1
|
Turley K, Rafferty J, Bond R, Mulvenna M, Ryan A, Crawford L. Evaluating the Impact of a Daylight-Simulating Luminaire on Mood, Agitation, Rest-Activity Patterns, and Social Well-Being Parameters in a Care Home for People With Dementia: Cohort Study. JMIR Mhealth Uhealth 2024; 12:e56951. [PMID: 39611803 PMCID: PMC11622703 DOI: 10.2196/56951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background Living with a diagnosis of dementia can involve managing certain behavioral and psychological symptoms. Alongside cognitive decline, this cohort expresses a suppression in melatonin production which can negatively influence their alignment of sleep or wake timings with the 24 hour day and night cycle. As a result, their circadian rhythms become disrupted. Since daylight has the capacity to stimulate the circadian rhythm and humans spend approximately 90% of their time indoors, research has shifted toward the use of indoor lighting to achieve this same effect. This type of lighting is programmed in a daylight-simulating manner; mimicking the spectral changes of the sun throughout the day. As such, this paper focuses on the use of a dynamic lighting and sensing technology used to support the circadian rhythm, behavioral and psychological symptoms, and well-being of people living with dementia. Objective This study aimed to understand how dynamic lighting, as opposed to static lighting, may impact the well-being of those who are living with dementia. Methods An ethically approved trial was conducted within a care home for people with dementia. Data were collected in both quantitative and qualitative formats using environmentally deployed radar sensing technology and the validated QUALIDEM (Quality of Life for People With Dementia) well-being scale, respectively. An initial 4 weeks of static baseline lighting was used before switching out for 12 weeks of dynamic lighting. Metrics were collected for 11 participants on mood, social interactions, agitation, sense of feeling, and sleep and rest-activity over a period of 16 weeks. Results Dynamic lighting showed significant improvement with a moderate effect size in well-being parameters including positive affect (P=.03), social isolation (P=.048), and feeling at home (P=.047) after 5-10 weeks of dynamic lighting exposure. The results also highlight statistically significant improvements in rest-activity-related parameters of interdaily stability (P<.001), intradaily variation (P<.001), and relative amplitude (P=.03) from baseline to weeks 5-10, with the effect propagating for interdaily stability at weeks 10-16 as well (P<.001). Nonsignificant improvements are also noted for sleep metrics with a small effect size; however, the affect in agitation does not reflect this improvement. Conclusions Dynamic lighting has the potential to support well-being in dementia, with seemingly stronger influence in earlier weeks where the dynamic lighting initially follows the static lighting contrast, before proceeding to aggregate as marginal gains over time. Future longitudinal studies are recommended to assess the additional impact that varying daylight availability throughout the year may have on the measured parameters.
Collapse
Affiliation(s)
- Kate Turley
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Joseph Rafferty
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Raymond Bond
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Maurice Mulvenna
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Assumpta Ryan
- School of Nursing and Pandemic Science, Ulster University, Belfast, United Kingdom
| | | |
Collapse
|
2
|
Kozaki T, Takao M. Effect of Diurnal Light Conditions on Electroretinogram Responses to Red and Blue Flickering Light. Percept Mot Skills 2024; 131:1445-1457. [PMID: 39108229 DOI: 10.1177/00315125241272512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Bright light impacts the human circadian system such that exposure to bright light at night can suppress melatonin secretion, and exposure to bright light in the morning prevents light-induced melatonin suppression at night. The preventive effect of morning light may attenuate the prior history of light sensitivity of intrinsically photosensitive retinal ganglion cells (ipRGCs) that regulate the circadian system. In this study, we evaluated electroretinogram (ERG) responses to red and blue flickering lights following dim and bright daylight conditions. Eleven healthy females underwent ERG measurements during exposure to 33 Hz flickering red or blue light under dim and bright daytime conditions. We averaged ERG waves for 50 flickering light pulses of the trigger signal data. We obtained the amplitude of the signal-averaged ERG by calculating the difference between the waves' peaks and bottoms. Although there was no significant dim and bright light difference in the amplitude of ERG waves, the ERG amplitude to flickering blue light under the bright light condition was significantly lower than to flickering blue light under the dim light condition. In this study, blue light stimulated mainly ipRGCs and S-cones. Since S-cones may contribute minimally to the light-adapted 33 Hz flicker ERG results, our findings suggest that bright light during the daytime attenuates the sensitivity of human ipRGCs.
