa, ΣOHPh, and ΣOHPAHs was associated with a 4.10-, 3.90-, 6.42-, 7.33-, 4.85-, 5.43-, 4.47-, 7.67-, and 5.22-μmol/L increase in SUA, respectively. Meanwhile, each 1-unit increase in the ln-transformed values of 1-OHNa, 2-OHNa, 4-OHPh, 9-OHPh, 3-OHPh, 2-OHPh, ΣOHNa, ΣOHPh, and ΣOHPAHs was associated with a 17, 14, 15, 22, 14, 19, 18, 27, and 21% increment in HUA risk, respectively. After 6 years, individuals with persistent high level of 9-OHPh had a 12.5 μmol/L increase in SUA compared with those with persistent low level. The overall effects of multi-PAHs mixture on SUA and HUA remain positive. 8-hydroxy-deoxyguanosine mediated the associations of PAHs metabolites with SUA and HUA, and the mediated proportion ranged from 5.39% to 15.34%. PAHs exposure was associated with the elevated SUA levels and increased HUA risk, and oxidative DNA damage may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Xuejie Ding
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yang Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuhui Wan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yueru Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Jiake Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiuyu Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Paing YMM, Eom Y, Lee SH. Benzopyrene represses mitochondrial fission factors and PINK1/Parkin-mediated mitophagy in primary astrocytes. Toxicology 2024; 508:153926. [PMID: 39147092 DOI: 10.1016/j.tox.2024.153926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mitochondria are essential for various physiological functions in astrocytes in the brain, such as maintaining ion and pH homeostasis, regulating neurotransmission, and modulating neuroinflammation. Mitophagy, a form of autophagy specific to mitochondria, is essential for ensuring mitochondrial quality and function. Benzo[a]pyrene (BaP) accumulates in the brain, and exposure to it is recognized as an environmental risk factor for neurodegenerative diseases. However, while the toxic mechanisms of BaP have been investigated in neurons, their effects on astrocytes-the most prevalent glial cells in the brain-are not clearly understood. Therefore, this study aims to investigate the toxic effects of exposure to BaP on mitochondria in primary astrocytes. Fluorescent probes and genetically encoded indicators were utilized to visualize mitochondrial morphology and physiology, and regulatory factors involved in mitochondrial morphology and mitophagy were assessed. Additionally, the mitochondrial respiration rate was measured in BaP-exposed astrocytes. BaP exposure resulted in mitochondrial enlargement owing to the suppression of mitochondrial fission factors. Furthermore, BaP-exposed astrocytes demonstrated reduced mitophagy and exhibited aberrant mitochondrial function and physiology, such as altered mitochondrial respiration rates, increased mitochondrial superoxide, disrupted mitochondrial membrane potential, and dysregulated mitochondrial Ca2+. These findings offer insights into the underlying toxic mechanisms of BaP exposure in neurodegenerative diseases by inducing aberrant mitophagy and mitochondrial dysfunction in astrocytes.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
4
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
5
|
Chen Z, Huo X, Huang Y, Cheng Z, Xu X, Li Z. Elevated plasma solMER concentrations link ambient PM 2.5 and PAHs to myocardial injury and reduced left ventricular systolic function in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124151. [PMID: 38740242 DOI: 10.1016/j.envpol.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Exposure to fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) is known to be associated with the polarization of pro-inflammatory macrophages and the development of various cardiovascular diseases. The pro-inflammatory polarization of resident cardiac macrophages (cMacs) enhances the cleavage of membrane-bound myeloid-epithelial-reproductive receptor tyrosine kinase (MerTK) and promotes the formation of soluble MerTK (solMER). This process influences the involvement of cMacs in cardiac repair, thus leading to an imbalance in cardiac homeostasis, myocardial injury, and reduced cardiac function. However, the relative impacts of PM2.5 and PAHs on human cMacs have yet to be elucidated. In this study, we aimed to investigate the effects of PM2.5 and PAH exposure on solMER in terms of myocardial injury and left ventricular (LV) systolic function in healthy children. A total of 258 children (aged three to six years) were recruited from Guiyu (an area exposed to e-waste) and Haojiang (a reference area). Mean daily PM2.5 concentration data were collected to calculate the individual chronic daily intake (CDI) of PM2.5. We determined concentrations of solMER and creatine kinase MB (CKMB) in plasma, and hydroxylated PAHs (OH-PAHs) in urine. LV systolic function was evaluated by stroke volume (SV). Higher CDI values and OH-PAH concentrations were detected in the exposed group. Plasma solMER and CKMB were higher in the exposed group and were associated with a reduced SV. Elevated CDI and 1-hydroxynaphthalene (1-OHNa) were associated with a higher solMER. Furthermore, increased solMER concentrations were associated with a lower SV and higher CKMB. CDI and 1-OHNa were positively associated with CKMB and mediated by solMER. In conclusion, exposure to PM2.5 and PAHs may lead to the pro-inflammatory polarization of cMacs and increase the risk of myocardial injury and systolic function impairment in children. Furthermore, the pro-inflammatory polarization of cMacs may mediate cardiotoxicity caused by PM2.5 and PAHs.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China; Shantou University Medical College, Shantou, 15041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi Li
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
6
|
Mokrzyński K, Szewczyk G. Photoreactivity of polycyclic aromatic hydrocarbons (PAHs) and their mechanisms of phototoxicity against human immortalized keratinocytes (HaCaT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171449. [PMID: 38460699 DOI: 10.1016/j.scitotenv.2024.171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic compounds in the environment. They are produced by many anthropogenic sources of different origins and are known for their toxicity, carcinogenicity, and mutagenicity. Sixteen PAHs have been identified as Priority Pollutants by the US EPA, which are often associated with particulate matter, facilitating their dispersion through air and water. When human skin is exposed to PAHs, it might occur simultaneously with solar radiation, potentially leading to phototoxic effects. Phototoxic mechanisms involve the generation of singlet oxygen and reactive oxygen species, DNA damage under specific light wavelengths, and the formation of charge transfer complexes. Despite predictions of phototoxic properties for some PAHs, there remains a paucity of experimental data. This study examined the photoreactive and phototoxic properties of the 16 PAHs enlisted in the Priority Pollutants list. Examined PAHs efficiently photogenerated singlet oxygen and superoxide anion in simple solutions. Furthermore, singlet oxygen phosphorescence was detected in PAH-loaded HaCaT cells. Phototoxicity against human keratinocytes was evaluated using various assays. At 5 nM concentration, examined PAHs significantly reduced viability and mitochondrial membrane potential of HaCaT cells following the exposure to solar simulated light. Analyzed compounds induced a substantial peroxidation of cellular proteins after light treatment. The results revealed that a majority of the examined PAHs exhibited substantial reactive oxygen species photoproduction under UVA and violet-blue light, with their phototoxicity corresponding to their photoreactive properties. These findings improve our comprehension of the interactions between PAHs and human skin cells under environmental conditions, particularly when exposed to solar radiation.
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
7
|
Yang T, Wan R, Tu W, Avvaru SN, Gao P. Aryl hydrocarbon receptor: Linking environment to aging process in elderly patients with asthma. Chin Med J (Engl) 2024; 137:382-393. [PMID: 38238253 PMCID: PMC10876263 DOI: 10.1097/cm9.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 02/12/2024] Open
Abstract
ABSTRACT Aging is a significant risk factor for various diseases, including asthma, and it often leads to poorer clinical outcomes, particularly in elderly individuals. It is recognized that age-related diseases are due to a time-dependent accumulation of cellular damage, resulting in a progressive decline in cellular and physiological functions and an increased susceptibility to chronic diseases. The effects of aging affect not only the elderly but also those of younger ages, posing significant challenges to global healthcare. Thus, understanding the molecular mechanisms associated with aging in different diseases is essential. One intriguing factor is the aryl hydrocarbon receptor (AhR), which serves as a cytoplasmic receptor and ligand-activated transcription factor and has been linked to the aging process. Here, we review the literature on several major hallmarks of aging, including mitochondrial dysfunction, cellular senescence, autophagy, mitophagy, epigenetic alterations, and microbiome disturbances. Moreover, we provide an overview of the impact of AhR on these hallmarks by mediating responses to environmental exposures, particularly in relation to the immune system. Furthermore, we explore how aging hallmarks affect clinical characteristics, inflammatory features, exacerbations, and the treatment of asthma. It is suggested that AhR signaling may potentially play a role in regulating asthma phenotypes in elderly populations as part of the aging process.
Collapse
Affiliation(s)
- Tianrui Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, China
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Kumar V, Deshpande N, Parekh M, Wong R, Ashraf S, Zahid M, Hui H, Miall A, Kimpton S, Price MO, Price FW, Gonzalez FJ, Rogan E, Jurkunas UV. Estrogen genotoxicity causes preferential development of Fuchs endothelial corneal dystrophy in females. Redox Biol 2024; 69:102986. [PMID: 38091879 PMCID: PMC10716776 DOI: 10.1016/j.redox.2023.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a genetically complex, age-related, female-predominant disorder characterized by loss of post-mitotic corneal endothelial cells (CEnCs). Ultraviolet-A (UVA) light has been shown to recapitulate the morphological and molecular changes seen in FECD to a greater extent in females than males, by triggering CYP1B1 upregulation in females. Herein, we investigated the mechanism of greater CEnC susceptibility to UVA in females by studying estrogen metabolism in response to UVA in the cornea. Loss of NAD(P)H quinone oxidoreductase 1 (NQO1) resulted in increased production of estrogen metabolites and mitochondrial-DNA adducts, with a higher CEnC loss in Nqo1-/- female compared to wild-type male and female mice. The CYP1B1 inhibitors, trans-2,3',4,5'-tetramethoxystilbene (TMS) and berberine, rescued CEnC loss. Injection of wild-type male mice with estrogen (E2; 17β-estradiol) increased CEnC loss, followed by increased production of estrogen metabolites and mitochondrial DNA (mtDNA) damage, not seen in E2-treated Cyp1b1-/-male mice. This study demonstrates that the endo-degenerative phenotype is driven by estrogen metabolite-dependent CEnC loss that is exacerbated in the absence of NQO1; thus, explaining the mechanism accounting for the higher incidence of FECD in females. The mitigation of estrogen-adduct production by CYP1B1 inhibitors could serve as a novel therapeutic strategy for FECD.
