1
|
Chokshi NV, Vinchhi P, Chauhan S, Bora V, Patel BM, Patel MM. Design, fabrication, and in vitro-in vivo evaluation of surface-engineered pyrazinamide-loaded lipid nanoparticles for tuberculosis therapy. Pharm Dev Technol 2025:1-14. [PMID: 40207731 DOI: 10.1080/10837450.2025.2492136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Pyrazinamide (PYZ), a nicotinamide derivative, is an essential first-line anti-TB drug. However, its dose-dependent hepatotoxicity poses a considerable challenge, accentuating the need for improved delivery approaches. The key objective of the research work was to develop mannose-appended pyrazinamide-containing solid-lipid nanoparticles (Mn-PYZ-SNs) for the targeted management of TB. The developed Mn-PYZ-SNs depicted a particle size of 422±09 nm, which was slightly higher than that of unconjugated PYZ-SNs (Un-PYZ-SNs)(401±08 nm), with a minimal reduction in entrapment efficiency(83.64±1.42%). The in vitro drug release studies demonstrated comparable sustained release patterns for both formulations, with a similarity factor (f2) of 77.33, indicating that the structural integrity of PYZ-SNs was maintained during mannose conjugation. Fluorescence imaging and flow cytometric analysis revealed significantly enhanced cellular uptake of Mn-C6-SNs, with a 1.60-fold increase compared to Un-C6-SNs. The in vivo pharmacokinetic studies conducted on Sprague-Dawley rats showed a 4.7-fold improvement in relative bioavailability for Mn-PYZ-SNs. Biodistribution studies demonstrated significantly higher lung accumulation of Mn-PYZ-SNs (1.93-fold) compared to Un-PYZ-SNs at 24 hours. The aforementioned results imply that the developed Mn-PYZ-SNs could be a promising carrier for the treatment of TB. via the oral intestinal lymphatic pathway, circumventing its hepatic first-pass metabolism, and thereby preventing hepatic adverse effects.
Collapse
Affiliation(s)
- Nimitt V Chokshi
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Preksha Vinchhi
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Guilbaud L, Chen C, Domingues I, Kavungere EK, Marotti V, Yagoubi H, Zhang W, Malfanti A, Beloqui A. Oral Lipid-Based Nanomedicine for the Inhibition of the cGAS-STING Pathway in Inflammatory Bowel Disease Treatment. Mol Pharm 2025; 22:2108-2121. [PMID: 40032274 PMCID: PMC11979890 DOI: 10.1021/acs.molpharmaceut.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Harnessing the effect of the cyclic GMP-AMP Synthase-STimulator of INterferon Genes (cGAS-STING) signaling pathway has emerged as a promising approach to developing novel strategies for the oral treatment of inflammatory bowel disease (IBD). In this work, we screened different cGAS-STING inhibitors in vitro in murine macrophages. Then, we encapsulated the cGAS-STING inhibitor H-151 within lipid nanocapsules (LNCs), owing to their inherent ability to induce the secretion of glucagon-like peptide 2 (GLP-2), a re-epithelizing peptide, upon oral administration. We demonstrated that our formulation (LNC(H-151)) could induce GLP-2 secretion and selectively target the cGAS-STING pathway and its downstream key markers (including TBK1 and pTBK1) while reducing the expression of pro-inflammatory cytokines associated with the cGAS-STING pathway (TNF-α and CXCL10) in murine macrophages. In an in vivo acute dextran sodium sulfate (DSS)-induced colitis mouse model, the oral administration of LNC(H-151) significantly reduced pro-inflammatory cytokines to levels comparable to the CTRL Healthy group while promoting mucosal healing. The therapeutic potential of this scalable and cost-effective nanomedicine warrants further investigation as an alternative for the oral treatment of IBD.
Collapse
Affiliation(s)
- Léo Guilbaud
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Cheng Chen
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Inês Domingues
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Espoir K. Kavungere
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Valentina Marotti
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Hafsa Yagoubi
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wunan Zhang
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Alessio Malfanti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Ana Beloqui
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WEL
Research Institute, Avenue
Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
3
|
Wang H, Zhou F, Shen M, Ma R, Yu Q. Classification of Nanomaterial Drug Delivery Systems for Inflammatory Bowel Disease. Int J Nanomedicine 2025; 20:1383-1399. [PMID: 39925683 PMCID: PMC11804237 DOI: 10.2147/ijn.s502546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, primarily arises from defects in the colonic barrier, imbalances of the gut microbiota, and immune response issues. These complex causes make it difficult to achieve a complete cure. Patients with IBD frequently experience recurrent abdominal pain and bloody diarrhea, while severe cases may result in intestinal obstruction, perforation, and cancer. Lifelong maintenance therapy may thus be needed to manage these symptoms; however, traditional IBD drugs, such as 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are often associated with problems including poor solubility, instability, and ineffective targeting, as well as causing serious side effects in non-target tissues. Nanomaterial drug delivery systems (NDDS) have recently shown great promise in optimizing drug distribution, solubility through biocompatible coatings, enhancing bioavailability via PEGylation and reducing side effects. These formulations can enhance a drug's pharmacokinetics by modifying its properties, improve its ability to cross barriers, and boost bioavailability. In addition, NDDS can enable targeted delivery, increase local drug concentrations, improve efficacy, and reduce side effects, as well as protecting active drug molecules from immune recognition and protease degradation. The clinical use of these systems for treating IBD, however, requires further research. This review summarizes the classification of NDDS for IBD, and concludes that, despite ongoing challenges, NDDS may represent an effective treatment approach for IBD. In summary, NDDS enhance the targeted delivery of therapeutic agents to specific cells or tissues, thereby improving drug bioavailability and therapeutic efficacy. These systems effectively surmount biological barriers, facilitating efficient drug delivery to targeted sites, which is crucial for attaining optimal therapeutic outcomes. This review contributes to a deeper understanding of how the physicochemical properties of NDDS influence pharmacological behavior in vivo and can expedite their clinical translation.
Collapse
Affiliation(s)
- Haichen Wang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Feifei Zhou
- Department of Gastroenterology, Suzhou City Wuzhong District Chengnan Street Community Health Service Center, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Mengdan Shen
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Ronglin Ma
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Qiang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| |
Collapse
|
4
|
Kiilerich KF, Andresen T, Darbani B, Gregersen LHK, Liljensøe A, Bennike TB, Holm R, Moeller JB, Andersen V. Advancing Inflammatory Bowel Disease Treatment by Targeting the Innate Immune System and Precision Drug Delivery. Int J Mol Sci 2025; 26:575. [PMID: 39859291 PMCID: PMC11765494 DOI: 10.3390/ijms26020575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Current immune-modulating therapies are insufficient for 30-50% of patients or cause significant side effects, emphasizing the need for new treatments. Targeting the innate immune system and enhancing drug delivery to inflamed gut regions are promising strategies. Neutrophils play a central role in IBD by releasing reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) -DNA-based structures with cytotoxic proteins-that contribute to mucosal damage and inflammation. Recent studies linking ROS production, DNA repair, and NET formation have identified NETs as potential therapeutic targets, with preclinical models showing positive outcomes from NET inhibition. Innovative oral drug delivery systems designed to target gut inflammation directly-without systemic absorption-could improve treatment precision and reduce side effects. Advanced formulations utilize properties such as particle size, surface modifications, and ROS-triggered release to selectively target the distal ileum and colon. A dual strategy that combines a deeper understanding of IBD pathophysiology to identify inflammation-related therapeutic targets with advanced drug delivery systems may offer significant promise. For instance, pairing NET inhibition with ROS-responsive nanocarriers could enhance treatment efficacy, though further research is needed. This synergistic approach has the potential to greatly improve outcomes for IBD patients.
Collapse
Affiliation(s)
- Kat F. Kiilerich
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (K.F.K.); (J.B.M.)
| | - Trine Andresen
- Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, 9220 Aalborg Ø, Denmark; (T.A.); (T.B.B.)
| | - Behrooz Darbani
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark; (B.D.); (L.H.K.G.); (A.L.)
| | - Laura H. K. Gregersen
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark; (B.D.); (L.H.K.G.); (A.L.)
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Anette Liljensøe
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark; (B.D.); (L.H.K.G.); (A.L.)
| | - Tue B. Bennike
- Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, 9220 Aalborg Ø, Denmark; (T.A.); (T.B.B.)
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark; (B.D.); (L.H.K.G.); (A.L.)
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5000 Odense, Denmark;
| | - Jesper B. Moeller
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (K.F.K.); (J.B.M.)
- Danish Institute for Advanced Study, University of Southern Denmark, 5000 Odense, Denmark
| | - Vibeke Andersen
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, 6200 Aabenraa, Denmark; (B.D.); (L.H.K.G.); (A.L.)