Collapse
Affiliation(s)
- Tomoaki Kozaki
- Department of Environment Science, Fukuoka Women's University, Fukuoka, Japan
| | - Motoharu Takao
- Department of Human and Information Science, Tokai University, Hiratsuka, Japan
| |
Collapse
|
3
|
Kumar D, Khan B, Okcay Y, Sis ÇÖ, Abdallah A, Murray F, Sharma A, Uemura M, Taliyan R, Heinbockel T, Rahman S, Goyal R. Dynamic endocannabinoid-mediated neuromodulation of retinal circadian circuitry. Ageing Res Rev 2024; 99:102401. [PMID: 38964508 DOI: 10.1016/j.arr.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| | - Bareera Khan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India
| | - Yagmur Okcay
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Çağıl Önal Sis
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Aya Abdallah
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Fiona Murray
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Ashish Sharma
- School of Medicine, Washington University, St. Louis, USA
| | - Maiko Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology Science, Pilani, Rajasthan 333301, India.
| | - Thomas Heinbockel
- Howard University College of Medicine, Department of Anatomy, Washington, DC 20059, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University, Brookings, SD, USA.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| |
Collapse
|
4
|
Maloney R, Quattrochi L, Yoon J, Souza R, Berson D. Efficacy and specificity of melanopsin reporters for retinal ganglion cells. J Comp Neurol 2024; 532:e25591. [PMID: 38375612 PMCID: PMC11000424 DOI: 10.1002/cne.25591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are specialized retinal output neurons that mediate behavioral, neuroendocrine, and developmental responses to environmental light. There are diverse molecular strategies for marking ipRGCs, especially in mice, making them among the best characterized retinal ganglion cells (RGCs). With the development of more sensitive reporters, new subtypes of ipRGCs have emerged. We therefore tested high-sensitivity reporter systems to see whether we could reveal yet more. Substantial confusion remains about which of the available methods, if any, label all and only ipRGCs. Here, we compared many different methods for labeling of ipRGCs, including anti-melanopsin immunofluorescence, Opn4-GFP BAC transgenic mice, and Opn4cre mice crossed with three different Cre-specific reporters (Z/EG, Ai9, and Ai14) or injected with Cre-dependent (DIO) AAV2. We show that Opn4cre mice, when crossed with sensitive Cre-reporter mice, label numerous ganglion cell types that lack intrinsic photosensitivity. Though other methods label ipRGCs specifically, they do not label the entire population of ipRGCs. We conclude that no existing method labels all and only ipRGCs. We assess the appropriateness of each reporter for particular applications and integrate findings across reporters to estimate that the overall abundance of ipRGCs among mouse RGCs may approach 11%.