Collapse
Affiliation(s)
- Varun Kumar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mohit Parekh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Raymond Wong
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shazia Ashraf
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198-4388, USA
| | - Hanna Hui
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Miall
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sylvie Kimpton
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marianne O Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Francis W Price
- Price Vision Group and Cornea Research Foundation of America, Indianapolis, IN, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eleanor Rogan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198-4388, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Qiu L, Chen X, Guo B, Liao Z, Buttino I, Yan X, Qi P. Unraveling the protective role of Nrf2 in molluscs: Insights into mitochondrial and apoptosis pathways in the defense against Bap-induced oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106728. [PMID: 37837868 DOI: 10.1016/j.aquatox.2023.106728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Benzopyrene (Bap) is a major constituent of petroleum pollutants commonly found in aquatic environments, and its mutagenic and carcinogenic properties have adverse effects on aquatic organisms' development, growth, and reproduction. The antioxidant defense system element, NF-E2-related factor 2 (Nrf2), has been linked to the oxidative stress response in marine invertebrates exposed to toxic substances. In a previous study, a novel Nrf2 homologue, McNrf2, was identified in mussel Mytilus coruscus, a significant model marine molluscs in ecotoxicology studies. McNrf2 showed the potential to trigger an antioxidant defense against oxidative stress induced by Bap. Here, we employed an Nrf2 overexpression and inhibition model using SFN and ML385 as Nrf2 inducer and inhibitor, respectively. Next, immunofluorescence technique was used to evaluate the nuclear activation of Nrf2 induced by Bap-mediated oxidative stress. Transmission electron microscopy revealed that overexpression of Nrf2 could maintain the quantity and structural integrity of mitochondria, while flow cytometry analysis showed that Nrf2 could alleviate Bap-induced cellular apoptosis. These findings suggest that Nrf2 can protect molluscs from Bap-induced oxidative stress through the mitochondria and apoptosis pathways, providing a novel perspective on Nrf2's antioxidant function.
Collapse
Affiliation(s)
- Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedron.38, Livorno 57122 Italy
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
11
|
Liu X, Li X, Wei W, Fan Y, Guo Z, Duan X, Zhou X, Yang Y, Wang W. The polymorphisms in cGAS-STING pathway are associated with mitochondrial DNA copy number in coke oven workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1070-1080. [PMID: 35546785 DOI: 10.1080/09603123.2022.2071418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the interaction effects of Polycyclic aromatic hydrocarbons (PAHs) exposure and variants in cGAS-STING genes on mitochondrial DNA copy number (mtDNAcn) in workers. METHODS The mtDNAcn was determined by real-time quantitative polymerase-chain reaction in 544 PAHs-exposed workers and 238 office workers. The polymorphisms were detected by flight mass spectrometry. RESULTS The mtDNAcn in PAHs exposure group was significantly lower than non-occupational exposure population (P < 0.00). The cGAS rs610913 CA+AA had significant interaction effects with STING rs11554776 GG+GA (P = 0.035), rs7380824 CC+CT (P = 0.026), and rs78233829 GC+CC (P = 0.034) on mtDNAcn. The generalized linear model results showed that the influencing factors of mtDNAcn include PAHs exposure (P < 0.001) and the interaction of PAHs exposure and cGAS rs 311678 AA+AG (P = 0.047). CONCLUSION The influencing factors of mtDNAcn include PAHs exposure and the interaction of PAHs exposure and cGAS rs 311678 AA+AG.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinling Li
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wan Wei
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yahui Fan
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhifeng Guo
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational health and Occupational diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Wu BS, Xiang HQ, Yu YW, Liu S, Song DY, Wu C, Lin ZH, Zhu CX, Xue YJ, Ji KT. 3,4-benzo[a]pyrene aggravates myocardial infarction injury by activating NLRP3-related pyroptosis through PINK1/Parkin-mitophagy-mPTP opening axis. Int Immunopharmacol 2023; 122:110481. [PMID: 37390647 DOI: 10.1016/j.intimp.2023.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Air pollution is an important and interventionable risk factor for cardiovascular disease. Air pollution exposure, even for a short-term exposure, is conspicuously relevant to increased risk of myocardial infarction (MI) mortality and clinical evidence has shown that air pollution particulate matter (PM) induces the aggravation of AMI. 3,4-benzo[a]pyrene (BaP), an extremely toxic polycyclic aromatic hydrocarbon (PAH) and a common component of PM, is listed as one of the main objects of environmental pollution monitoring. Both epidemiological and toxicological studies suggest that BaP exposure may be associated with cardiovascular disease. Since PM is significantly associated with the increased risk of MI mortality, and BaP is an important component of PM associated with cardiovascular disease, we intend to investigate the effect of BaP on MI models. METHODS The MI mouse model and the oxygen and glucose deprivation (OGD) H9C2 cell model were used to investigate the effect of BaP in MI injury. The involvement of mitophagy and pyroptosis in regulating deterioration of cardiac function and aggravation of MI injury induced by BaP was comprehensively evaluated. RESULTS Our study shows that BaP exacerbates MI injury in vivo and in vitro, a result based on BaP-induced NLRP3-related pyroptosis. In addition, BaP can inhibit PINK1/Parkin dependent mitophagy through the aryl hydrocarbon receptor (AhR), thus the mitochondrial permeability transition pore (mPTP) was induced to open. CONCLUSION Our results suggest a role for the BaP from air pollution in MI injury aggravation and reveal that BaP aggravates MI injury by activating NLRP3-related pyroptosis via the PINK1/Parkin-mitophagy-mPTP opening axis.
Collapse
Affiliation(s)
- Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hua-Qiang Xiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dong-Yan Song
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chang Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhi-Hui Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen-Xi Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
13
|
Heo MJ, Suh JH, Lee SH, Poulsen KL, An YA, Moorthy B, Hartig SM, Moore DD, Kim KH. Aryl hydrocarbon receptor maintains hepatic mitochondrial homeostasis in mice. Mol Metab 2023; 72:101717. [PMID: 37004989 PMCID: PMC10106517 DOI: 10.1016/j.molmet.2023.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE Mitophagy removes damaged mitochondria to maintain cellular homeostasis. Aryl hydrocarbon receptor (AhR) expression in the liver plays a crucial role in supporting normal liver functions, but its impact on mitochondrial function is unclear. Here, we identified a new role of AhR in the regulation of mitophagy to control hepatic energy homeostasis. METHODS In this study, we utilized primary hepatocytes from AhR knockout (KO) mice and AhR knockdown AML12 hepatocytes. An endogenous AhR ligand, kynurenine (Kyn), was used to activate AhR in AML12 hepatocytes. Mitochondrial function and mitophagy process were comprehensively assessed by MitoSOX and mt-Keima fluorescence imaging, Seahorse XF-based oxygen consumption rate measurement, and Mitoplate S-1 mitochondrial substrate utilization analysis. RESULTS Transcriptomic analysis indicated that mitochondria-related gene sets were dysregulated in AhR KO liver. In both primary mouse hepatocytes and AML12 hepatocyte cell lines, AhR inhibition strongly suppressed mitochondrial respiration rate and substrate utilization. AhR inhibition also blunted the fasting response of several essential autophagy genes and the mitophagy process. We further identified BCL2 interacting protein 3 (BNIP3), a mitophagy receptor that senses nutrient stress, as an AhR target gene. AhR is directly recruited to the Bnip3 genomic locus, and Bnip3 transcription was enhanced by AhR endogenous ligand treatment in wild-type liver and abolished entirely in AhR KO liver. Mechanistically, overexpression of Bnip3 in AhR knockdown cells mitigated the production of mitochondrial reactive oxygen species (ROS) and restored functional mitophagy. CONCLUSIONS AhR regulation of the mitophagy receptor BNIP3 coordinates hepatic mitochondrial function. Loss of AhR induces mitochondrial ROS production and impairs mitochondrial respiration. These findings provide new insight into how endogenous AhR governs hepatic mitochondrial homeostasis.