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
5
|
Altaf S, Zeeshan M, Ali H, Zeb A, Afzal I, Imran A, Mazhar D, Khan S, Shah FA. pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Eur J Pharm Biopharm 2024; 204:114461. [PMID: 39306199 DOI: 10.1016/j.ejpb.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 10/27/2024]
Abstract
Inflammatory Bowel Disease is the chronic tissue inflammation of the lower part of the Gastrointestinal tract (GIT). Conventional therapeutic approaches face numerous challenges, often making the delivery system inadequate for treating the disease. This study aimed to integrate a pH-sensitive polymer and nanostructured lipid carriers (NLCs) to develop a hybrid nanocarrier system. Tacrolimus-loaded NLCs coated with Eudragit® FS100 (TAC-NLCs/E FS100) nanoparticles were prepared via double emulsion technique followed by an aqueous enteric coating technique. Various parameters, such as particle size, entrapment efficiency, and zeta potential were optimized using Design Expert software®. Cetyltrimethyl ammonium bromide (CTAB) was used as a cationic surfactant which induces a positive charge on the nanoparticles. These cationic NLCs can adhere to the mucosal surface, thereby enabling prolonged retention. In vitro drug release was assessed, and the results demonstrated that drug release was retarded at pH 1.2 corresponding to upper GIT pH and maximum drug was released at pH 7.4 (colonic pH). Moreover, we evaluated TAC-NLCs/E FS100 nanoparticles in murine colitis models to gauge the efficacy of both coated and uncoated NLCs formulation. The TAC-NLCs/E FS100 showed a pronounced reduction in induced colitis, as evident from the restoration of morphological features, improved histopathological scores, antioxidant levels, and decreased the levels of proinflammatory cytokines. Thus, pH-sensitive TAC-NLCs/EFS 100 are attributed to the enhanced localization and targeted delivery at the specific site.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan; Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Ahmed Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Ayesha Imran
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology of Pharmacy, Prince Sattam Bin Abdul Aziz University Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
7
|
González-Fuentes J, Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Understanding the role of the structure of single-stimuli hybrid systems on their behaviour as platforms for colonic delivery. Drug Deliv Transl Res 2024; 14:2598-2614. [PMID: 38856952 DOI: 10.1007/s13346-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
The success of colon-targeted oral hybrid systems relies in the proper control over the release of the entrapped nanostructures at the colon. This work describes the design of hybrid systems for their colonic enzyme-triggered release. The hybrid systems were constituted by nanoemulsions, with adequate characteristics for the treatment of ulcerative colitis, included in a pectin hydrogel-like matrix. For that purpose, pectins with similar degrees of methylation (< 50%) and increasing degree of amidation, i.e. 0, 13 and 20%, were selected. Hybrid systems were formulated by a novel aggregation induced gelation method, using Ca2+, Ba2+ or Zn2+ as aggregating agents, as well as by a polyelectrolyte condensation approach, obtaining structures in the micrometric range (< 10 μm). Despite the resistance of pectins to the upper gastrointestinal tract stimuli, the analysis of the behaviour of the different prototypes showed that the non-covalent crosslinks that allow the formation of the hybrid structure may play a relevant role on the performance of the formulation.Our results indicated that the partial disassembling of the hybrid system's microstructure due to the intestinal conditions may facilitate the stimuli-triggered release of the nanoemulsions at the colon. More interestingly, the particle tracking experiments showed that the condensation process that occurs during the formation of the system may affect to the enzymatic degradation of pectin. In this sense, the effect of the high degree of amidation of pectin may be more prevalent as structural feature rather than as a promoter of the enzyme-triggered release.
Collapse
Affiliation(s)
- Joaquín González-Fuentes
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain
| | - María Plaza-Oliver
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain
| | - Manuel Jesús Santander-Ortega
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain.
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain.
| | - María Victoria Lozano
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain.
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain.
| |
Collapse
|
8
|
Lu X, Fan M, Ma Y, Feng Y, Pan L. Redox-sensitive hydrogel based on hyaluronic acid with selenocystamine cross-linking for the delivery of Limosilactobacillus reuteri in a DSS-induced colitis mouse model. Int J Biol Macromol 2024; 276:133855. [PMID: 39032895 DOI: 10.1016/j.ijbiomac.2024.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Disrupted gut microbiota homeostasis is an important cause of inflammatory colitis. Studies have shown that effective supplementation with probiotics can maintain microbial homeostasis and alleviate colitis. Here, to increase the viability of probiotics in the harsh gastrointestinal environments and enable targeted delivery, a redox-sensitive selenium hyaluronic acid (HA-Se) hydrogel encapsulating probiotics was developed. HA was modified with selenocystamine dihydrochloride and crosslinked by an amide reaction to generate a redox-sensitive hydrogel with stable mechanical properties, a low hemolysis rate and satisfactory biocompatibility. The HA-Se hydrogel exhibited suitable sensitivity to 10 mM GSH or 100 μM H2O2. The encapsulation of Limosilactobacillus reuteri (LR) in the HA-Se hydrogel (HA-Se-LR) significantly increased the survival rate of the probiotics in simulated gastric and intestinal fluid. HA-Se-LR administration increased the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis, significantly alleviated oxidative stress and inflammation, and increased the effect of LR on microbiota α diversity. These results indicate that the HA-Se hydrogel constructed in this study can be used as a delivery platform to treat colitis, expanding the targeted applications of the natural polymer HA in disease treatment and the administration of probiotics as drugs to alleviate disease symptoms.
Collapse
Affiliation(s)
- Xi Lu
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China.
| | - Mingming Fan
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yuzhe Ma
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yimeng Feng
- Mathematics Teaching and Research Group, Dajindian Town Junior High School, Zhengzhou 450000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| |
Collapse
|
9
|
Tessier B, Moine L, Peramo A, Tsapis N, Fattal E. Poly(malic acid)-budesonide nanoconjugates embedded in microparticles for lung administration. Drug Deliv Transl Res 2024; 14:2062-2078. [PMID: 38517568 DOI: 10.1007/s13346-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
To improve the therapeutic activity of inhaled glucocorticoids and reduce potential side effects, we designed a formulation combining the advantages of nanoparticles, which have an enhanced uptake by alveolar cells, allow targeted delivery and sustained drug release, as well as limited drug systemic passage, with those of microparticles, which display good alveolar deposition. Herein, a polymer-drug conjugate, poly(malic acid)-budesonide (PMAB), was first synthesized with either 11, 20, 33, or 43 mol% budesonide (drug:polymer from 1:8 to 3:4), the drug creating hydrophobic domains. The obtained conjugates self-assemble into nanoconjugates in water, yielding excellent drug loading of up to 73 wt%, with 80-100 nm diameters. In vitro assays showed that budesonide could be steadily released from the nanoconjugates, and the anti-inflammatory activity was preserved, as evidenced by reduced cytokine production in LPS-activated RAW 264.7 macrophages. Nanoconjugates were then embedded into microparticles through spray-drying with L-leucine, forming nano-embedded microparticles (NEMs). NEMs were produced with an aerodynamic diameter close to 1 µm and a density below 0.1 g.cm-3, indicative of a high alveolar deposition. NEMs spray-dried with the less hydrophobic nanoconjugates, PMAB 1:4, were readily dissolved in simulated lung fluid and were chosen for in vivo experiments to study pharmacokinetics in healthy rats. As it was released in vivo from NEMs, sustained distribution of budesonide was obtained for 48 h in lung tissue, cells, and lining fluid. With high loading rates, modulable release kinetics, and low cytotoxicity, these nanoconjugates delivered by NEMs are promising for the more efficient treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Barbara Tessier
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Laurence Moine
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Arnaud Peramo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
10
|
Han HS, Hwang S, Choi SY, Hitayezu E, Humphrey MA, Enkhbayar A, Song D, Kim M, Park J, Park Y, Park J, Cha KH, Choi KY. Roseburia intestinalis-derived extracellular vesicles ameliorate colitis by modulating intestinal barrier, microbiome, and inflammatory responses. J Extracell Vesicles 2024; 13:e12487. [PMID: 39166405 PMCID: PMC11336657 DOI: 10.1002/jev2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/29/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by recurrent gastrointestinal inflammation, lacking a precise aetiology and definitive cure. The gut microbiome is vital in preventing and treating IBD due to its various physiological functions. In the interplay between the gut microbiome and human health, extracellular vesicles secreted by gut bacteria (BEVs) are key mediators. Herein, we explore the role of Roseburia intestinalis (R)-derived EVs (R-EVs) as potent anti-inflammatory mediators in treating dextran sulfate sodium-induced colitis. R was selected as an optimal BEV producer for IBD treatment through ANCOM analysis. R-EVs with a 76 nm diameter were isolated from R using a tangential flow filtration system. Orally administered R-EVs effectively accumulated in inflamed colonic tissues and increased the abundance of Bifidobacterium on microbial changes, inhibiting colonic inflammation and prompting intestinal recovery. Due to the presence of Ile-Pro-Ile in the vesicular structure, R-EVs reduced the DPP4 activity in inflamed colonic tissue and increased the active GLP-1, thereby downregulating the NFκB and STAT3 via the PI3K pathway. Our results shed light on the impact of BEVs on intestinal recovery and gut microbiome alteration in treating IBD.