Collapse
Affiliation(s)
- Ryan Maloney
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Lauren Quattrochi
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - James Yoon
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Rachel Souza
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Contreras E, Bhoi JD, Sonoda T, Birnbaumer L, Schmidt TM. Melanopsin activates divergent phototransduction pathways in intrinsically photosensitive retinal ganglion cell subtypes. eLife 2023; 12:e80749. [PMID: 37937828 PMCID: PMC10712949 DOI: 10.7554/elife.80749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Melanopsin signaling within intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes impacts a broad range of behaviors from circadian photoentrainment to conscious visual perception. Yet, how melanopsin phototransduction within M1-M6 ipRGC subtypes impacts cellular signaling to drive diverse behaviors is still largely unresolved. The identity of the phototransduction channels in each subtype is key to understanding this central question but has remained controversial. In this study, we resolve two opposing models of M4 phototransduction, demonstrating that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dispensable for this process and providing support for a pathway involving melanopsin-dependent potassium channel closure and canonical transient receptor potential (TRPC) channel opening. Surprisingly, we find that HCN channels are likewise dispensable for M2 phototransduction, contradicting the current model. We instead show that M2 phototransduction requires TRPC channels in conjunction with T-type voltage-gated calcium channels, identifying a novel melanopsin phototransduction target. Collectively, this work resolves key discrepancies in our understanding of ipRGC phototransduction pathways in multiple subtypes and adds to mounting evidence that ipRGC subtypes employ diverse phototransduction cascades to fine-tune cellular responses for downstream behaviors.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdisciplinary Biological Sciences Program, Northwestern UniversityEvanstonUnited States
| | - Jacob D Bhoi
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Takuma Sonoda
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Northwestern University Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health SciencesDurhamUnited States
- Institute of Biomedical Research (BIOMED), Catholic University of ArgentinaBuenos AiresArgentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- Department of Ophthalmology, Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
6
|
Rach H, Reynaud E, Kilic-Huck U, Ruppert E, Comtet H, Roy de Belleplaine V, Fuchs F, Van Someren EJW, Geoffroy PA, Bourgin P. Pupillometry to differentiate idiopathic hypersomnia from narcolepsy type 1. J Sleep Res 2023; 32:e13885. [PMID: 37002816 DOI: 10.1111/jsr.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Idiopathic hypersomnia is poorly diagnosed in the absence of biomarkers to distinguish it from other central hypersomnia subtypes. Given that light plays a main role in the regulation of sleep and wake, we explored the retinal melanopsin-based pupil response in patients with idiopathic hypersomnia and narcolepsy type 1, and healthy subjects. Twenty-seven patients with narcolepsy type 1 (women 59%, 36 ± 11.5 years old), 36 patients with idiopathic hypersomnia (women 83%, 27.2 ± 7.2 years old) with long total sleep time (> 11/24 hr), and 43 controls (women 58%, 30.6 ± 9.3 years old) were included in this study. All underwent a pupillometry protocol to assess pupil diameter, and the relative post-illumination pupil response to assess melanopsin-driven pupil responses in the light non-visual input pathway. Differences between groups were assessed using logistic regressions adjusted on age and sex. We found that patients with narcolepsy type 1 had a smaller baseline pupil diameter as compared with idiopathic hypersomnia and controls (p < 0.05). In addition, both narcolepsy type 1 and idiopathic hypersomnia groups had a smaller relative post-illumination pupil response (respectively, 31.6 ± 13.9% and 33.2 ± 9.9%) as compared with controls (38.7 ± 9.7%), suggesting a reduced melanopsin-mediated pupil response in both types of central hypersomnia (p < 0.01). Both narcolepsy type 1 and idiopathic hypersomnia showed a smaller melanopsin-mediated pupil response, and narcolepsy type 1, unlike idiopathic hypersomnia, also displayed a smaller basal pupil diameter. Importantly, we found that the basal pupil size permitted to well discriminate idiopathic hypersomnia from narcolepsy type 1 with a specificity = 66.67% and a sensitivity = 72.22%. Pupillometry may aid to multi-feature differentiation of central hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eve Reynaud
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Ulker Kilic-Huck
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Henri Comtet
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Virginie Roy de Belleplaine
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Fanny Fuchs
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pierre A Geoffroy
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France
- Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| |
Collapse
|
7
|
Berry MH, Leffler J, Allen CN, Sivyer B. Functional subtypes of rodent melanopsin ganglion cells switch roles between night and day illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554902. [PMID: 38168436 PMCID: PMC10760181 DOI: 10.1101/2023.08.26.554902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), contain the photopigment melanopsin, and influence both image and non-image forming behaviors. Despite being categorized into multiple types (M1-M6), physiological variability within these types suggests our current understanding of ipRGCs is incomplete. We used multi-electrode array (MEA) recordings and unbiased cluster analysis under synaptic blockade to identify 8 functional clusters of ipRGCs, each with distinct photosensitivity and response timing. We used Cre mice to drive the expression of channelrhodopsin in SON-ipRGCs, enabling the localization of distinct ipRGCs in the dorsal retina. Additionally, we conducted a retrospective unbiased cluster analysis of ipRGC photoresponses to light stimuli across scotopic, mesopic, and photopic intensities, aimed at activating both rod and cone inputs to ipRGCs. Our results revealed shared and distinct synaptic inputs to the identified functional clusters, demonstrating that ipRGCs encode visual information with high fidelity at low light intensities, but poorly at photopic light intensities, when melanopsin activation is highest. Collectively, our findings support a framework with at least 8 functional subtypes of ipRGCs, each encoding luminance with distinct spike outputs, highlighting the inherent functional diversity and complexity of ipRGCs and suggesting a reevaluation of their contributions to retinal function and visual perception under varying light conditions.