Collapse
Affiliation(s)
- Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sung Ho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Kyle L Poulsen
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Li J, Bai J, Si X, Jia H, Wu Z. Benzo[a]pyrene induces epithelial tight junction disruption and apoptosis via inhibiting the initiation of autophagy in intestinal porcine epithelial cells. Chem Biol Interact 2023; 374:110386. [PMID: 36754226 DOI: 10.1016/j.cbi.2023.110386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Ingestion of food contaminated with benzo[a]pyrene (B[a]P) poses health risks to animals and humans. However, the toxicity of B[a]P exposure on the intestinal barrier function and underlying mechanisms remain obscure. In the present study, intestinal porcine epithelial cells (IPEC-1) were challenged with different doses of B[a]P and its deleterious effects were determined. We found that B[a]P exposure led to impaired intestinal tight junction function as evidenced by reduced transepithelial electric resistance, increased permeability, and downregulated intestinal tight junction protein levels. Further study demonstrated that B[a]P treatment induced cell cycle arrest, and resulted in oxidative damage-related apoptosis in IPEC-1 cells. Intriguingly, we observed an inhibition of autophagy and an activation of unfolded protein response (UPR) in B[a]P-challenged cells, when compared with controls. To investigate the role of autophagy on B[a]P-induced epithelial tight junction disruption and apoptosis, cells were cotreated with B[a]P and rapamycin, and rapamycin dramatically improved intestinal tight junction and reduced apoptosis, indicating a protective effect of autophagy for the cells in response to B[a]P treatment. We also explored the role of UPR in B[a]P-induced cellular damage by using 4-phenylbutyric acid, an antagonist of UPR. Interestingly, B[a]P-induced apoptosis and dysfunction of the intestinal tight junction were exacerbated by 4-phenylbutyric acid, and the 4-phenylbutyric acid didn't ameliorate the inhibitory effects of B[a]P on microtubule-associated protein 1 light chain 3 (LC3-II) and lysosomal-associated membrane protein 2 (LAMP2) in IPEC-1 cells. These novel findings provided herein indicated that B[a]P induces intestinal epithelial tight junction disruption and apoptotic cell death via inhibiting autophagy in IPEC-1 cells.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
16
|
Zhang L, Ji X, Ding F, Wu X, Tang N, Wu Q. Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118959. [PMID: 35134430 DOI: 10.1016/j.envpol.2022.118959] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT-PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca2+]i) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca2+]i overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca2+]i fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China; Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Xiaoli Ji
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China; Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Fan Ding
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Xuan Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Qing Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
17
|
Luo Y, Zhang B, Geng N, Sun S, Song X, Chen J, Zhang H. Transcriptomics and metabolomics analyses provide insights into the difference in toxicity of benzo[a]pyrene and 6-chlorobenzo[a]pyrene to human hepatic cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152242. [PMID: 34919925 DOI: 10.1016/j.scitotenv.2021.152242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The toxicological information of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs), as derivatives of PAHs, is still relatively lacking. In this study, a combination of transcriptomics and metabolomics approach was adopted to explore the changes in toxicity to human L02 hepatocytes after chlorination of benzo[a]pyrene (B[a]P) at 6 position. In general, 6-Cl-B[a]P produced a stronger toxicity to human hepatic cells than did parent B[a]P. When exposure concentrations were 5 and 50 nM, 6-Cl-B[a]P caused a weaker transcriptomic perturbation relative to B[a]P, whereas a stronger metabolomic perturbation, a stronger oxidative stress and a stronger inhibition effect on cell viability were caused by 6-Cl-B[a]P than did parent B[a]P. Pathway enrichment analysis indicated that 6-Cl-B[a]P produced a more widely perturbation to metabolic pathways than did B[a]P. Although they both significantly impaired the function of mitochondrial electron transport chain (ETC), the exact mechanism is different. B[a]P suppressed the expression of 20 genes regulating mitochondrial ETC mainly via AhR activation. However, 6-Cl-B[a]P produced a stronger inhibition on the activities of complexes I and V than did B[a]P. Meanwhile, 6-Cl-B[a]P also exhibited a stronger inhibition effect on mitochondrial β oxidation of fatty acid. Furthermore, 6-Cl-B[a]P and B[a]P both significantly disturbed the nucleotide metabolism, glycerophospholipid metabolism and amino acid metabolism in L02 cells.
Collapse
Affiliation(s)
- Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
18
|
He SF, Liao JX, Huang MY, Zhang YQ, Zou YM, Wu CL, Lin WY, Chen JX, Sun J. Rhenium-guanidine complex as photosensitizer: trigger HeLa cell apoptosis through death receptor-mediated, mitochondria-mediated and cell cycle arrest pathways. Metallomics 2022; 14:6527583. [PMID: 35150263 DOI: 10.1093/mtomcs/mfac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
During the last decades, growing evidence indicates that the photodynamic antitumor activity of transition metal complexes, and Re(I) compounds are potential candidates for photodynamic therapy (PDT). This study reports the synthesis, characterization, and anti-tumor activity of three new Re(I)-guadinium complexes. Cytotoxicity tests reveal that complex Re1 increased cytotoxicity by 145-fold from IC50 > 180 μM in the dark to 1.3 ± 0.7 μM following 10 min of light irradiation (425 nm) in HeLa cells. Further, the mechanism by which Re1 induces apoptosis in the presence or absence of light irradiation was investigated, and results indicate that cell death was caused through different pathways. Upon irradiation, Re1 first accumulates on the cell membrane and interacts with death receptors to activate the extrinsic death receptor-mediated signaling pathway, then is transported into the cell cytoplasm. Most of the intracellular Re1 locates within mitochondria, improving the ROS level, and decreasing MMP and ATP levels, and inducing the activation of caspase-9 and, thus, apoptosis. Subsequently, the residual Re1 can translocate into the cell nucleus, and activates the p53 pathway, causing cell-cycle arrest and eventually cell death.
Collapse
Affiliation(s)
- Shu-Fen He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.,Department of Pharmacy, Dongguan Peaple's Hospital, Dongguan, 523059, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yu-Qing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yi-Min Zou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ci-Ling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Wen-Yuan Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
19
|
Duarte-Hospital C, Tête A, Brial F, Benoit L, Koual M, Tomkiewicz C, Kim MJ, Blanc EB, Coumoul X, Bortoli S. Mitochondrial Dysfunction as a Hallmark of Environmental Injury. Cells 2021; 11:cells11010110. [PMID: 35011671 PMCID: PMC8750015 DOI: 10.3390/cells11010110] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors including diet, sedentary lifestyle and exposure to pollutants largely influence human health throughout life. Cellular and molecular events triggered by an exposure to environmental pollutants are extremely variable and depend on the age, the chronicity and the doses of exposure. Only a fraction of all relevant mechanisms involved in the onset and progression of pathologies in response to toxicants has probably been identified. Mitochondria are central hubs of metabolic and cell signaling responsible for a large variety of biochemical processes, including oxidative stress, metabolite production, energy transduction, hormone synthesis, and apoptosis. Growing evidence highlights mitochondrial dysfunction as a major hallmark of environmental insults. Here, we present mitochondria as crucial organelles for healthy metabolic homeostasis and whose dysfunction induces critical adverse effects. Then, we review the multiple mechanisms of action of pollutants causing mitochondrial toxicity in link with chronic diseases. We propose the Aryl hydrocarbon Receptor (AhR) as a model of “exposome receptor”, whose activation by environmental pollutants leads to various toxic events through mitochondrial dysfunction. Finally, we provide some remarks related to mitotoxicity and risk assessment.
Collapse
Affiliation(s)
- Carolina Duarte-Hospital
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Arnaud Tête
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - François Brial
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
| | - Louise Benoit
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Meriem Koual
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Céline Tomkiewicz
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Min Ji Kim
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Université Sorbonne Paris Nord, F-93000 Bobigny, France
| | - Etienne B. Blanc
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Xavier Coumoul
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| | - Sylvie Bortoli
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| |
Collapse
|
20
|
Abd El-Aziz YS, Leck LYW, Jansson PJ, Sahni S. Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:6152. [PMID: 34944772 PMCID: PMC8699656 DOI: 10.3390/cancers13246152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.
Collapse
Affiliation(s)
- Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
| |
Collapse
|
21
|
Hu X, Shen Y, Zhao Y, Wang J, Zhang X, Tu W, Kaufman W, Feng J, Gao P. Epithelial Aryl Hydrocarbon Receptor Protects From Mucus Production by Inhibiting ROS-Triggered NLRP3 Inflammasome in Asthma. Front Immunol 2021; 12:767508. [PMID: 34868022 PMCID: PMC8634667 DOI: 10.3389/fimmu.2021.767508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Background Despite long-standing recognition in the significance of mucus overproduction in asthma, its etiology remains poorly understood. Muc5ac is a secretory mucin that has been associated with reduced pulmonary function and asthma exacerbations. Objectives We sought to investigate the immunological pathway that controls Muc5ac expression and allergic airway inflammation in asthma. Methods Cockroach allergen-induced Muc5ac expression and aryl hydrocarbon receptor (AhR) signaling activation was examined in the human bronchial epithelial cells (HBECs) and mouse model of asthma. AhR regulation of Muc5ac expression, mitochondrial ROS (Mito-ROS) generation, and NLRP3 inflammasome was determined by AhR knockdown, the antagonist CH223191, and AhR-/- mice. The role of NLRP3 inflammasome in Muc5ac expression and airway inflammation was also investigated. Results Cockroach allergen induced Muc5ac overexpression in HBECs and airways of asthma mouse model. Increased expression of AhR and its downstream genes CYP1A1 and CYP1B1 was also observed. Mice with AhR deletion showed increased allergic airway inflammation and MUC5AC expression. Moreover, cockroach allergen induced epithelial NLRP3 inflammasome activation (e.g., NLRP3, Caspase-1, and IL-1β), which was enhanced by AhR knockdown or the antagonist CH223191. Furthermore, AhR deletion in HBECs led to enhanced ROS generation, particularly Mito-ROS, and inhibition of ROS or Mito-ROS subsequently suppressed the inflammasome activation. Importantly, inhibition of the inflammasome with MCC950, a NLRP3-specifc inhibitor, attenuated allergic airway inflammation and Muc5ac expression. IL-1β generated by the activated inflammasomes mediated cockroach allergen-induced Muc5ac expression in HBECs. Conclusions These results reveal a previously unidentified functional axis of AhR-ROS-NLRP3 inflammasome in regulating Muc5ac expression and airway inflammation.