Collapse
Affiliation(s)
- Hwa Seung Han
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Soonjae Hwang
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Emmanuel Hitayezu
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Mabwi A. Humphrey
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Altai Enkhbayar
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Myungsuk Kim
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | | | - Young‐Tae Park
- Natural Product Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Jin‐Soo Park
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
| | - Ki Young Choi
- Department of Marine Bio‐Food ScienceGangneung‐Wonju National UniversityGangneungRepublic of Korea
- Natural Product Informatics Research CenterKorea Institute of Science and Technology (KIST)GangneungRepublic of Korea
- NVience Inc.SeoulRepublic of Korea
| |
Collapse
|
11
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Jin X, Xia X, Li J, Adu-Frimpong M, Wang X, Wang Q, Wu H, Yu Q, Ji H, Toreniyazov E, Cao X, Yu J, Xu X. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv Transl Res 2024; 14:1370-1388. [PMID: 37957475 DOI: 10.1007/s13346-023-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (- 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.
Collapse
Affiliation(s)
- Xingcheng Jin
- Department of Pharmacy, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxiao Wu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Nukus, Uzbekistan
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
13
|
Broering MF, Oseliero Filho PL, Borges PP, da Silva LCC, Knirsch MC, Xavier LF, Scharf P, Sandri S, Stephano MA, de Oliveira FA, Sayed IM, Gamarra LF, Das S, Fantini MCA, Farsky SHP. Development of Ac2-26 Mesoporous Microparticle System as a Potential Therapeutic Agent for Inflammatory Bowel Diseases. Int J Nanomedicine 2024; 19:3537-3554. [PMID: 38638365 PMCID: PMC11024051 DOI: 10.2147/ijn.s451589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) disrupt the intestinal epithelium, leading to severe chronic inflammation. Current therapies cause adverse effects and are expensive, invasive, and ineffective for most patients. Annexin A1 (AnxA1) is a pivotal endogenous anti-inflammatory and tissue repair protein in IBD. Nanostructured compounds loading AnxA1 or its active N-terminal mimetic peptides improve IBD symptomatology. Methods To further explore their potential as a therapeutic candidate, the AnxA1 N-terminal mimetic peptide Ac2-26 was incorporated into SBA-15 ordered mesoporous silica and covered with EL30D-55 to deliver it by oral treatment into the inflamed gut. Results The systems SBA-Ac2-26 developed measurements revealed self-assembled rod-shaped particles, likely on the external surface of SBA-15, and 88% of peptide incorporation. SBA-15 carried the peptide Ac2-26 into cultured Raw 264.7 macrophages and Caco-2 epithelial cells. Moreover, oral administration of Eudragit-SBA-15-Ac2-26 (200 μg; once a day; for 4 days) reduced colitis clinical symptoms, inflammation, and improved epithelium recovery in mice under dextran-sodium sulfate-induced colitis. Discussion The absorption of SBA-15 in gut epithelial cells is typically low; however, the permeable inflamed barrier can enable microparticles to cross, being phagocyted by macrophages. These findings suggest that Ac2-26 is successfully delivered and binds to its receptors in both epithelial and immune cells, aligning with the clinical results. Conclusion Our findings demonstrate a simple and cost-effective approach to delivering Ac2-26 orally into the inflamed gut, highlighting its potential as non-invasive IBD therapy.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Pedro Leonidas Oseliero Filho
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
- Materials Innovation Factory, University of Liverpool, Liverpool, MSY, UK
| | - Pâmela Pacassa Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marcos Camargo Knirsch
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco Antonio Stephano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Anselmo de Oliveira
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Lionel Fernel Gamarra
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Márcia C A Fantini
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Marotti V, Xu Y, Bohns Michalowski C, Zhang W, Domingues I, Ameraoui H, Moreels TG, Baatsen P, Van Hul M, Muccioli GG, Cani PD, Alhouayek M, Malfanti A, Beloqui A. A nanoparticle platform for combined mucosal healing and immunomodulation in inflammatory bowel disease treatment. Bioact Mater 2024; 32:206-221. [PMID: 37859689 PMCID: PMC10582360 DOI: 10.1016/j.bioactmat.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) treatment consist of anti-inflammatory products. In this study, we sought to induce the physiological secretion of glucagon-like peptide 2, a peptide with intestinal growth-promoting activity, via nanoparticles while simultaneously providing with immunomodulation by tailoring the nanoparticle surface. To this end, we developed hybrid lipid hyaluronate-KPV conjugated nanoparticles loaded with teduglutide for combination therapy in IBD. The nanocarriers induced (or did not induce) immunosuppression depending on the presence (or absence) of a hyaluronan-KPV functionalization. This strategy holds promise as a nanoparticle platform for combined mucosal healing and immunomodulation in IBD treatment.
Collapse
Affiliation(s)
- Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Yining Xu
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Cécilia Bohns Michalowski
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Hafsa Ameraoui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Tom G. Moreels
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, 1200 Brussels, Belgium
- Cliniques universitaires Saint-Luc, Department of Hepato-Gastroenterology, Brussels, Belgium
| | - Pieter Baatsen
- EM-platform, VIB Bio Imaging Core, KU Leuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, 1200 Brussels, Belgium
| | - Giulio G. Muccioli
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Patrice D. Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, 1200 Brussels, Belgium
- UCLouvain, Institute of Experimental and Clinical Research, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Mireille Alhouayek
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
15
|
Ardekani ZM, Lorenzo-Leal AL, Bach H. Nanomedicine-mediated drug delivery for potential treatment of inflammatory bowel disease: a narrative review. Nanomedicine (Lond) 2024; 19:163-179. [PMID: 38284393 DOI: 10.2217/nnm-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Background & aims: Inflammatory bowel disease (IBD) is a condition characterized by chronic inflammation of the gastrointestinal tract, manifesting as either Crohn's disease (CrD) or ulcerative colitis (UC). Current treatment options for CrD and UC primarily focus on symptom management. In recent years, advancements in nanotechnology have increased the clinical applicability of nanoparticles (NPs) in treating IBD. This review explores the current research on NP-mediated drug-delivery systems for IBD treatment and assesses its advantages and limitations. Results: The authors examine diverse nanomedicine applications for IBD and address the current challenges and prospects in the field to advance nanomediated therapies in the future. Conclusion: Innovative NP-based treatment strategies promise a reliable and effective approach to IBD management.
Collapse
Affiliation(s)
- Zhina Majdzadeh Ardekani
- University of British Columbia, Faculty of Medicine, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Ana L Lorenzo-Leal
- University of British Columbia, Faculty of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| | - Horacio Bach
- University of British Columbia, Faculty of Medicine, Division of Infectious Diseases, 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada
| |
Collapse
|
16
|
Hu S, Zhao R, Xu Y, Gu Z, Zhu B, Hu J. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. J Mater Chem B 2023; 12:13-38. [PMID: 38018424 DOI: 10.1039/d3tb02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, P. R. China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, P. R. China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
17
|
Zhao S, Zhao Y, Yang X, Zhao T. Recent research advances on oral colon-specific delivery system of nature bioactive components: A review. Food Res Int 2023; 173:113403. [PMID: 37803751 DOI: 10.1016/j.foodres.2023.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Oral colon-specific delivery system (OCDS) is a targeted approach that aims to directly deliver bioactive compounds directly to the colon following oral administration, thereby enhancing the colonic release of bioactive substances and minimizing adverse reactions. The effectiveness of bioactive substances in the colon hinges on the degree of release, which are affected by various factors including pH, mucosal barrier, delivery time and so on. Therefore, this review provides a comprehensive overview of the key factors affecting oral colon-specific release of bioactive components firstly. Considering the oral safety, this review then mainly focuses on the types of carriers with edible OCDS and preparation strategies for OCDS. Finally, several preparation strategies for loading typical natural bioactive ingredients into oral safe OCDS are reviewed, along with future development prospects.