Collapse
Affiliation(s)
- Michael H. Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
- Medical Scientist Training program, Oregon Health & Science University, Portland, OR, 97239
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Charles N. Allen
- Oregon Institute of Occupational Health Sciences, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
8
|
Kim AB, Beaver EM, Collins SG, Kriegsfeld LJ, Lockley SW, Wong KY, Yan L. S-Cone Photoreceptors Regulate Daily Rhythms and Light-Induced Arousal/Wakefulness in Diurnal Grass Rats ( Arvicanthis niloticus). J Biol Rhythms 2023; 38:366-378. [PMID: 37222434 PMCID: PMC10364626 DOI: 10.1177/07487304231170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Beyond visual perception, light has non-image-forming effects mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). The present study first used multielectrode array recordings to show that in a diurnal rodent, Nile grass rats (Arvicanthis niloticus), ipRGCs generate rod/cone-driven and melanopsin-based photoresponses that stably encode irradiance. Subsequently, two ipRGC-mediated non-image-forming effects, namely entrainment of daily rhythms and light-induced arousal, were examined. Animals were first housed under a 12:12 h light/dark cycle (lights-on at 0600 h) with the light phase generated by a low-irradiance fluorescent light (F12), a daylight spectrum (D65) stimulating all photoreceptors, or a narrowband 480 nm spectrum (480) that maximized melanopsin stimulation and minimized S-cone stimulation (λmax 360 nm) compared to D65. Daily rhythms of locomotor activities showed onset and offset closer to lights-on and lights-off, respectively, in D65 and 480 than in F12, and higher day/night activity ratio under D65 versus 480 and F12, suggesting the importance of S-cone stimulation. To assess light-induced arousal, 3-h light exposures using 4 spectra that stimulated melanopsin equally but S-cones differentially were superimposed on F12 background lighting: D65, 480, 480 + 365 (narrowband 365 nm), and D65 - 365. Compared to the F12-only condition, all four pulses increased in-cage activity and promoted wakefulness, with 480 + 365 having the greatest and longest-lasting wakefulness-promoting effects, again indicating the importance of stimulating S-cones as well as melanopsin. These findings provide insights into the temporal dynamics of photoreceptor contributions to non-image-forming photoresponses in a diurnal rodent that may help guide future studies of lighting environments and phototherapy protocols that promote human health and productivity.
Collapse
Affiliation(s)
- Antony B. Kim
- Department of Architecture, University of California,
Berkeley, Berkeley, California
| | - Emma M. Beaver
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Stephen G. Collins
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California,
Berkeley, Berkeley, California
- Department of Integrative Biology, University of
California, Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of
California, Berkeley, Berkeley, California
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders,
Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston,
Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston,
Massachusetts
| | - Kwoon Y. Wong
- Department of Ophthalmology & Visual Sciences, Kellogg
Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular &
Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University,
East Lansing, Michigan
- Neuroscience Program, Michigan State
University, East Lansing, Michigan
| |
Collapse
|
9
|
Emanuel AJ, Do MTH. The Multistable Melanopsins of Mammals. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1174255. [PMID: 37994345 PMCID: PMC10664805 DOI: 10.3389/fopht.2023.1174255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 11/24/2023]
Abstract
Melanopsin is a light-activated G protein coupled receptor that is expressed widely across phylogeny. In mammals, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs), which are especially important for "non-image" visual functions that include the regulation of circadian rhythms, sleep, and mood. Photochemical and electrophysiological experiments have provided evidence that melanopsin has at least two stable conformations and is thus multistable, unlike the monostable photopigments of the classic rod and cone photoreceptors. Estimates of melanopsin's properties vary, challenging efforts to understand how the molecule influences vision. This article seeks to reconcile disparate views of melanopsin and offer a practical guide to melanopsin's complexities.