Collapse
Affiliation(s)
- Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yilin Zhao
- Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ji Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Xin Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - William Kaufman
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juntao Feng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021; 26:512-533. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms of two programmed cell death pathways, autophagy, and apoptosis, are extensively focused areas of research in the context of cancer. Both the catabolic pathways play a significant role in maintaining cellular as well as organismal homeostasis. Autophagy facilitates this by degradation and elimination of misfolded proteins and damaged organelles, while apoptosis induces canonical cell death in response to various stimuli. Ideally, both autophagy and apoptosis have a role in tumor suppression, as autophagy helps in eliminating the tumor cells, and apoptosis prevents their survival. However, as cancer proceeds, autophagy exhibits a dual role by enhancing cancer cell survival in response to stress conditions like hypoxia, thereby promoting chemoresistance to the tumor cells. Thus, any inadequacy in either of their levels can lead to tumor progression. A complex array of biomarkers is involved in maintaining coordination between the two by acting as either positive or negative regulators of one or both of these pathways of cell death. The resulting crosstalk between the two and its role in influencing the survival or death of malignant cells makes it quintessential, among other challenges facing chemotherapeutic treatment of cancer. In view of this, the present review aims to highlight some of the factors involved in maintaining their diaphony and stresses the importance of inhibition of cytoprotective autophagy and deletion of the intermediate pathways involved to facilitate tumor cell death. This will pave the way for future prospects in designing drug combinations facilitating the synergistic effect of autophagy and apoptosis in achieving cancer cell death.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Nidhi Shukla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Sapana Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
24
|
Dlamini MB, Gao Z, Jiang L, Geng C, Li Q, Shi X, Liu Y, Cao J. The crosstalk between mitochondrial dysfunction and endoplasmic reticulum stress promoted ATF4-mediated mitophagy induced by hexavalent chromium. ENVIRONMENTAL TOXICOLOGY 2021; 36:1162-1172. [PMID: 33650752 DOI: 10.1002/tox.23115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) compounds are markedly toxic and carcinogenic. Previously, we found that Cr (VI) induced autophagy in A549 cells. Here, the effect of mitochondrial dysfunction and endoplasmic reticulum (ER) stress on inducing mitophagy was investigated in both A549 and H1299 cells. Exposure to Cr (VI) for 6 h significantly enhanced reactive oxygen species (ROS) production and reduced mitochondrial membrane potential (MMP). Transmission electron microscopy showed that Cr (VI) induced mitochondrial morphological changes, such as, mitochondrial swelling and vacuolization. The elevated expression of GRP78 and p-PERK suggested that Cr (VI) resulted in ER stress. Both mitochondrial dysfunction and ER stress played an important role in Cr (VI)-induced mitophagy, as the mitochondrial function inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) induced PINK1 and PARK2 and increased the expression of GRP78 and p-PERK while the levels of Cr (VI)-induced PINK1, PARK2, LC3-II were reduced after ER stress inhibitor, phenylbutyric acid (4PBA) pretreatment. When A549 cells were treated with CCCP and 4-PBA simultaneously, CCCP-induced expressions of PINK1, PARK2 and LC3-II decreased significantly compared with that of only CCCP-treated cells, indicating that there was a crosstalk between mitochondria and ER in inducing mitophagy. Additionally, the crosstalk between mitochondrial dysfunction and ER stress modulated the expression of Cr (VI)-induced ATF4, which resulted in mitophagy. Collectively, our data demonstrated that Cr (VI)-induced mitophagy mediated by ATF4 via the crosstalk between ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mongameli B Dlamini
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Wang E, Tu W, Do DC, Xiao X, Bhatti SB, Yang L, Sun X, Xu D, Yang P, Huang SK, Gao P, Liu Z. Benzo(a)pyrene Enhanced Dermatophagoides Group 1 (Der f 1)-Induced TGFβ1 Signaling Activation Through the Aryl Hydrocarbon Receptor-RhoA Axis in Asthma. Front Immunol 2021; 12:643260. [PMID: 33936062 PMCID: PMC8081905 DOI: 10.3389/fimmu.2021.643260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced airway inflammation. The underlying mechanism, however, remains undetermined. Here we investigated the molecular mechanisms underlying the potentiation of BaP exposure on Der f 1-induced airway inflammation in asthma. We found that BaP co-exposure potentiated Der f 1-induced TGFβ1 secretion and signaling activation in human bronchial epithelial cells (HBECs) and the airways of asthma mouse model. Moreover, BaP exposure alone or co-exposure with Der f 1-induced aryl hydrocarbon receptor (AhR) activity was determined by using an AhR-dioxin-responsive element reporter plasmid. The BaP and Der f 1 co-exposure-induced TGFβ1 expression and signaling activation were attenuated by either AhR antagonist CH223191 or AhR knockdown in HBECs. Furthermore, AhR knockdown led to the reduction of BaP and Der f 1 co-exposure-induced active RhoA. Inhibition of RhoA signaling with fasudil, a RhoA/ROCK inhibitor, suppressed BaP and Der f 1 co-exposure-induced TGFβ1 expression and signaling activation. This was further confirmed in HBECs expressing constitutively active RhoA (RhoA-L63) or dominant-negative RhoA (RhoA-N19). Luciferase reporter assays showed prominently increased promoter activities for the AhR binding sites in the promoter region of RhoA. Inhibition of RhoA suppressed BaP and Der f 1 co-exposure-induced airway hyper-responsiveness, Th2-associated airway inflammation, and TGFβ1 signaling activation in asthma. Our studies reveal a previously unidentified functional axis of AhR-RhoA in regulating TGFβ1 expression and signaling activation, representing a potential therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Eryi Wang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Tu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Danh C. Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shehar B. Bhatti
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liteng Yang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xizhuo Sun
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Damo Xu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Pingchang Yang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shau-Ku Huang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhigang Liu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
26
|
Mehri S, Barangi S, Zamiri E, Karimi G. The protective effect of melatonin on benzo(a)pyrene-induced brain injury: role of apoptosis and autophagy pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2241-2251. [PMID: 32632567 DOI: 10.1007/s00210-020-01936-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Benzo(a)pyrene (BaP), a toxic polycyclic aromatic hydrocarbon, is spread in different ways as an environmental pollutant. It has been proposed that BaP can induce toxicity through oxidative stress and apoptosis in vital organs. The present study evaluated the protective effect of melatonin, a circadian hormone of the pineal gland, on BaP-induced neurotoxicity focused on oxidative stress, autophagy, and apoptosis pathways. Thirty male mice in 5 groups were treated daily for 28 consecutive days: (I) control group (BaP and melatonin solvent), (II) BaP (75 mg/kg, orally), (III) and (IV) BaP + melatonin (10 and 20 mg/kg, i.p.), (V) melatonin (20 mg/kg). The oxidative stress markers were determined in the brain. Western blot was conducted for the level of LC3 II/I and Beclin1, as autophagy markers, caspase3 and Bcl2, as apoptosis proteins, and Sirt1 in the brain. The exposure of mice to BaP caused a marked increase in the malondialdehyde (MDA) level and decrease of glutathione (GSH) content in the brain. Furthermore, the Sirt1 level upregulated as well as LC3 II/I, Beclin1, and cleaved caspase3 proteins, while the level of Bcl2 did not change. Melatonin at 20 mg/kg concurrently with BaP restored the BaP alteration in the brain compared with the BaP group. In conclusion, BaP induced brain toxicity via the induction of oxidative stress, apoptosis, and autophagy, whereas melatonin afforded neuroprotection against BaP due to inhibition of these mechanisms.