Collapse
Affiliation(s)
- Shuang Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Tong Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
18
|
Klitgaard M, Kristensen MN, Venkatasubramanian R, Guerra P, Jacobsen J, Berthelsen R, Rades T, Müllertz A. Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids. Drug Deliv Transl Res 2023; 13:1484-1499. [PMID: 36913104 DOI: 10.1007/s13346-023-01313-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent. This study aimed to investigate the DSS model to improve the preclinical evaluation of new oral drug formulations. The induction of colitis was evaluated based on the disease activity index (DAI) score, colon length, histological tissue evaluation, spleen weight, plasma C-reactive protein, and plasma lipocalin-2. Furthermore, the study investigated how the DSS-induced colitis affected the luminal pH, lipase activity, and concentrations of bile salts, polar lipids, and neutral lipids. For all evaluated parameters, healthy rats were used as a reference. The DAI score, colon length, and histological evaluation of the colon were effective disease indicators in DSS-induced colitis rats, while spleen weight, plasma C-reactive protein, and plasma lipocalin-2 were not. The luminal pH of the colon and bile salt- and neutral lipid concentrations in regions of the small intestine were lower in DSS-induced rats compared to healthy rats. Overall, the colitis model was deemed relevant for investigating ulcerative colitis-specific formulations.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Priscila Guerra
- Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark. .,Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
19
|
Impact of gastric and bowel surgery on gastrointestinal drug delivery. Drug Deliv Transl Res 2023; 13:37-53. [PMID: 35585472 PMCID: PMC9726802 DOI: 10.1007/s13346-022-01179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
General surgical procedures on the gastrointestinal tract are commonly performed worldwide. Surgical resections of the stomach, small intestine, or large intestine can have a significant impact on the anatomy and physiological environment of the gastrointestinal tract. These physiological changes can affect the effectiveness of orally administered formulations and drug absorption and, therefore, should be considered in rational drug formulation design for specific pathological conditions that are commonly associated with surgical intervention. For optimal drug delivery, it is important to understand how different surgical procedures affect the short-term and long-term functionality of the gastrointestinal tract. The significance of the surgical intervention is dependent on factors such as the specific region of resection, the degree of the resection, the adaptive and absorptive capacity of the remaining tissue, and the nature of the underlying disease. This review will focus on the common pathological conditions affecting the gastric and bowel regions that may require surgical intervention and the physiological impact of the surgery on gastrointestinal drug delivery. The pharmaceutical considerations for conventional and novel oral drug delivery approaches that may be impacted by general surgical procedures of the gastrointestinal tract will also be addressed.
Collapse
|
20
|
Sharma DS, Wadhwa S, Gulati M, Kumar B, Chitranshi N, Gupta VK, Alrouji M, Alhajlah S, AlOmeir O, Vishwas S, Khursheed R, Saini S, Kumar A, Parveen SR, Gupta G, Zacconi F, Chellappan DK, Morris A, Loebenberg R, Dua K, Singh SK. Chitosan modified 5-fluorouracil nanostructured lipid carriers for treatment of diabetic retinopathy in rats: A new dimension to an anticancer drug. Int J Biol Macromol 2023; 224:810-830. [PMID: 36302483 DOI: 10.1016/j.ijbiomac.2022.10.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Diabetic retinopathy (DR) is one of the chronic complications of diabetes. It includes retinal blood vessels' damage. If untreated, it leads to loss of vision. The existing treatment strategies for DR are expensive, invasive, and need expertise during administration. Hence, there is a need to develop a non-invasive topical formulation that can penetrate deep to the posterior segment of retina and treat the damaged retinal vessels. In addition, it should also provide sustained release. In recent years, novel drug delivery systems (NDDS) have been explored for treating DR and found successful. In this study, chitosan (CS) modified 5-Fluorouracil Nanostructured Lipid Carriers (CS-5-FU-NLCs) were prepared by modified melt emulsification-ultrasonication method and optimized by Box-Behnken Design. The size, polydispersity index, zeta potential and entrapment efficiency of CS-5-FU-NLCs were 163.2 ± 2.3 nm, 0.28 ± 1.52, 21.4 ± 0.5 mV and 85.0 ± 0.2 %, respectively. The in vitro drug release and ex vivo permeation study confirmed higher and sustained drug release in CS-5-FU-NLCs as compared to 5-FU solution. HET-CAM Model ensured the non-irritant nature of CS-5-FU-NLCs. In vivo ocular studies of CS-5-FU-NLCs confirmed antiangiogenic effect of 5-FU by CAM model and diabetic retinopathy induced rat model, indicating successful delivery of 5-FU to the retina.
Collapse
Affiliation(s)
- Deep Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Vivek Kumar Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Shaik Rahana Parveen
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Andrew Morris
- Swansea University Medical School, Swansea University, Singleton Park, Room 262, 1st Floor, Grove Building, Swansea, Wales SA2 8PP, UK
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton AB T6G2N8, Alberta, Canada
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
21
|
Preparation and Characterization of a Novel Multiparticulate Dosage Form Carrying Budesonide-Loaded Chitosan Nanoparticles to Enhance the Efficiency of Pellets in the Colon. Pharmaceutics 2022; 15:pharmaceutics15010069. [PMID: 36678698 PMCID: PMC9865799 DOI: 10.3390/pharmaceutics15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
An attempt was made to conquer the limitation of orally administered nanoparticles for the delivery of budesonide to the colon. The ionic gelation technique was used to load budesonide on chitosan nanoparticles. The nanoparticles were investigated in terms of size, zeta potential, encapsulation efficiency, shape and drug release. Then, nanoparticles were pelletized using the extrusion-spheronization method and were investigated for their size, mechanical properties, and drug release. Pellets were subsequently coated with a polymeric solution composed of two enteric (eudragit L and S) and time-dependent polymers (eudragit RS) for colon-specific delivery. All formulations were examined for their anti-inflammatory effect in rats with induced colitis and the relapse of the colitis after discontinuation of treatment was also followed. The size of nanoparticles ranged between 288 ± 7.5 and 566 ± 7.7 nm and zeta potential verified their positive charged surface. The drug release from nanoparticles showed an initial burst release followed by a continuous release. Pelletized nanoparticles showed proper mechanical properties and faster drug release in acidic pH compared with alkaline pH. It was interesting to note that pelletized budesonide nanoparticles released the drug throughout the GIT in a sustained fashion, and had long-lasting anti-inflammatory effects while rapid relapse was observed for those treated with conventional budesonide pellets. It seems that there is a synergistic effect of nanoformulation of budesonide and the encapsulation of pelletized nanoparticles in a proper coating system for colon delivery that could result in a significant and long-lasting anti-inflammatory effect.
Collapse
|
22
|
Xu R, Weber MC, Hu X, Neumann PA, Kamaly N. Annexin A1 based inflammation resolving mediators and nanomedicines for inflammatory bowel disease therapy. Semin Immunol 2022; 61-64:101664. [PMID: 36306664 DOI: 10.1016/j.smim.2022.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic, progressive, and relapsing disorders of the gastrointestinal tract (GIT), characterised by intestinal epithelial injury and inflammation. Current research shows that in addition to traditional anti-inflammatory therapy, resolution of inflammation and repair of the epithelial barrier are key biological requirements in combating IBD. Resolution mediators include endogenous lipids that are generated during inflammation, e.g., lipoxins, resolvins, protectins, maresins; and proteins such as Annexin A1 (ANXA1). Nanoparticles can specifically deliver these potent inflammation resolving mediators in a spatiotemporal manner to IBD lesions, effectively resolve inflammation, and promote a return to homoeostasis with minimal collateral damage. We discuss these exciting and timely concepts in this review.
Collapse
Affiliation(s)
- Runxin Xu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Marie-Christin Weber
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany
| | - Xinkai Hu
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom
| | - Philipp-Alexander Neumann
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Surgery, Germany.
| | - Nazila Kamaly
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, United Kingdom.