Collapse
Affiliation(s)
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Boertien TM, Van Someren EJW, Coumou AD, van den Broek AK, Klunder JH, Wong WY, van der Hoeven AE, Drent ML, Romijn JA, Fliers E, Bisschop PH. Compression of the optic chiasm is associated with reduced photoentrainment of the central biological clock. Eur J Endocrinol 2022; 187:809-821. [PMID: 36201161 DOI: 10.1530/eje-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Pituitary tumours that compress the optic chiasm are associated with long-term alterations in sleep-wake rhythm. This may result from damage to intrinsically photosensitive retinal ganglion cells (ipRGCs) projecting from the retina to the hypothalamic suprachiasmatic nucleus via the optic chiasm to ensure photoentrainment (i.e. synchronisation to the 24-h solar cycle through light). To test this hypothesis, we compared the post-illumination pupil response (PIPR), a direct indicator of ipRGC function, between hypopituitarism patients with and without a history of optic chiasm compression. DESIGN Observational study, comparing two predefined groups. METHODS We studied 49 patients with adequately substituted hypopituitarism: 25 patients with previous optic chiasm compression causing visual disturbances (CC+ group) and 24 patients without (CC- group). The PIPR was assessed by chromatic pupillometry and expressed as the relative change between baseline and post-blue-light stimulus pupil diameter. Objective and subjective sleep parameters were obtained using polysomnography, actigraphy, and questionnaires. RESULTS Post-blue-light stimulus pupillary constriction was less sustained in CC+ patients compared with CC- patients, resulting in a significantly smaller extended PIPR (mean difference: 8.1%, 95% CI: 2.2-13.9%, P = 0.008, Cohen's d = 0.78). Sleep-wake timing was consistently later in CC+ patients, without differences in sleep duration, efficiency, or other rest-activity rhythm features. Subjective sleep did not differ between groups. CONCLUSION Previous optic chiasm compression due to a pituitary tumour in patients with hypopituitarism is associated with an attenuated PIPR and delayed sleep timing. Together, these data suggest that ipRGC function and consequently photoentrainment of the central biological clock is impaired in patients with a history of optic chiasm compression.
Collapse
Affiliation(s)
- Tessel M Boertien
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience (NIN), Sleep and Cognition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress & Sleep, Amsterdam, The Netherlands
- VU University, Centre for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Amsterdam, The Netherlands
| | - Adriaan D Coumou
- Amsterdam UMC location University of Amsterdam, Ophthalmology, Amsterdam, The Netherlands
| | - Annemieke K van den Broek
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Jet H Klunder
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Wing-Yi Wong
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Adrienne E van der Hoeven
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Madeleine L Drent
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Internal Medicine, Section of Endocrinology, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Eric Fliers
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Peter H Bisschop
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Das A, Imanishi Y. Drug Discovery Strategies for Inherited Retinal Degenerations. BIOLOGY 2022; 11:1338. [PMID: 36138817 PMCID: PMC9495580 DOI: 10.3390/biology11091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.
Collapse
Affiliation(s)
- Arupratan Das
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Zeitzer JM, Lok R. Circadian photoreception: The impact of light on human circadian rhythms. PROGRESS IN BRAIN RESEARCH 2022; 273:171-180. [PMID: 35940715 DOI: 10.1016/bs.pbr.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light is the preeminent external influence in determining the position of the internal circadian clock relative to the outside world. In this chapter, we discuss the different parameters of light that impact how it influences the human circadian clock. We detail how the timing (phase), intensity, duration and temporal structure, and spectral composition all can modulate the impact of light on both the timing of the circadian clock as well as its amplitude. The neurobiological underpinnings of the system are briefly discussed in the context of understanding how light can evoke its observed effects on the circadian clock.