Collapse
Affiliation(s)
- Soghra Mehri
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P.O. Box 1365-91775, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Zamiri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P.O. Box 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Lam HYP, Chen CC, Chen TTW, Chang KC, Wu WJ, Yang TH, Liang TR, Cheng PC, Peng SY. Mitochondrial dynamics in Angiostrongylus cantonensis-infected mouse brain. Parasitol Int 2020; 80:102231. [PMID: 33147498 DOI: 10.1016/j.parint.2020.102231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022]
Abstract
Angiostrongylus cantonensis is one of the most widespread parasites causing central nervous system (CNS) diseases in mammals. Since the mitochondrion is an essential cell organelle responsible for both physiological and pathological processes, its dysfunction might lead to inflammation and multiple disorders. In this study we aimed to investigate the changes in mitochondrial dynamics that occur in the mouse brain upon infection with A. cantonensis, using molecular biology techniques such as polymerase chain reaction (PCR), western blot analysis, transmission electron microscopy (TEM), and different staining methods. Here, we show that mouse brain infected with A. cantonensis exhibits altered mitochondrial dynamics, including fission, fusion, and biogenesis. Additionally, we demonstrate that caspases and B-cell lymphoma 2 (BCL-2) were significantly upregulated in A. cantonensis-infected brain. These results are indicative of the occurrence of apoptosis during A. cantonensis infection, which was further confirmed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These findings suggest the change in mitochondrial dynamics in A. cantonensis-infected brain, providing another point of view on the pathogenesis of meningoencephalitis caused by A. cantonensis infection.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Chi Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine, Hualien Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Tina Tu-Wen Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Hua Yang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
28
|
Fu HR, Li XS, Zhang YH, Feng BB, Pan LH. Visnagin ameliorates myocardial ischemia/reperfusion injury through the promotion of autophagy and the inhibition of apoptosis. Eur J Histochem 2020; 64. [PMID: 32909422 PMCID: PMC7482183 DOI: 10.4081/ejh.2020.3131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/30/2020] [Indexed: 01/31/2023] Open
Abstract
Visnagin is a furanochromone and one of the main compounds of Ammi visnaga L. that had been used to treat nephrolithiasis in Ancient Egypt. Nowadays, visnagin was widely used to treat angina pectoris, urolithiasis and hypertriglyceridemia. The potential mechanisms of visnagin involved in inflammation and cardiovascular disease were also identified. But the protective effect of visnagin on myocardial ischemia/reperfusion injury has not been confirmed. Our aim was, for the first time, to investigate the potential protective effect of visnagin on cardiac function after myocardial ischemia-reperfusion injury in a rat model, and to identify its underlying mechanism involving the inhibition of apoptosis and induction of autophagy. Thirty SD rats were randomly divided into sham group, ischemia/reperfusion group (IR), ischemia/reperfusion with visnagin (IR + visnagin) group. Myocardial ischemia/Reperfusion injury model was established. Hemodynamic measurements and echocardiography were used to analyze cardiac function, TUNEL staining and caspase activity, LC3 dots were detected with immunofluorescence staining, LC3 expression was evaluated by western blot analysis, transmission electron microscopy (TEM) was used to detect autophagosomes. Compared with the sham group and visnagin group, the cardiac dysfunction, LC3II, autophagy flow in the IR+ visnagin group increased significantly (P<0.01), but the activity of caspase-3 and caspase-9 and the apoptotic in the IR + visnagin group decreased significantly (P<0.01). In conclusion, visnagin may play a protective role in ischemia/reperfusion injury by inducing autophagy and reducing apoptosis.
Collapse
Affiliation(s)
- Hai-Rong Fu
- Department of Basic Medicine, Three Gorges Medical College, Chongqing.
| | - Xiao-Shan Li
- Department of Basic Medicine, Three Gorges Medical College, Chongqing.
| | - Yong-Hui Zhang
- Department of Basic Medicine, Three Gorges Medical College, Chongqing.
| | - Bin-Bin Feng
- Department of Pharmacy, Three Gorges Medical College, Chongqing.
| | - Lian-Hong Pan
- Center for Natural Anti-tumor Medicine Engineering, Three Gorges Medical College, Chongqing.
| |
Collapse
|
29
|
Yang X, Zhang R, Nakahira K, Gu Z. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Annu Rev Nutr 2020; 39:201-226. [PMID: 31433742 DOI: 10.1146/annurev-nutr-082018-124643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wide spectrum of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders, have been shown to be associated with mitochondrial dysfunction through multiple molecular mechanisms. Mitochondria are particularly susceptible to nutrient deficiencies, and nutritional intervention is an essential way to maintain mitochondrial homeostasis. Recent advances in genetic manipulation and next-generation sequencing reveal the crucial roles of mitochondrial DNA (mtDNA) in various pathophysiological conditions. Mitophagy, a term coined to describe autophagy that targets dysfunctional mitochondria, has emerged as an important cellular process to maintain mitochondrial homeostasis and has been shown to be regulated by various nutrients and nutritional stresses. Given the high prevalence of mtDNA mutations in humans and their impact on mitochondrial function, it is important to investigate the mechanisms that regulate mtDNA mutation. Here, we discuss mitochondrial genetics and mtDNA mutations and their implications for human diseases. We also examine the role of mitophagy as a therapeutic target, highlighting how nutrients may eliminate mtDNA mutations through mitophagy.
Collapse
Affiliation(s)
- Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
30
|
Gan M, Ding H, Chen G. 6-Formylindolo[3,2-b]carbazole reduces apoptosis induced by benzo[a]pyrene in a mitochondrial-dependent manner. Cell Biol Int 2020; 44:2427-2437. [PMID: 32808713 DOI: 10.1002/cbin.11450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/24/2020] [Accepted: 08/16/2020] [Indexed: 01/02/2023]
Abstract
Benzo[a]pyrene (B[a]P), a potent carcinogen, has been proved that it can induce apoptosis via activation of the aryl hydrocarbon receptor (AhR) pathway. The metabolite of tryptophan 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous activator of AhR, plays bifunctional roles in cell growth and apoptosis. However, whether and how FICZ can reduce the toxicity of B[a]P and the mechanism underlying this remain unclear. In this study, FICZ interfered with the toxicity of B[a]P in mouse hepatocarcinoma cell line Hepa1-6. The results of the MTT assay indicated that FICZ and B[a]P made opposite effects on cell proliferation. The scratch-wound healing assay showed that B[a]P (1 µM for 24 hr) exposure triggered cell migration and that was inhibited by FICZ (10 nM). In addition, FICZ ameliorated B[a]P-induced apoptosis by inhibiting reactive oxygen species generation and caspase-3 activation, as well as increasing reduced glutathione level in mitochondria. Furthermore, gene expression analyses indicated that FICZ competed with B[a]P, which reduced the transcriptional activation of the cyp1a1 and cyp1b1 genes, as well as Bcl2 and P53. Accordingly, the interaction between FICZ and B[a]P in the AhR pathway inhibited apoptosis in a mitochondrial-dependent manner, suggesting that endogenous compound may reduce the toxicity of exogenous pollutant in vivo and providing an available way to improve health condition related to the hepatic metabolic disorder.
Collapse
Affiliation(s)
- Min Gan
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongbiao Ding
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gang Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Chen F, Liu H, Wang X, Li Z, Zhang J, Pei Y, Zheng Z, Wang J. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthritis Cartilage 2020; 28:1121-1132. [PMID: 32470597 DOI: 10.1016/j.joca.2020.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigated whether melatonin alleviates intervertebral disc degeneration (IVDD) by promoting autophagy through inhibiting the NF-κB signaling pathway. METHODS Magnetic resonance imaging (MRI), hematoxylin and eosin (H&E) staining and Safranin-O staining were used to measure disc degeneration in rat needle puncture IVDD models, and melatonin was injected intraperitoneally in the treated group to test its function. The expression of autophagy and extracellular matrix (ECM) degeneration related-markers were measured in the discs using immunohistochemistry. Transmission electron microscopy was used to evaluate the activation of autophagy in human nucleus pulposus (NP) tissues with different degenerated statuses. The expression of autophagy and disc degeneration related-markers were detected in NP cells by Western blot, RT-qPCR, and immunofluorescence analyses. NF-κB signaling pathway involvement was studied by lentivirus-mediated knockdown, Western blotting, and immunohistochemistry and immunofluorescence staining. RESULTS Melatonin prevented IVDD development in vivo and in vitro. Compared to non-degenerated disc tissues, degenerated human NP tissues showed a decrease in the autophagy-specific marker LC3B and the numbers of autophagosomes and autolysosomes, whereas the p62 level was increased; similar results were observed in rat IVDD models, indicating a negative correlation between autophagy and IVDD. Furthermore, both in vivo and in vitro studies found that melatonin application induced autophagy and reduced ECM disc degradation. Melatonin was also shown to regulate autophagy by inhibiting the NF-κB signaling pathway in vivo and vitro. CONCLUSION This study indicates that melatonin prevents IVDD by promoting autophagy, indicating its possible therapeutic potential for controlling the progression of IVDD.
Collapse
Affiliation(s)
- F Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - H Liu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - X Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Z Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - J Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Y Pei
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Z Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - J Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
32
|
Chen N, Tang X, Ye Z, Wang S, Xiao X. Methylmercury disrupts autophagic flux by inhibiting autophagosome-lysosome fusion in mouse germ cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110667. [PMID: 32339925 DOI: 10.1016/j.ecoenv.2020.110667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is an extremely toxic environmental pollutant that can cause serious male reproductive developmental dysplasia in humans and animals. However, the molecular mechanisms underlying MeHg-induced male reproductive injury are not fully clear. The purpose of this study was to explore whether mitophagy and lysosome dysfunction contribute to MeHg-induced apoptosis of germ cell and to determine the potential mechanism. First, we confirmed the exposure of GC2-spd cells to mercury. In GC2-spd cells (a mouse spermatocyte cell line), we found that MeHg treatment led to an obvious increase of cell apoptosis accompanied by a marked rise of LC3-II expression and an elevated number of autophagosomes. These results were associated with the induction of oxidative stress and mitophagy. Interestingly, we found that MeHg did not promote but prevented autophagosome-lysosome fusion by impairing the lysosome function. Furthermore, as a lysosome inhibitor, chloroquine pre-treatment obviously enhanced LC3-II expression and mitophagy formation in MeHg-treated cells. This further proved that the induction of mitophagy and the injury of the lysosome played an important role in the GC2-spd cell apoptosis induced by MeHg. Our findings indicate that MeHg caused apoptosis in the GC2-spd cells, which were dependent on oxidative stress-mediated mitophagy and the lysosome damaging-mediated inhibition of autophagic flux induced by MeHg.