| |
Collapse
|
23
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
24
|
Virmani T, Kumar G, Virmani R, Sharma A, Pathak K. Nanocarrier-based approaches to combat chronic obstructive pulmonary disease. Nanomedicine (Lond) 2022; 17:1833-1854. [PMID: 35856251 DOI: 10.2217/nnm-2021-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormalities in airway mucus lead to chronic disorders in the pulmonary system such as asthma, fibrosis and chronic obstructive pulmonary disease (COPD). Among these, COPD is more prominent worldwide. Various conventional approaches are available in the market for the treatment of COPD, but the delivery of drugs to the target site remains a challenge with conventional approaches. Nanocarrier-based approaches are considered the best due to their sustained release properties to the target site, smaller size, high surface-to-volume ratio, patient compliance, overcoming airway defenses and improved pharmacotherapy. This article provides updated information about the treatment of COPD along with nanocarrier-based approaches as well as the potential of gene therapy and stem cell therapy to combat the COPD.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana, 121102, India
| | - Kamla Pathak
- Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, 206001, India
| |
Collapse
|
25
|
Budesonide-Loaded Hyaluronic Acid Nanoparticles for Targeted Delivery to the Inflamed Intestinal Mucosa in a Rodent Model of Colitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7776092. [PMID: 36203483 PMCID: PMC9532096 DOI: 10.1155/2022/7776092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate the therapeutic potential of budesonide- (BDS-) loaded hyaluronic acid nanoparticles (HANPs) for treatment of inflammatory bowel disease (IBD) using an acute model of colitis in rats. The therapeutic efficacy of BDS-loaded HANPs in comparison with an aqueous suspension of the drug with the same dose (30 μg/kg) was investigated 48 h following induction of colitis by intrarectal administration of acetic acid 4% in rats. Microscopic and histopathologic examinations were conducted in inflamed colonic tissue. Tissue concentration of tumor necrosis factor (TNF)-α was assessed by ELISA assay kit, while the activity of myeloperoxidase (MPO) was measured spectrophotometrically. Results from in vivo evaluations demonstrated that administrations of BDS-HANPs ameliorated the general endoscopic appearance, quite close to the healthy animals with no signs of inflammation and reduced the cellular infiltration, as well as the TNF-α level, and the MPO activity. It was found that delivery by BDS-loaded HANPSs alleviated the induced colitis significantly better than the same dose of the free drug. These data further suggest the potential of HANPs as a targeted drug delivery system to the inflamed colon mucosa.
Collapse
|
26
|
Li DF, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Yao J, Wang LS. Nanoparticles for oral delivery: targeted therapy for inflammatory bowel disease. J Mater Chem B 2022; 10:5853-5872. [PMID: 35876136 DOI: 10.1039/d2tb01190e] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers. The unique physicochemical properties of nanoparticle-based drug delivery systems (DDSs) and their enhanced permeability and retention effects in the inflamed bowel, render nanomedicines to be used to implement precise drug delivery at diseased sites in IBD therapy. In this review, we described the pathophysiological features of IBD, and designed strategies to exploit these features for intestinal targeting. In addition, we introduced the types of currently developed nano-targeted carriers, including synthetic nanoparticle-based and emerging naturally derived nanoparticles (e.g., extracellular vesicles and plant-derived nanoparticles). Moreover, recent developments in targeted oral nanoparticles for IBD therapy were also highlighted. Finally, we presented challenges associated with nanotechnology and potential directions for future IBD treatment.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026, Guangdong, China.
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, No. 1080, Cuizu Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
27
|
Colonic delivery of surface charge decorated nanocarrier for IBD therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Pathological features-based targeted delivery strategies in IBD therapy: A mini review. Biomed Pharmacother 2022; 151:113079. [PMID: 35605297 DOI: 10.1016/j.biopha.2022.113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by a complex and dysfunctional immune response. Currently, IBD is incurable, and patients with IBD often need to take drugs for life. However, as the traditional systemic treatment strategies for IBD do not target the site of inflammation, only limited efficacy can be obtained from them. Moreover, the possibility of serious side effects stemming from the systemic administration or redistribution of drugs in the body is high when conventional drug formulations are used. Therefore, a targeted drug-delivery system for IBD should be considered. Based on the pathological features related to IBD, the new targeted drug-delivery strategy can directly transfer the drug to the inflammatory site, thus enhancing the accumulation of the drugs and reducing side effects. This article reviews the pathological features of IBD and the application of the IBD-targeted delivery system based on different pathological features, and discusses the challenges and new prospects in this field.
Collapse
|
30
|
Yasmin F, Najeeb H, Shaikh S, Hasanain M, Naeem U, Moeed A, Koritala T, Hasan S, Surani S. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol 2022; 28:1922-1933. [PMID: 35664964 PMCID: PMC9150062 DOI: 10.3748/wjg.v28.i18.1922] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/22/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic illness characterized by relapsing inflammation of the intestines. The disorder is stratified according to the severity and is marked by its two main phenotypical representations: Ulcerative colitis and Crohn's disease. Pathogenesis of the disease is ambiguous and is expected to have interactivity between genetic disposition, environmental factors such as bacterial agents, and dysregulated immune response. Treatment for IBD aims to reduce symptom extent and severity and halt disease progression. The mainstay drugs have been 5-aminosalicylates (5-ASAs), corticosteroids, and immunosuppressive agents. Parenteral, oral and rectal routes are the conventional methods of drug delivery, and among all, oral administration is most widely adopted. However, problems of systematic drug reactions and low specificity in delivering drugs to the inflamed sites have emerged with these regular routes of delivery. Novel drug delivery systems have been introduced to overcome several therapeutic obstacles and for localized drug delivery to target tissues. Enteric-coated microneedle pills, various nano-drug delivery techniques, prodrug systems, lipid-based vesicular systems, hybrid drug delivery systems, and biologic drug delivery systems constitute some of these novel methods. Microneedles are painless, they dislodge their content at the affected site, and their release can be prolonged. Recombinant bacteria such as genetically engineered Lactococcus Lactis and eukaryotic cells, including GM immune cells and red blood cells as nanoparticle carriers, can be plausible delivery methods when evaluating biologic systems. Nano-particle drug delivery systems consisting of various techniques are also employed as nanoparticles can penetrate through inflamed regions and adhere to the thick mucus of the diseased site. Prodrug systems such as 5-ASAs formulations or their derivatives are effective in reducing colonic damage. Liposomes can be modified with both hydrophilic and lipophilic particles and act as lipid-based vesicular systems, while hybrid drug delivery systems containing an internal nanoparticle section for loading drugs are potential routes too. Leukosomes are also considered as possible carrier systems, and results from mouse models have revealed that they control anti- and pro-inflammatory molecules.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Hala Najeeb
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Shehryar Shaikh
- Department of Medicine, Dow OJha University Hospital, Karachi 74200, Pakistan
| | - Muhammad Hasanain
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Unaiza Naeem
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Abdul Moeed
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Thoyaja Koritala
- Department of Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Syedadeel Hasan
- Department of Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, College Station, TX 77843, United States
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55901, United States
| |
Collapse
|
31
|
Shrestha N, Xu Y, Prévost JRC, McCartney F, Brayden D, Frédérick R, Beloqui A, Préat V. Impact of PEGylation on an antibody-loaded nanoparticle-based drug delivery system for the treatment of inflammatory bowel disease. Acta Biomater 2022; 140:561-572. [PMID: 34923097 DOI: 10.1016/j.actbio.2021.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticle-based oral drug delivery systems have the potential to target inflamed regions in the gastrointestinal tract by specifically accumulating at disrupted colonic epithelium. But, delivery of intact protein drugs at the targeted site is a major challenge due to the harsh gastrointestinal environment and the protective mucus layer. Biocompatible nanoparticles engineered to target the inflamed colonic tissue and efficiently penetrate the mucosal layer can provide a promising approach for orally delivering monoclonal antibodies to treat inflammatory bowel disease. The study aims to develop mucus-penetrating nanoparticles composed of poly(lactic-co-glycolic acid, PLGA) polymers with two different polyethylene glycol (PEG) chain lengths (2 kDa and 5kDa) to encapsulate monoclonal antibody against tumor necrosis factor-α (TNF-α). The impact of different PEG chain lengths on the efficacy of the nanosystems was evaluated in vitro, ex vivo, and in vivo. Both PLGA-PEG2k and PLGA-PEG5k nanoparticles successfully encapsulated the antibody and significantly reduced TNF-α secretion from activated macrophages and intestinal epithelial cells. However, only antibody-loaded PLGA-PEG2k nanoparticles were able to alleviate the experimental acute colitis in mice demonstrated by improved colon weight/length ratio, histological score, and reduced tissue-associated myeloperoxidase activity and expression of proinflammatory cytokine TNF-α levels compared with the control group. The results suggest that despite having no significant differences in the in vitro cell-based assays, PEG chain length has a significant impact on the in vivo performance of the mucus penetrating nanoparticles. Overall, PLGA-PEG2k nanoparticles were presented as a promising oral delivery system for targeted antibody delivery to treat inflammatory bowel disease. STATEMENT OF SIGNIFICANCE: There is an unmet therapeutic need for oral drug delivery systems for safe and effective antibody therapy of inflammatory bowel disease. Therefore, we have developed PEGylated PLGA-based nanoparticulate drug delivery systems for oral targeted delivery of anti-TNF-α antibody as a potential alternative treatment strategy. The PEG chain length did not affect encapsulation efficiency or interaction with mucin in vitro but resulted in differences in in vitro release profile and in vivo efficacy study. We demonstrated the superiority of anti-TNF-α mAb-PLGA-PEG2k over mAb-PLGA-PEG5k nanoparticles to effectively exhibit anti-inflammatory responses in an acute murine colitis model. These nanoparticle-based formulations may be adjusted to encapsulate other drugs that could be applied to a number of disorders at different mucosal surfaces.