Collapse
Affiliation(s)
- Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Rach H, Kilic-Huck U, Reynaud E, Hugueny L, Peiffer E, Roy de Belleplaine V, Fuchs F, Bourgin P, Geoffroy PA. The melanopsin-mediated pupil response is reduced in idiopathic hypersomnia with long sleep time. Sci Rep 2022; 12:9018. [PMID: 35637236 PMCID: PMC9151765 DOI: 10.1038/s41598-022-13041-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic hypersomnia (IH), characterized by an excessive day-time sleepiness, a prolonged total sleep time on 24 h and/or a reduced sleep latency, affects 1 in 2000 individuals from the general population. However, IH remains underdiagnosed and inaccurately treated despite colossal social, professional and personal impacts. The pathogenesis of IH is poorly known, but recent works have suggested possible alterations of phototransduction. In this context, to identify biomarkers of IH, we studied the Post-Illumination Pupil Response (PIPR) using a specific pupillometry protocol reflecting the melanopsin-mediated pupil response in IH patients with prolonged total sleep time (TST > 660 min) and in healthy subjects. Twenty-eight patients with IH (women 86%, 25.4 year-old ± 4.9) and 29 controls (women 52%, 27.1 year-old ± 3.9) were included. After correction on baseline pupil diameter, the PIPR was compared between groups and correlated to sociodemographic and sleep parameters. We found that patients with IH had a lower relative PIPR compared to controls (32.6 ± 9.9% vs 38.5 ± 10.2%, p = 0.037) suggesting a reduced melanopsin response. In addition, the PIPR was not correlated to age, chronotype, TST, nor depressive symptoms. The melanopsin-specific PIPR may be an innovative trait marker of IH and the pupillometry might be a promising tool to better characterize hypersomnia.
Collapse
|
14
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
15
|
Chakraborty R, Collins MJ, Kricancic H, Moderiano D, Davis B, Alonso-Caneiro D, Yi F, Baskaran K. The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors. JOURNAL OF OPTOMETRY 2022; 15:112-121. [PMID: 33402286 PMCID: PMC9068560 DOI: 10.1016/j.optom.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 05/04/2023]
Abstract
PURPOSE The intrinsically photosensitive retinal ganglion cells (ipRGCs) signal environmental light, with axons projected to the midbrain that control pupil size and circadian rhythms. Post-illumination pupil response (PIPR), a sustained pupil constriction after short-wavelength light stimulation, is an indirect measure of ipRGC activity. Here, we measured the PIPR in young adults with various refractive errors using a custom-made optical system. METHODS PIPR was measured on myopic (-3.50 ± 1.82 D, n = 20) and non-myopic (+0.28 ± 0.23 D, n = 19) participants (mean age, 23.36 ± 3.06 years). The right eye was dilated and presented with long-wavelength (red, 625 nm, 3.68 × 1014 photons/cm2/s) and short-wavelength (blue, 470 nm, 3.24 × 1014 photons/cm2/s) 1 s and 5 s pulses of light, and the consensual response was measured in the left eye for 60 s following light offset. The 6 s and 30 s PIPR and early and late area under the curve (AUC) for 1 and 5 s stimuli were calculated. RESULTS For most subjects, the 6 s and 30 s PIPR were significantly lower (p < 0.001), and the early and late AUC were significantly larger for 1 s blue light compared to red light (p < 0.001), suggesting a strong ipRGC response. The 5 s blue stimulation induced a slightly stronger melanopsin response, compared to 1 s stimulation with the same wavelength. However, none of the PIPR metrics were different between myopes and non-myopes for either stimulus duration (p > 0.05). CONCLUSIONS We confirm previous research that there is no effect of refractive error on the PIPR.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- College of Nursing and Health Sciences, Optometry and Vision Science, Sturt North, Flinders University, Sturt Rd, Bedford Park, SA 5042, Australia; Caring Futures Institute, Flinders University, Sturt Rd, Bedford Park, SA 5042, Australia.