Collapse
Affiliation(s)
- Na Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaofeng Tang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhaoyang Ye
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shanshan Wang
- Key Laboratory of Agro-product Safety and Quality, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
33
|
Tajima H, Tajiki-Nishino R, Watanabe Y, Kurata K, Fukuyama T. Activation of aryl hydrocarbon receptor by benzo[a]pyrene increases interleukin 33 expression and eosinophil infiltration in a mouse model of allergic airway inflammation. J Appl Toxicol 2020; 40:1545-1553. [PMID: 32557721 DOI: 10.1002/jat.4017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
We recently demonstrated that benzo[a]pyrene (BaP), the aryl hydrocarbon receptor (AhR) ligand, directly contributes to aggravation of cutaneous allergy in a mouse model of allergic dermatitis. The present study aimed to determine whether BaP-induced AhR activation results in development of airway inflammation. Initially, the potential for a direct relationship between BaP-induced AhR activation and airway inflammation was investigated in vivo, using a mouse model of type 2 helper T cell (Th2) hapten toluene-2,4-diisocyanate (TDI)-induced airway inflammation. Mice were orally administered BaP at 48, 24, and 4 h before the final allergen challenge. Oral administration of BaP showed a significant increase in lung inflammation and eosinophil infiltration. While expression of Th2 cytokines such as interleukin 4 (IL-4) and IL-13 was not affected by exposure to BaP, AhR activation significantly increased IL-33 expression. To confirm the in vivo results, in vitro experiments were performed using the human eosinophilic leukemia cell line (EOL-1), human bronchial epithelial cell line (BEAS-2B), and human lung adenocarcinoma epithelial cell line (A549). Results indicated that pre-treatment with BaP increased expression of IL-8 in house dust mite-activated EOL-1, BEAS-2B, and A549 cells. In addition, IL-33 levels in BEAS-2B cells were significantly increased after BaP exposure. Our findings indicated that BaP-induced AhR activation is involved in the pro-inflammatory response in respiratory allergy, and that this effect may be mediated by increased IL-33 expression and eosinophil infiltration.
Collapse
Affiliation(s)
- Hitoshi Tajima
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | | | - Yuko Watanabe
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Keigo Kurata
- Institute of Tokyo Environmental Allergy, ITEA Inc., Tokyo, Japan
| | - Tomoki Fukuyama
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan.,Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
34
|
Kang RR, Sun Q, Chen KG, Cao QT, Liu C, Liu K, Ma Z, Deng Y, Liu W, Xu B. Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114207. [PMID: 32220751 DOI: 10.1016/j.envpol.2020.114207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Exposure to benzo(a)pyrene (BaP) has been shown to cause mitochondrial dysfunction and injury to neural cells. Resveratrol (RSV) has been studied as an antioxidant, anti-inflammatory, anti-apoptotic, and anticancer agent and can modulate mitochondrial function in vitro and in vivo. However, the molecular mechanisms underlying RSV's protection against mitochondrial dysfunction have not been fully elucidated. To investigate whether RSV can effectively prevent BaP-induced mitochondrial dysfunction, we tested the effects of RSV in primary neuronal models. Our results confirmed that neurons exhibited mitochondrial dysfunction and apoptosis in the mitochondrial pathway after BaP-treatment, and that pretreatment with RSV could reduce that dysfunction. Further, our results indicated that RSV pretreatment enhanced mitochondrial biogenesis via the AMPK/PGC-1α pathway and activated mitophagy via the PINK1-Parkin and AMPK/ULK1 pathways, thereby coordinating mitochondrial homeostasis. We also found that RSV could alleviate mitochondrial network fragmentation caused by BaP. This work provided insights into the role of RSV in preventing BaP-induced primary neuronal apoptosis in the mitochondrial pathway, mainly via regulation of mitochondrial biogenesis and mitophagy through AMPK pathway, thus maintaining the integrity of the mitochondrial network.
Collapse
Affiliation(s)
- Run-Run Kang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Qian Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Kai-Ge Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Qing-Tian Cao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
35
|
Saha S, Mahapatra KK, Mishra SR, Mallick S, Negi VD, Sarangi I, Patil S, Patra SK, Bhutia SK. Bacopa monnieri inhibits apoptosis and senescence through mitophagy in human astrocytes. Food Chem Toxicol 2020; 141:111367. [PMID: 32335210 DOI: 10.1016/j.fct.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a potent neurotoxic agent that is responsible for impaired neuronal development and is associated with aging. Here, it was demonstrated that extracts of Bacopa monnieri (BM), a traditional Ayurvedic medicine, diminished the B[a]P-induced apoptosis and senescence in human astrocytes. BM was demonstrated to protect the immortalized primary fetal astrocytes (IMPHFA) from B[a]P-induced apoptosis and senescence by reducing the damaged mitochondria that produced reactive oxygen species (ROS). Furthermore, it was shown that B[a]P-triggered G2 arrest could be altered by BM, thus indicating that BM could reverse the cell cycle arrest and mediate a normal cell cycle in IMPHFA cells. In addition, the lifespan of Caenorhabditis elegans was assessed, which confirmed these effects in the presence of BM, compared to the B[a]P-treated group. Furthermore, the anti-senescence and anti-apoptotic activities of BM were observed to be mediated through the protective effect of mitophagy, and inhibition of mitophagy could not protect the astrocytes from mitochondrial ROS-induced apoptosis and senescence in BM-treated cells. Moreover, it was revealed that BM induced Parkin-dependent mitophagy to exert its cytoprotective activity in IMPHFA cells. In conclusion, the anti-senescence and anti-apoptotic effects of BM in astrocytes could combat pollution and aging-related neurological disorders.
Collapse
Affiliation(s)
- Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | | | - Swarupa Mallick
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Vidya Devi Negi
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | - Sankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Samir Kumar Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| |
Collapse
|
36
|
|
37
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
38
|
Brinkmann V, Ale-Agha N, Haendeler J, Ventura N. The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Front Physiol 2020; 10:1561. [PMID: 32009975 PMCID: PMC6971224 DOI: 10.3389/fphys.2019.01561] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
Aging is the most important risk factor for the development of major life-threatening diseases such as cardiovascular disorders, cancer, and neurodegenerative disorders. The aging process is characterized by the accumulation of damage to intracellular macromolecules and it is concurrently shaped by genetic, environmental and nutritional factors. These factors influence the functionality of mitochondria, which play a central role in the aging process. Mitochondrial dysfunction is one of the hallmarks of aging and is associated with increased fluxes of ROS leading to damage of mitochondrial components, impaired metabolism of fatty acids, dysregulated glucose metabolism, and damage of adjacent organelles. Interestingly, many of the environmental (e.g., pollutants and other toxicants) and nutritional (e.g., flavonoids, carotenoids) factors influencing aging and mitochondrial function also directly or indirectly affect the activity of a highly conserved transcription factor, the Aryl hydrocarbon Receptor (AhR). Therefore, it is not surprising that many studies have already indicated a role of this versatile transcription factor in the aging process. We also recently found that the AhR promotes aging phenotypes across species. In this manuscript, we systematically review the existing literature on the contradictory studies indicating either pro- or anti-aging effects of the AhR and try to reconcile the seemingly conflicting data considering a possible dependency on the animal model, tissue, as well as level of AhR expression and activation. Moreover, given the crucial role of mitochondria in the aging process, we summarize the growing body of evidence pointing toward the influence of AhR on mitochondria, which can be of potential relevance for aging.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Niloofar Ale-Agha
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Judith Haendeler
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Natascia Ventura
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Jeong S, Jo MJ, Yun HK, Kim DY, Kim BR, Kim JL, Park SH, Na YJ, Jeong YA, Kim BG, Ashktorab H, Smoot DT, Heo JY, Han J, Il Lee S, Do Kim H, Kim DH, Oh SC, Lee DH. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer. Cell Death Dis 2019; 10:846. [PMID: 31699976 PMCID: PMC6838113 DOI: 10.1038/s41419-019-2001-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
According to recent studies, Cannabidiol (CBD), one of the main components of Cannabis sativa, has anticancer effects in several cancers. However, the exact mechanism of CBD action is not currently understood. Here, CBD promoted cell death in gastric cancer. We suggest that CBD induced apoptosis by suppressing X-linked inhibitor apoptosis (XIAP), a member of the IAP protein family. CBD reduced XIAP protein levels while increasing ubiquitination of XIAP. The expression of Smac, a known inhibitor of XIAP, was found to be elevated during CBD treatment. Moreover, CBD treatment increased the interaction between XIAP and Smac by increasing Smac release from mitochondria to the cytosol. CBD has also been shown to affect mitochondrial dysfunction. Taken together, these results suggest that CBD may have potential as a new therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Soyeon Jeong
- 0000 0004 0474 0479grid.411134.2Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308 Republic of Korea
| | - Min Jee Jo
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Hye Kyeong Yun
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Dae Yeong Kim
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Bo Ram Kim
- 0000 0004 0474 0479grid.411134.2Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308 Republic of Korea
| | - Jung Lim Kim
- 0000 0004 0474 0479grid.411134.2Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308 Republic of Korea
| | - Seong Hye Park
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Yoo Jin Na
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Yoon A Jeong
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Bu Gyeom Kim
- 0000 0001 0840 2678grid.222754.4Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308 Republic of Korea
| | - Hassan Ashktorab
- 0000 0001 0547 4545grid.257127.4Department of Medicine, Howard University, Washington, District of Columbia 20060 USA
| | - Duane T. Smoot
- Department of Medicine, Meharry Medical Center, Nashville, Tennessee 37208 USA
| | - Jun Young Heo
- 0000 0001 0722 6377grid.254230.2Department of Medical Science, School of Medicine, Chung-nam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Jeongsu Han
- 0000 0001 0722 6377grid.254230.2Department of Medical Science, School of Medicine, Chung-nam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
| | - Sun Il Lee
- 0000 0001 0840 2678grid.222754.4Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Han Do Kim
- Kaiyon Bio Tech Co., Ltd, 226 Gamasan-Ro, Guro-gu, Seoul, 08308 Republic of Korea
| | - Dae Hyun Kim
- Kaiyon Bio Tech Co., Ltd, 226 Gamasan-Ro, Guro-gu, Seoul, 08308 Republic of Korea
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea. .,Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308, Republic of Korea.
| | - Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea. .,Graduate School of Medicine, College of Medicine, Korea University, Seoul, 08308, Republic of Korea. .,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon, 210-702, Korea.
| |
Collapse
|
40
|
Abdrakhmanov A, Kulikov AV, Luchkina EA, Zhivotovsky B, Gogvadze V. Involvement of mitophagy in cisplatin-induced cell death regulation. Biol Chem 2019; 400:161-170. [PMID: 29924729 DOI: 10.1515/hsz-2018-0210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023]
Abstract
Mitophagy, the selective degradation of mitochondria via the autophagic pathway, is a vital mechanism of mitochondrial quality control in cells. The removal of malfunctioning or damaged mitochondria is essential for normal cellular physiology and tissue development. Stimulation of mitochondrial permeabilization and release of proapoptotic factors from the intermembrane space is an essential step in triggering the mitochondrial pathway of cell death. In this study, we analyzed the extent to which mitophagy interferes with cell death, attenuating the efficiency of cancer therapy. We show that stimulation of mitophagy suppressed cisplatin-induced apoptosis, while mitophagy inhibition stimulates apoptosis and autophagy. Suppression of mitophagy involved production of reactive oxygen species, and the fate of cell was dependent on the interplay between endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
| | | | | | - Boris Zhivotovsky
- MV Lomonosov Moscow State University, 119991 Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Vladimir Gogvadze
- MV Lomonosov Moscow State University, 119991 Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
41
|
Zhao H, Chen L, Yang T, Feng YL, Vaziri ND, Liu BL, Liu QQ, Guo Y, Zhao YY. Aryl hydrocarbon receptor activation mediates kidney disease and renal cell carcinoma. J Transl Med 2019; 17:302. [PMID: 31488157 PMCID: PMC6727512 DOI: 10.1186/s12967-019-2054-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a well-known ligand-activated cytoplasmic transcription factor that contributes to cellular responses against environmental toxins and carcinogens. AhR is activated by a range of structurally diverse compounds from the environment, microbiome, natural products, and host metabolism, suggesting that AhR possesses a rather promiscuous ligand binding site. Increasing studies have indicated that AhR can be activated by a variety of endogenous ligands and induce the expression of a battery of genes. AhR regulates a variety of physiopathological events, including cell proliferation, differentiation, apoptosis, adhesion and migration. These new roles have expanded our understanding of the AhR signalling pathways and endogenous metabolites interacting with AhR under homeostatic and pathological conditions. Recent studies have demonstrated that AhR is linked to cardiovascular disease (CVD), chronic kidney disease (CKD) and renal cell carcinoma (RCC). In this review, we summarize gut microbiota-derived ligands inducing AhR activity in patients with CKD, CVD, diabetic nephropathy and RCC that may provide a new diagnostic and prognostic approach for complex renal damage. We further highlight polyphenols from natural products as AhR agonists or antagonists that regulate AhR activity. A better understanding of structurally diverse polyphenols and AhR biological activities would allow us to illuminate their molecular mechanism and discover potential therapeutic strategies targeting AhR activation.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Tian Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Bao-Li Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, 87131, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
42
|
Peixoto MS, da Silva Junior FC, de Oliveira Galvão MF, Roubicek DA, de Oliveira Alves N, Batistuzzo de Medeiros SR. Oxidative stress, mutagenic effects, and cell death induced by retene. CHEMOSPHERE 2019; 231:518-527. [PMID: 31151012 DOI: 10.1016/j.chemosphere.2019.05.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Retene (RET) is the most abundant polycyclic aromatic hydrocarbon (PAH) released upon burning of cellulose, although it is not considered as one of the priority PAHs and is not included for risk assessments by the US Environmental Protection Agency (US-EPA). There are only a few studies concerning the toxic effects of RET. To the best of our knowledge, this study is the first one to examine whether RET, in an environmental concentration, plays a crucial role in the induction of oxidative stress in A549 lung cell line, and its consequence as such as mutagenicity and cell death. Our results revealed that RET was able to significantly decrease cell viability only at 72 h of exposure, increase oxidative stress, mitochondrial membrane potential and mitochondrial contents, leading an increased reactive oxygen species (ROS) production. Mutagenic activity was not detected in Salmonella strains, suggesting that RET does not induce base-pair substitution (TA100), frameshift (TA98 and TA97a) and transition/transversion (TA102) mutations. However, exposure to RET led to a significant increase in micronuclei (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) frequency, as well as cell death, mainly due to necrosis. Taken together, the results of our study provide new evidence suggesting that RET promotes oxidative stress, contributes to the processes of genomic instability, and favors necrosis. Thus, we highlight the importance of including RET in routine environmental analyses in the future as a potential risk factor involved in complex diseases and carcinogenesis.
Collapse
Affiliation(s)
- Milena Simões Peixoto
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | - Marcos Felipe de Oliveira Galvão
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Deborah Arnsdorff Roubicek
- Department of Environmental Analyses, São Paulo State Environmental Company, CETESB, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
43
|
Wang E, Liu X, Tu W, Do DC, Yu H, Yang L, Zhou Y, Xu D, Huang S, Yang P, Ran P, Gao P, Liu Z. Benzo(a)pyrene facilitates dermatophagoides group 1 (Der f 1)-induced epithelial cytokine release through aryl hydrocarbon receptor in asthma. Allergy 2019; 74:1675-1690. [PMID: 30982974 PMCID: PMC6790621 DOI: 10.1111/all.13784] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/24/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Environmental pollutants, which coexist with allergens, have been associated with the exacerbation of asthma. However, the underlying molecular mechanisms remain elusive. We sought to determine whether benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced asthma and its underlying mechanisms. METHODS The effect of BaP was investigated in Der f 1-induced mouse model of asthma, including airway hyper-responsiveness, allergic inflammation, and epithelial-derived cytokines. The impact of BaP on Der f 1-induced airway epithelial cell oxidative stress (ROS) and cytokine release was further analyzed. The role of aryl hydrocarbon receptor (AhR) signaling in BaP-promoted Der f 1-induced ROS, cytokine production, and allergic inflammation was also investigated. RESULTS Compared with Der f 1, BaP co-exposure with Der f 1 led to airway hyper-responsiveness and increased lung inflammation in mouse model of asthma. Increased expression of TSLP, IL-33, and IL-25 was also found in the airways of these mice. Moreover, BaP co-exposure with Der f 1 activated AhR signaling with increased expression of AhR and CYP1A1 and promoted airway epithelial ROS generation and TSLP and IL-33, but not IL-25, expression. Interestingly, AhR antagonist CH223191 or cells with AhR knockdown abrogated the increased expression of ROS, TSLP, and IL-33. Furthermore, ROS inhibitor N-acetyl-L-cysteine (NAC) also suppressed BaP co-exposure-induced expression of epithelial TSLP, IL-33, and IL-25. Finally, AhR antagonist CH223191 and NAC inhibited BaP co-exposure with Der f 1-induced lung inflammation. CONCLUSIONS Our findings suggest that BaP facilitates Der f 1-induced epithelial cytokine release through the AhR-ROS axis.
Collapse
Affiliation(s)
- Eryi Wang
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University School of MedicineShenzhen UniversityShenzhenChina
| | - Xiaoyu Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University School of MedicineShenzhen UniversityShenzhenChina
| | - Wei Tu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University School of MedicineShenzhen UniversityShenzhenChina
| | - Danh C. Do
- Johns Hopkins Asthma and Allergy CenterJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Haiqiong Yu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
| | - Liteng Yang
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
| | - Yufeng Zhou
- Key Laboratory of Neonatal Disease, Ministry of Health, Children's Hospital and Institute of Biomedical SciencesFudan UniversityShanghaiChina
| | - Damo Xu
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Shau‐Ku Huang
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
- Johns Hopkins Asthma and Allergy CenterJohns Hopkins University School of MedicineBaltimoreMaryland
- National Institute of Environmental Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Pingchang Yang
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University School of MedicineShenzhen UniversityShenzhenChina
| | - Pixin Ran
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Pei‐Song Gao
- Johns Hopkins Asthma and Allergy CenterJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Zhigang Liu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital GroupShenzhenChina
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University School of MedicineShenzhen UniversityShenzhenChina
| |
Collapse
|
44
|
König J, Grune T, Ott C. Assessing autophagy in murine skeletal muscle: current findings to modulate and quantify the autophagic flux. Curr Opin Clin Nutr Metab Care 2019; 22:355-362. [PMID: 31145123 DOI: 10.1097/mco.0000000000000579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In addition to the currently available lysosomotropic drugs and autophagy whole-body knockout mouse models, we provide alternative methods that enable the modulation and detection of autophagic flux in vivo, discussing advantages and disadvantages of each method. RECENT FINDINGS With the autophagosome-lysosome fusion inhibitor colchicine in skeletal muscle and temporal downregulation of autophagy using a novel Autophagy related 5-short hairpin RNA (Atg5-shRNA) mouse model we mention two models that directly modulate autophagy flux in vivo. Furthermore, methods to quantify autophagy flux, such as mitophagy transgenic reporters, in situ immunofluorescent staining and multispectral imaging flow cytometry, in mature skeletal muscle and cells are addressed. SUMMARY To achieve clinical benefit, less toxic, temporary and cell-type-specific modulation of autophagy should be pursued further. A temporary knockdown as described for the Atg5-shRNA mice could provide a first insight into possible implications of autophagy inhibition. However, it is also important to take a closer look into the methods to evaluate autophagy after harvesting the tissue. In particular caution is required when experimental conditions can influence the final measurement and this should be pretested carefully.