Collapse
Affiliation(s)
- Neha Shrestha
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Brussels 1200, Belgium.
| | - Yining Xu
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Brussels 1200, Belgium
| | - Julien R C Prévost
- Université catholique de Louvain, Medicinal Chemistry, Louvain Drug Research Institute, Brussels 1200, Belgium
| | - Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield Dublin 4, Ireland
| | - David Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield Dublin 4, Ireland
| | - Raphaël Frédérick
- Université catholique de Louvain, Medicinal Chemistry, Louvain Drug Research Institute, Brussels 1200, Belgium
| | - Ana Beloqui
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Brussels 1200, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Brussels 1200, Belgium.
| |
Collapse
|
32
|
Vaezi Z, Asadzadeh Aghdaei H, Sedghi M, Mahdavian R, Molakarimi M, Hashemi N, Naderi-Manesh H. Hemoglobin bio-adhesive nanoparticles as a colon-specific delivery system for sustained release of 5-aminosalicylic acid in the effective treatment of inflammatory bowel disease. Int J Pharm 2022; 616:121531. [PMID: 35121044 DOI: 10.1016/j.ijpharm.2022.121531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
A colonic drug delivery system was developed to specifically deliver 5-aminosalicylic acid (5-ASA) to the inflamed site by conjugating with hemoglobin nanoparticles (HbNPs). The 5-ASA-HbNPs (eight 5-ASA molecules per Hb molecule) with the size of 220 nm and zeta potential of -14.6 mV is a tailored nanoparticle able to pass through the mucus layer. The 5-ASA-HbNPs do not undergo chemical and enzymatic hydrolysis in the simulated gastrointestinal fluids over 6 h. Significantly higher cellular uptakes and prolonged release was seen for the 5-ASA-HbNPs in Caco-2 cells, compared to free 5-ASA over 72 h. In addition, 5-ASA-HbNPs revealed similar therapeutic effectiveness with free 5-ASA against tumor necrosis factor and showed less inhibitory concentration (IC50) for myeloperoxidase enzyme activity. In vivo imaging of mouse demonstrated the localization of drug in the descending colon after oral administration and about 15% of the administered dose was recovered as 5-ASA from urine in 6 h. The use of these nanoparticles with the mucus adhesion properties and permeability to intestinal epithelial cells can be a good candidate with potential application in the colonic drug delivery field.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, 14115-154 Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Mosslim Sedghi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Naimeh Hashemi
- Ludwig Boltzmann Institute for Traumatology, Research Centre in coopoeration with AUVA, DonaueschingenstraBe 13, 1200 Vienna, Austria
| | - Hossein Naderi-Manesh
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, 14115-154 Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
33
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
34
|
Ibaraki H, Hatakeyama N, Arima N, Takeda A, Seta Y, Kanazawa T. Systemic delivery of siRNA to the colon using peptide modified PEG-PCL polymer micelles for the treatment of ulcerative colitis. Eur J Pharm Biopharm 2021; 170:170-178. [PMID: 34963657 DOI: 10.1016/j.ejpb.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease that causes inflammation and ulcers in the digestive tract, and significantly reduces the patient's quality of life. While existing UC treatments have many challenges, nanotechnology, and small interfering RNA (siRNA) based formulations are novel and promising for UC treatment. We previously reported that intravenous administration of MPEG-PCL-CH2R4H2C nanomicelles had high inflammatory site accumulation and remarkable therapeutic effects on rheumatoid arthritis by a phenomenon similar to enhanced permeability and retention effect. In this study, we investigated the effects of siRNA delivered using MPEG-PCL-CH2R4H2C nanomicelles through intravenous administration to the inflammation site of dextran sulfate sodium-induced colitis mice. The MPEG-PCL-CH2R4H2C micelles had optimum physical properties and high siRNA compaction ability. Moreover, model-siRNA delivered through MPEG-PCL-CH2R4H2C showed higher accumulation in the inflammatory site than that of the naked siRNA. Furthermore, intravenous administration of MPEG-PCL-CH2R4H2C/siRelA micelles, targeting siRelA, a subunit of NF-κB, significantly decreased the shortening of large intestine, clinical score, and production of inflammatory cytokines compared the 5-ASA and naked siRelA. These results suggest that MPEG-PCL-CH2R4H2C is a useful carrier for the systemic delivery and accumulation of siRNA, thus improving its therapeutic effect.
Collapse
Affiliation(s)
- Hisako Ibaraki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naruhiro Hatakeyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Arima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Takeda
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuo Seta
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takanori Kanazawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan,; School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
35
|
Li X, Yu M, Zhu Z, Lu C, Jin M, Rao Y, Zhao Q, Lu X, Yu C. Oral delivery of infliximab using nano-in-microparticles for the treatment of inflammatory bowel disease. Carbohydr Polym 2021; 273:118556. [PMID: 34560967 DOI: 10.1016/j.carbpol.2021.118556] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023]
Abstract
The anti-tumor necrosis factor-α (anti-TNF-α) blocker, has shown great efficacy for the treatment of inflammatory bowel disease (IBD). However, systemic exposure to it can cause considerable safety problems due to reduced suppression of the systemic immune response and loss of response to the production of anti-drug antibodies. Thus, we try to devise a targeted vehicle system for oral administration of anti-TNF-α antibodies for the treatment of IBD. In the present study, we developed an oral Infliximab (IFX) loaded nano-in-microparticles, based on chitosan (CS)/carboxymethyl chitosan (CMC) and alginate (Alg), which could protect IFX from the harsh environment of the gastrointestinal tract and produce targeted drug delivery to the inflamed intestine. In vivo studies demonstrated that the IFX loaded nano-in-micro vehicle can alleviate colitis by ameliorating inflammation and maintaining the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhuo Zhu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Meng Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuefeng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China.
| | - Xiaoyang Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China.
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
36
|
Varrica C, Carvalheiro M, Faria-Silva C, Eleutério C, Sandri G, Simões S. Topical Allopurinol-Loaded Nanostructured Lipid Carriers: A Novel Approach for Wound Healing Management. Bioengineering (Basel) 2021; 8:bioengineering8120192. [PMID: 34940345 PMCID: PMC8698943 DOI: 10.3390/bioengineering8120192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Nanostructured lipid carriers (NLC) have been widely studied as delivery systems for a variety of routes, including the skin. Their composition results in an imperfect lipid matrix, allowing increased drug encapsulation. Allopurinol (AP), a xanthine oxidase inhibitor, is characterized by low water solubility and high melting point, which has hampered its use through the topical route. In this work, AP was incorporated in a NLC formulation to enhance drug-carrier association and skin delivery as a topical approach to treat wounds. AP-NLC system was characterized in terms of size, charge, rheological behavior, and in vitro skin permeation. The in vitro cytotoxicity was evaluated using HaCaT cells. The wound healing efficacy of the AP-NLC formulation on animal skin lesions was evaluated in male Wistar rats. The AP-NLC presented a mean size of 193 ± 15 nm with a PdI of 0.240 ± 0.02, zeta potential values around −49.6 mV, and an encapsulation efficiency of 52.2%. The AP-NLC formulation presented an adequate profile to be used topically, since epidermal and dermal drug retention were achieved. No reduction in HaCaT cells viability was observed at the tested concentrations (AP < 10 μg/mL). The in vivo application of the AP-NLC formulation resulted in the regeneration of skin lesions when compared with non-treated controls.
Collapse
Affiliation(s)
- Carla Varrica
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (C.V.); (G.S.)
| | - Manuela Carvalheiro
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.C.); (C.F.-S.); (C.E.)
| | - Catarina Faria-Silva
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.C.); (C.F.-S.); (C.E.)
| | - Carla Eleutério
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.C.); (C.F.-S.); (C.E.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (C.V.); (G.S.)
| | - Sandra Simões
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (M.C.); (C.F.-S.); (C.E.)