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Henry Kricancic
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Daniel Moderiano
- College of Nursing and Health Sciences, Optometry and Vision Science, Sturt North, Flinders University, Sturt Rd, Bedford Park, SA 5042, Australia
| | - Brett Davis
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Fan Yi
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | | |
Collapse
|
16
|
Guido ME, Marchese NA, Rios MN, Morera LP, Diaz NM, Garbarino-Pico E, Contin MA. Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol 2022; 42:59-83. [PMID: 33231827 PMCID: PMC11441211 DOI: 10.1007/s10571-020-00997-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| | - Natalia A Marchese
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Maximiliano N Rios
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Luis P Morera
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina
| | - Nicolás M Diaz
- Department of Ophthalmology, University of Washington School of Medicine, 750 Republican St., Campus, Box 358058, Seattle, WA, 98109, USA
| | - Eduardo Garbarino-Pico
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - María Ana Contin
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
17
|
Sheng Y, Chen L, Ren X, Jiang Z, Yau KW. Molecular determinants of response kinetics of mouse M1 intrinsically-photosensitive retinal ganglion cells. Sci Rep 2021; 11:23424. [PMID: 34873237 PMCID: PMC8648817 DOI: 10.1038/s41598-021-02832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Intrinsically-photosensitive retinal ganglion cells (ipRGCs) are non-rod/non-cone retinal photoreceptors expressing the visual pigment, melanopsin, to detect ambient irradiance for various non-image-forming visual functions. The M1-subtype, amongst the best studied, mediates primarily circadian photoentrainment and pupillary light reflex. Their intrinsic light responses are more prolonged than those of rods and cones even at the single-photon level, in accordance with the typically slower time course of non-image-forming vision. The short (OPN4S) and long (OPN4L) alternatively-spliced forms of melanopsin proteins are both present in M1-ipRGCs, but their functional difference is unclear. We have examined this point by genetically removing the Opn4 gene (Opn4-/-) in mouse and re-expressing either OPN4S or OPN4L singly in Opn4-/- mice by using adeno-associated virus, but found no obvious difference in their intrinsic dim-flash responses. Previous studies have indicated that two dominant slow steps in M1-ipRGC phototransduction dictate these cells' intrinsic dim-flash-response kinetics, with time constants (τ1 and τ2) at room temperature of ~ 2 s and ~ 20 s, respectively. Here we found that melanopsin inactivation by phosphorylation or by β-arrestins may not be one of these two steps, because their genetic disruptions did not prolong the two time constants or affect the response waveform. Disruption of GAP (GTPase-Activating-Protein) activity on the effector enzyme, PLCβ4, in M1-ipRGC phototransduction to slow down G-protein deactivation also did not prolong the response decay, but caused its rising phase to become slightly sigmoidal by giving rise to a third time constant, τ3, of ~ 2 s (room temperature). This last observation suggests that GAP-mediated G-protein deactivation does partake in the flash-response termination, although normally with a time constant too short to be visible in the response waveform.