Collapse
Affiliation(s)
- Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal
- German Center for Diabetes Research (DZD), Munich
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal
- German Center for Diabetes Research (DZD), Munich
- Institute of Nutrition, University of Potsdam, Nuthetal
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal
- DZHK (German Centre of Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
45
|
Shen HP, Wu WJ, Ko JL, Wu TF, Yang SF, Wu CH, Yeh CM, Wang PH. Effects of ABT-737 combined with irradiation treatment on uterine cervical cancer cells. Oncol Lett 2019; 18:4328-4336. [PMID: 31579427 DOI: 10.3892/ol.2019.10755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/24/2019] [Indexed: 01/30/2023] Open
Abstract
The aim of the present study was to examine the role of ABT-737, an inhibitor of B-cell lymphoma 2 (Bcl-2), in enhancing the effect of irradiation on uterine cervical cancer. Based on The Cancer Genomic Atlas (TCGA), Bcl-2 mRNA expression was associated with the Tumor-Node-Metastasis stage of cervical cancer. Therefore, it was hypothesized that Bcl-2 inhibition may decrease the progression of cervical cancer. ABT-737 was added to irradiation treatment to evaluate its effectiveness in inhibiting cancer cell progression. SiHa and CaSki cervical cancer cells were selected for in vitro assays. Patients with advanced stage III uterine cancer had slightly increased mRNA expression levels of Bcl-2 compared with patients with stage I cancer, although the difference was not significant. ABT-737 and radiation administration induced a synergistic cytotoxic effect based on the MTT assay and flow cytometry results, where an increase in apoptosis was observed. The apoptotic percentages were significantly increased in the cells treated with a combination of ABT-737 and irradiation. Loss of mitochondrial membrane potential and gain of reactive oxygen species (ROS) were detected by flow cytometry in CaSki and SiHa cells treated with ABT-737 and radiation. Additionally, the protein expression levels of the cleaved forms of poly ADP ribose polymerase and caspase-7 were increased following the combined treatment. In conclusion, ABT-737 and irradiation may induce apoptosis via loss of mitochondrial membrane potential and a ROS-dependent apoptotic pathway in CaSki and SiHa cells. The present study indicates that ABT-737 may be a potential irradiation adjuvant when treating cervical cancer.
Collapse
Affiliation(s)
- Huang-Pin Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tzu-Fan Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| | - Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
46
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
47
|
Wang P, Wang L, Lu J, Hu Y, Wang Q, Li Z, Cai S, Liang L, Guo K, Xie J, Wang J, Lan R, Shen J, Liu P. SESN2 protects against doxorubicin-induced cardiomyopathy via rescuing mitophagy and improving mitochondrial function. J Mol Cell Cardiol 2019; 133:125-137. [PMID: 31199952 DOI: 10.1016/j.yjmcc.2019.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
Abstract
The clinical application of doxorubicin (Dox) in cancer therapy is limited by its serious cardiotoxicity. Our previous studies and others have recognized that mitochondrial dysfunction is the common feature of Dox-induced cardiotoxicity. However, mechanisms underlying mitochondrial disorders remained largely unknown. SESN2, a highly conserved and stress-inducible protein, is involved in mitochondrial function and autophagy in cardiovascular diseases. This study aimed to investigate whether SESN2 affects Dox-induced cardiotoxicity and the underlying mechanisms. Sprague-Dawley rats and neonatal rat cardiomyocytes were treated with Dox. SESN2 expression was assessed. The effects of SESN2 on Dox-induced cardiotoxicity were assessed by functional gain and loss experiments. Echocardiographic parameters, morphological and histological analyses, transmission electron microscope and immunofluorescence assays were used to assess cardiac and mitochondrial function. The protein expression of SESN2 was significantly reduced following Dox stimulation. Both knockout of SESN2 by sgRNA and Dox treatment resulted in the inhibition of Parkin-mediated mitophagy, marked cardiomyocytes apoptosis and mitochondria dysfunction. Ectopic expression of SESN2 effectively protected against Dox-induced cardiomyocyte apoptosis, mitochondrial injury and cardiac dysfunction. Mechanistically, SESN2 interacted with Parkin and p62, promoted accumulation of Parkin to mitochondria and then alleviated Dox-caused inhibition of Parkin mediated mitophagy. Ultimately, the clearance of damaged mitochondria and mitochondrial function were improved following SESN2 overexpression. SESN2 protected against Dox-induced cardiotoxicity through improving mitochondria function and mitophagy. These results established SESN2 as a key player in mitochondrial function and provided a potential therapeutic approach to Dox-induced cardiomyopathy.
Collapse
Affiliation(s)
- Panxia Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Luping Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Laboratory of Hematopathology & Drug Discovery, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Yuehuai Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhenzhen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Sidong Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Liying Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Kaiteng Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jiyan Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou 510006, PR China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Rui Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Wang W, Yao GD, Shang XY, Zhang YY, Song XY, Hayashi T, Zhang Y, Song SJ. Eclalbasaponin I causes mitophagy to repress oxidative stress-induced apoptosis via activation of p38 and ERK in SH-SY5Y cells. Free Radic Res 2019; 53:655-668. [DOI: 10.1080/10715762.2019.1620937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin-Yue Shang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying-Ying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Yu Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Toshihiko Hayashi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Hachioji, Japan
| | - Yan Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
49
|
Ding Q, Xie XL, Wang MM, Yin J, Tian JM, Jiang XY, Zhang D, Han J, Bai Y, Cui ZJ, Jiang HQ. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp Mol Med 2019; 51:1-13. [PMID: 30635551 PMCID: PMC6329697 DOI: 10.1038/s12276-018-0199-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
The clearance of activated hepatic stellate cells (HSCs) by apoptosis is critical for the reversibility of hepatic fibrosis. Mitochondrial homeostasis is regulated by mitophagy, which is an efficient way of clearing injured mitochondria that plays an important role in apoptosis. However, the role of mitophagy in apoptosis in HSCs and hepatic fibrosis is still unclear. Here, we show that mitophagy is enhanced in parallel with increased apoptosis in hepatic stellate cells during the reversal of hepatic fibrosis. The inhibition of mitophagy suppressed apoptosis in HSCs and aggravated hepatic fibrosis in mice. In contrast, the activation of mitophagy induced apoptosis in HSCs. Furthermore, we confirmed that BCL-B, which is a member of the BCL-2 family, is a regulator mediating mitophagy-related apoptosis. The knockdown of BCL-B resulted in increased apoptosis and mitophagy in HSCs, while the overexpression of BCL-B caused the opposite effects. BCL-B inhibited the phosphorylation of Parkin (a key regulator of mitophagy) and directly bound phospho-Parkin. Altogether, enhanced mitophagy promotes apoptosis in HSCs during the reversal of hepatic fibrosis. BCL-B suppresses mitophagy in HSCs by binding and suppressing phospho-Parkin, thereby inhibiting apoptosis. BCL-B-dependent mitophagy is a new pathway for the regulation of apoptosis in HSCs during the regression of hepatic fibrosis. Clearing away defective mitochondria helps destroy cells in the liver that contribute to tissue scarring; the signaling pathway involved offers a new therapeutic target. Hui-Qing Jiang and colleagues from the Hebei Institute of Gastroenterology in Shijiazhuang, China, induced liver fibrosis in mice and showed that as the animals recovered and the damage to their liver tissue was reversed, injured mitochondria were cleared from fibrosis-causing cells in tandem with the cells’ controlled destruction. Experimentally inhibiting the process of mitochondrial clearance also inhibited cell death and aggravated fibrotic scarring in the mice. The researchers identified a signaling pathway that regulates mitochondrial cleanup and, in turn, also controlled cell death. Targeting this pathway offer a potential new therapeutic strategy for reversing liver fibrosis in patients.
Collapse
Affiliation(s)
- Qian Ding
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Miao-Miao Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Jie Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Jin-Mei Tian
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Di Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Jing Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Yun Bai
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Zi-Jin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China.
| |
Collapse
|
50
|
Yang C, Kok S, Wang H, Chang JZ, Lai EH, Shun C, Yang H, Chen M, Hong C, Lin S. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy‐related osteoblast apoptosis. Int Endod J 2018; 52:676-688. [DOI: 10.1111/iej.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- C.‐N. Yang
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
| | - S.‐H. Kok
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - H.‐W. Wang
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - J. Z.‐C. Chang
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - E. H.‐H. Lai
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - C.‐T. Shun
- Department of Forensic Medicine and Pathology National Taiwan University Hospital Taipei Taiwan
| | - H. Yang
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - M.‐H. Chen
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| | - C.‐Y. Hong
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
- Department of Prosthodontics School of Dentistry China Medical University Taichung Taiwan
- College of Bio‐Resources and Agriculture National Taiwan University Taipei Taiwan
| | - S.‐K. Lin
- Department of Dentistry School of Dentistry National Taiwan University Taipei Taiwan
- Department of Dentistry National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|