- Correspondence:
| |
Collapse
|
37
|
Lin M, Dong L, Chen Q, Xu H, Han X, Luo R, Pu X, Qi S, Nie W, Ma M, Wang Y, Gao F, Zhang J. Lentinan-Based Oral Nanoparticle Loaded Budesonide With Macrophage-Targeting Ability for Treatment of Ulcerative Colitis. Front Bioeng Biotechnol 2021; 9:702173. [PMID: 34513811 PMCID: PMC8429481 DOI: 10.3389/fbioe.2021.702173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 01/26/2023] Open
Abstract
Ulcerative colitis (UC) is a global, chronic, and refractory disease. Corticosteroids are first-line drugs for the treatment of UC but also cause adverse side effects. Budesonide (BUD), a corticosteroid with relatively low side effects, has been approved by the Food and Drug Administration for use as enteric capsules (Entocort EC) for the treatment of inflammatory bowel disease (IBD). However, this formulation lacks specific targeting ability to UC lesions. Herein, we describe the development of an advanced macrophage-targeted oral lentinan (LNT)–based nanoparticles (NPs) loaded BUD for treatment of UC. Briefly, LNT was used as a food source and natural carrier to load BUD by a simple solvent evaporation method to form LNT/BUD-NPs. LNT showed good loading capacity with high encapsulation and loading efficiencies to BUD of approximately 92.19 and 9.58%, respectively. Evaluation of the gastric stability of LNT/BUD-NPs indicated that LNT could effectively protect BUD from gastric acid and digestive enzymes. The release behavior and transmission electron microscopy image of LNT/BUD-NPs in the intestinal content of mice confirmed that intestinal flora can promote BUD release from LNT. Moreover, evaluation of cellular uptake showed that LNT/BUD-NPs could specifically target macrophages and enhance their uptake rate via the Dectin-1 receptor. In biodistribution studies, LNT/BUD-NPs were able to efficiently accumulate in the inflamed colon of mice. As expected, LNT/BUD-NPs could significantly alleviate inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Therefore, LNT/BUD-NPs have the advantages of good gastric stability, release mediated by mouse intestinal content, macrophage-targeting, and anti-UC effects. These advantages indicate LNT-based NPs are a promising oral drug delivery system for UC therapy.
Collapse
Affiliation(s)
- Meisi Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Sichuan Provincial Acupuncture School, Chengdu, China
| | - Lingling Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiting Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiulan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yitao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29:999-1012. [PMID: 34588846 PMCID: PMC8463508 DOI: 10.1016/j.jsps.2021.07.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
NLCs have provoked the incessant impulsion for the development of safe and valuable drug delivery systems owing to their exceptional physicochemical and then biocompatible characteristics. Throughout the earlier period, a lot of studies recounting NLCs based formulations have been noticeably increased. They are binary system which contains both solid and liquid lipids aiming to produce less ordered lipidic core. Their constituents particularly influence the physicochemical properties and effectiveness of the final product. NLCs can be fabricated by different techniques which are classified according to consumed energy. More utilization NLCs is essential due to overcome barriers surrounded by the technological procedure of lipid-based nanocarriers' formulation and increased information of the core mechanisms of their transport via various routes of administration. They can be used in different applications and by different routes such as oral, cutaneous, ocular and pulmonary. This review article seeks to present an overview on the existing situation of the art of NLCs for future clinics through exposition of their applications which shall foster their lucid use. The reported records evidently demonstrate the promise of NLCs for innovate therapeutic applications in the future.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia
| |
Collapse
|
39
|
Akram W, Garud N. Design expert as a statistical tool for optimization of 5-ASA-loaded biopolymer-based nanoparticles using Box Behnken factorial design. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00299-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Background
The overall objective was to prepare a highly accurate nanocarrier system of mesalamine for the treatment of ulcerative colitis with increased therapeutic efficacy and targeting. In the formulation of nanocarrier systems, optimization is a critical process for understanding nanoformulation variables and quality aspects. The goal of the present work was to determine the effect of independent variables, i.e., the concentrations of chitosan, carboxymethyl inulin (CMI), and the drug on the response variables, i.e., particle size and percent entrapment efficiency of the mesalamine-loaded nanoparticle using the Box Behnken design (BBD). The correlation between the independent and dependent variables was investigated using the Design Expert generated mathematical equations, contour, and response surface designs.
Result
An optimized batch was developed using the ionotropic gel method with selected independent variables (A: + 1 level, B: 0 level, C: − 1 level) and the developed nanoparticles had a particle size of 184.18 nm, zeta potential 26.54 mV, and entrapment efficiency 88.58%. The observed responses were remarkably similar to the predicted values. The morphological studies revealed that the formulated nanoparticles were spherical, and the results of the FTIR and DSC studies indicated the drug-polymer compatibility. The nanoparticle showed less than 5% release in the pH 1.2. In the colonic region (pH 7.4), more than 80 % of the medication was released after 24 h. The kinetics study showed that the Higuchi and Korsemeyer-Peppas models had R2 values of 0.9426 and 0.9784 respectively, for the developed formulation indicating linearity, as revealed by the plots. This result justified the sustained release behavior of the formulation.
Conclusion
The mesalamine-loaded chitosan-CMI nanoparticle has been successfully developed using the ionotropic gelation method. The nanoparticles developed in this study were proposed to deliver the drug to its desired site. The developed nanoparticles were likely to have a small particle size with positive zeta potential and high percent drug entrapment. It could be stated from the results that BBD can be an active way for optimizing the formulation and that nanoparticles can be a potential carrier for delivering therapeutics to the colon.
Collapse
|
40
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
41
|
Chen F, Liu Q, Xiong Y, Xu L. Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease. Int J Nanomedicine 2021; 16:4225-4237. [PMID: 34188471 PMCID: PMC8236271 DOI: 10.2147/ijn.s310952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are highly debilitating. IBDs are associated with the imbalance of inflammatory mediators within the inflamed bowel. Conventional drugs for IBD treatment include anti-inflammatory medications and immune suppressants. However, they suffer from a lack of bioavailability and high dose-induced systemic side effects. Nanoparticle (NP)-derived therapy improves therapeutic efficacy and increases targeting specificity. Recent studies have shown that nanomedicines, based on bowel disease's pathophysiology, are a fast-growing field. NPs can prolong the circulation period and reduce side effects by improving drug encapsulation and targeted delivery. Here, this review summarizes various IBD therapies with a focus on NP-derived applications, whereas their challenges and future perspectives have also been discussed.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Li Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| |
Collapse
|
42
|
Das S. Pectin based multi-particulate carriers for colon-specific delivery of therapeutic agents. Int J Pharm 2021; 605:120814. [PMID: 34147609 DOI: 10.1016/j.ijpharm.2021.120814] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
In case of colon-specific delivery of therapeutic agents through oral route, microbial/enzyme-triggered release approach has several advantages over other approaches due to unique microbial ecosystem in the colon. Multiple-unit carriers have an edge over single-unit carriers for this purpose. Among different materials/polymers explored, pectin appears as a promising biopolymer to construct microbial-triggered colon-specific carriers. Pectin is specifically degraded by colonic enzymes but insusceptible to upper gastro-intestinal enzymes. In this article, utilization of pectin solely or in combination with other polymers and/or colonic-delivery approaches is critically discussed in detail in the context of multi-particulate systems. Several studies showed that pectin-based carriers can prevent the release of payload in the stomach but start to release in the intestine. Hence, pectin alone may construct delayed release formulation but may not be sufficient for effective colon-targeting. On the other hand, combination of pectin with other materials/polymers (e.g., chitosan and Eudragit® S-100) has demonstrated huge promise for colon-specific release of payload. Hence, smartly designed pectin-based multi-particulate carriers, especially in combination with other polymers and/or colon-targeting approaches (e.g., microbial-triggered + pH-triggered or microbial-triggered + pH-triggered + time-release or microbial-triggered + pH-triggered + pressure-based), can be successful colon-specific delivery systems. However, more clinical trials are necessary to bring this idea from bench to bedside.
Collapse
Affiliation(s)
- Surajit Das
- Takasago International Corporation, 5 Sunview Road, Singapore 627616, Singapore.
| |
Collapse
|
43
|
Pabari RM, Tambuwala MM, Lajczak-McGinley N, Aljabali A, Kirby BP, Keely S, Ramtoola Z. Novel polyurethane based particulate formulations of infliximab reduce inflammation in DSS induced murine model of colitis - A preliminary study. Int J Pharm 2021; 604:120717. [PMID: 34015378 DOI: 10.1016/j.ijpharm.2021.120717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Our recent study showed that novel infliximab (INF) loaded polyesterurethane (INF-PU) and INF-PU-PEG particulate formulations reduced inflammation in an in-vitro epithelial inflammation model. In this study we investigated therapeutic potential of novel INF-PU and INF-PU-PEG particulate formulations to reduce inflammation in a dextran sodium sulfate (DSS) induced murine model of colitis. Severity of colitis was assessed by measurement of disease activity index (DAI) score, inflammatory markers (neutrophil infiltration, TNFα) and histological score. Treatment groups orally administered with INF-PU and INF-PU-PEG particulate formulations showed improvement in the clinical signs of colitis, similar to that observed with intraperitoneally administered INF, in both, moderate and severe DSS induced colitis model. This was related to a significant reduction in inflammatory cytokines, resulting in a significant reduction in histological score (ANOVA; p < 0.05), indicative of mucosal healing, a key goal of IBD therapy. This could be attributed to its targeted delivery to the inflamed colon and higher permeation of these particulate formulations across the inflamed colonic mucosa, as observed by the confocal images, resulting in local inhibition of TNFα at its site of production. These promising preliminary results warrant further investigation of orally administered INF and its novel particulate formulations in a wider preclinical study.
Collapse
Affiliation(s)
- Ritesh M Pabari
- RCSI, University of Medicine and Health Sciences, Dublin, Ireland.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry BT52 1SA, Northern Ireland, United Kingdom
| | | | - Alaa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Brian P Kirby
- RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephen Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
44
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
45
|
Garcinol Encapsulated Ph-Sensitive Biodegradable Nanoparticles: A Novel Therapeutic Strategy for the Treatment of Inflammatory Bowel Disease. Polymers (Basel) 2021; 13:polym13060862. [PMID: 33799680 PMCID: PMC7999919 DOI: 10.3390/polym13060862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of pH-sensitive nanoscale particles is beneficial due to their ability to only release cargo in a colonic pH environment, which helps to directly target inflamed tissues in inflammatory bowel disease (IBD). Hence, we have designed the formulation of pH-sensitive biodegradable garcinol (GAR)-loaded poly (lactic–co–glycolic acid) (PLGA) coated with Eudragit® S100 (ES100) (GAR-PLGA-ES100 nanoparticles (NPs)) for reducing inflammation caused by proinflammatory cytokines. The GAR-PLGA-ES100 NPs were prepared using a solvent evaporation technique and characterized for shape and surface morphology. An in vitro drug release study revealed the release of the drug specifically from NPs at the colonic pH of 7.4. The in vitro cytotoxicity of the GAR-PLGA-ES100 NPs was also evaluated and found to be highly biocompatible with CACO-2 cells. These NPs were able to reduce lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity. Inhibition of the expression of pro-inflammatory cytokine TNF-α , chemokine interleukin (IL)-8 and the nuclear factor kappa light chain enhancer of activated B-cells (NF-κB) was observed after GAR-PLGA-ES100 NPs treatment. Therefore, our results support the idea that GAR-PLGA-ES100 NPs show substantial improvement after the release of the drug, specifically in colonic pH targeting and reduction in the activation of inflammation that leads to IBD, suggesting that GAR-PLGA-ES100 NPs are promising candidates for oral delivery to colonic inflamed tissue.
Collapse
|
46
|
Notabi MK, Arnspang EC, Andersen MØ. Antibody conjugated lipid nanoparticles as a targeted drug delivery system for hydrophobic pharmaceuticals. Eur J Pharm Sci 2021; 161:105777. [PMID: 33647401 DOI: 10.1016/j.ejps.2021.105777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Cancer remains a significant health issue worldwide. The most common group of chemotherapeutic agents are small-molecule drugs, which often are associated with toxic side-effects and non-specific delivery, leading to limited therapeutic effect. This paper describes the development of a targeted drug delivery system based on lipid nanoparticles for cancer therapy. The lipid nanoparticles consist of a lipid core conjugated to an albumin stealth coating and targeting antibodies through thiol chemistry synthesized utilizing a one-step method. Applying the developed method, lipid nanoparticles with diameters down to 87 nm, capable of encapsulating small molecule compounds were synthesized. Cellular uptake studies of the lipid nanoparticles loaded with the model drug Nile red demonstrated that stealth-coating reduced non-specific cell uptake by up to a 1000-fold compared to free drug. Moreover, antibody-conjugation led to a significant cellular retargeting. Finally, it was shown that the lipid nanoparticles undergo cellular uptake through the endocytic pathway. The lipid nanoparticles are simple to synthesize, stabile in serum and have the potential to be versatile targeted towards receptors selectively expressed by diseased cells using antibodies. Thus, the system may reduce the toxic side-effects of cancer drugs while improving their delivery to cancer cells, increasing the therapeutic effect.
Collapse
Affiliation(s)
- Martine K Notabi
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Eva C Arnspang
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Morten Ø Andersen
- SDU Biotechnology, Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
| |
Collapse
|
47
|
Chokshi NV, Rawal S, Solanki D, Gajjar S, Bora V, Patel BM, Patel MM. Fabrication and Characterization of Surface Engineered Rifampicin Loaded Lipid Nanoparticulate Systems for the Potential Treatment of Tuberculosis: An In Vitro and In Vivo Evaluation. J Pharm Sci 2021; 110:2221-2232. [PMID: 33610570 DOI: 10.1016/j.xphs.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The main aim of the present investigation highlights the development of mannose appended rifampicin containing solid lipid nanoparticles (Mn-RIF-SLNs) for the management of pulmonary TB. The developed Mn-RIF-SLNs showed particle size of Mn-RIF-SLNs (479 ± 13 nm) which was found to be greater than that of unconjugated SLNs (456 ± 11 nm), with marginal reduction in percentage entrapment efficiency (79.41 ± 2.42%). The in vitro dissolution studies depicted an initial burst release followed by sustained release profile indicating biphasic release pattern, close-fitting Weibull model having least F-value. The cytotoxicity studies using J774A.1 cell line represented that the developed SLNs were non-toxic and safe as compared to free drug. Fluorescence imaging and flow cytometric (FACS) analysis depicted significant (1.79-folds) intracellular uptake of coumarin-6 (fluorescent marker) loaded Mn-C6-SLNs. The in vivo pharmacokinetic studies in sprague-dawley rats were performed and Mn-RIF-SLNs showed remarkable enhancement in terms of relative bioavailability (~17-folds) as compared to its drug solution via oral administration. The biodistribution studies revealed higher lung accumulation (1.8-folds) of Mn-RIF-SLNs as compared to the Un-RIF-SLNs. In conclusion, the developed Mn-RIF-SLNs could serve as a promising tool for delivering the drug cargo to the site of infection (lungs) in the treatment of TB.
Collapse
Affiliation(s)
- Nimitt V Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Dhruvi Solanki
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Saumitra Gajjar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Vivek Bora
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
48
|
Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021; 11:445-470. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.
Collapse
Affiliation(s)
- Valentina Andretto
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Annalisa Rosso
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Stéphanie Briançon
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Giovanna Lollo
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.
| |
Collapse
|
49
|
Drug Disposition in the Lower Gastrointestinal Tract: Targeting and Monitoring. Pharmaceutics 2021; 13:pharmaceutics13020161. [PMID: 33530468 PMCID: PMC7912393 DOI: 10.3390/pharmaceutics13020161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing prevalence of colonic diseases calls for a better understanding of the various colonic drug absorption barriers of colon-targeted formulations, and for reliable in vitro tools that accurately predict local drug disposition. In vivo relevant incubation conditions have been shown to better capture the composition of the limited colonic fluid and have resulted in relevant degradation and dissolution kinetics of drugs and formulations. Furthermore, drug hurdles such as efflux transporters and metabolising enzymes, and the presence of mucus and microbiome are slowly integrated into drug stability- and permeation assays. Traditionally, the well characterized Caco-2 cell line and the Ussing chamber technique are used to assess the absorption characteristics of small drug molecules. Recently, various stem cell-derived intestinal systems have emerged, closely mimicking epithelial physiology. Models that can assess microbiome-mediated drug metabolism or enable coculturing of gut microbiome with epithelial cells are also increasingly explored. Here we provide a comprehensive overview of the colonic physiology in relation to drug absorption, and review colon-targeting formulation strategies and in vitro tools to characterize colonic drug disposition.
Collapse
|
50
|
Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease. Curr Top Med Chem 2021; 20:982-1008. [PMID: 32196449 DOI: 10.2174/1568026620666200320113322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Disease (IBD) is an umbrella term used to describe disorders that involve Crohn's disease (CD), ulcerative colitis (UC) and pouchitis. The disease occurrence is more prevalent in the working group population which not only hampers the well being of an individual but also has negative economical impact on society. The current drug regime used therapy is very costly owing to the chronic nature of the disease leading to several side effects. The condition gets more aggravated due to the lower concentration of drug at the desired site. Therefore, in the present scenario, a therapy is needed which can maximize efficacy, adhere to quality of life, minimize toxicity and doses, be helpful in maintaining and stimulating physical growth of mucosa with minimum disease complications. In this aspect, nanotechnology intervention is one promising field as it can act as a carrier to reduce toxicity, doses and frequency which in turn help in faster recovery. Moreover, nanomedicine and nanodiagnostic techniques will further open a new window for treatment in understanding pathogenesis along with better diagnosis which is poorly understood till now. Therefore the present review is more focused on recent advancements in IBD in the application of nanotechnology.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Manju Barnela
- Department of Nano & Biotechnology, Guru Jambheshwar University, Hisar-125001, Haryana, India
| | - Preeti Lakhani
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| |
Collapse
|