Collapse
Affiliation(s)
- Yanghui Sheng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Graduate Neuroscience Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lujing Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Graduate Neuroscience Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Vedere Bio II, Inc., 700 Main St, Cambridge, MA, 02139, USA
| | - Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, Houston, TX, 77030, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
19
|
Lee S, Chen M, Shi Y, Zhou ZJ. Selective glycinergic input from vGluT3 amacrine cells confers a suppressed-by-contrast trigger feature in a subtype of M1 ipRGCs in the mouse retina. J Physiol 2021; 599:5047-5060. [PMID: 34292589 PMCID: PMC8741526 DOI: 10.1113/jp281717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS M1 intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to encode absolute light intensity (irradiance) for non-image-forming visual functions (subconscious vision), such as circadian photoentrainment and the pupillary light reflex. It remains unclear how M1 cells respond to relative light intensity (contrast) and patterned visual signals. The present study identified a special form of contrast sensitivity (suppressed-by-contrast) in M1 cells, suggesting a role of patterned visual signals in regulating non-image-forming vision and a potential role of M1 ipRGCs in encoding image-forming visual cues. The study also uncovered a synaptic mechanism and a retinal circuit mediated by vesicular glutamate transporter 3 (vGluT3) amacrine cells that underlie the suppressed-by-contrast response of M1 cells. M1 ipRGC subtypes (M1a and M1b) were revealed that are distinguishable based on synaptic connectivity with vGluT3 amacrine cells, receptive field properties, intrinsic photo sensitivity and membrane excitability, and morphological features, suggesting a division of visual tasks among discrete M1 subpopulations. ABSTRACT The M1 type ipRGC (intrinsically photosensitive retinal ganglion cell) is known to encode ambient light signals for non-image-forming visual functions such as circadian photo-entrainment and the pupillary light reflex. Here, we report that a subpopulation of M1 cells (M1a) in the mouse retina possess the suppressed-by-contrast (sbc) trigger feature that is a receptive field property previously found only in ganglion cells mediating image-forming vision. Using optogenetics and the dual patch clamp technique, we found that vesicular glutamate transporter 3 (vGluT3) (vGluT3) amacrine cells make glycinergic, but not glutamatergic, synapses specifically onto M1a cells. The spatiotemporal and pharmacological properties of visually evoked responses of M1a cells closely matched the receptive field characteristics of vGluT3 cells, suggesting a major role of the vGluT3 amacrine cell input in shaping the sbc trigger feature of M1a cells. We found that the other subpopulation of M1 cells (M1b), which did not receive a direct vGluT3 cell input, lacked the sbc trigger feature, being distinctively different from M1a cells in intrinsic photo responses, membrane excitability, receptive-field characteristics and morphological features. Together, the results reveal a retinal circuit that uses the sbc trigger feature to regulate irradiance coding and potentially send image-forming cues to non-image-forming visual centres in the brain.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Minggang Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Yuelin Shi
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Duffield GE, Robles-Murguia M, Hou TY, McDonald KA. Targeted Disruption of the Inhibitor of DNA Binding 4 ( Id4) Gene Alters Photic Entrainment of the Circadian Clock. Int J Mol Sci 2021; 22:9632. [PMID: 34502541 PMCID: PMC8431790 DOI: 10.3390/ijms22179632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of DNA binding (Id) genes comprise a family of four helix-loop-helix (HLH) transcriptional inhibitors. Our earlier studies revealed a role for ID2 within the circadian system, contributing to input, output, and core clock function through its interaction with CLOCK and BMAL1. Here, we explore the contribution of ID4 to the circadian system using a targeted disruption of the Id4 gene. Attributes of the circadian clock were assessed by monitoring the locomotor activity of Id4-/- mice, and they revealed disturbances in its operation. Id4-mutant mice expressed a shorter circadian period length, attenuated phase shifts in responses to continuous and discrete photic cues, and an advanced phase angle of entrainment under a 12:12 light:dark cycle and under short and long photoperiods. To understand the basis for these properties, suprachiasmatic nucleus (SCN) and retinal structures were examined. Anatomical analysis reveals a smaller Id4-/- SCN in the width dimension, which is a finding consistent with its smaller brain. As a result of this feature, anterograde tracing in Id4-/- mice revealed retinal afferents innovate a disproportionally larger SCN area. The Id4-/- photic entrainment responses are unlikely to be due to an impaired function of the retinal pathways since Id4-/- retinal anatomy and function tested by pupillometry were similar to wild-type mice. Furthermore, these circadian characteristics are opposite to those exhibited by the Id2-/- mouse, suggesting an opposing influence of the ID4 protein within the circadian system; or, the absence of ID4 results in changes in the expression or activity of other members of the Id gene family. Expression analysis of the Id genes within the Id4-/- SCN revealed a time-of-day specific elevated Id1. It is plausible that the increased Id1 and/or absence of ID4 result in changes in interactions with bHLH canonical clock components or with targets upstream and/or downstream of the clock, thereby resulting in abnormal properties of the circadian clock and its entrainment.
Collapse
Affiliation(s)
- Giles E. Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maricela Robles-Murguia
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tim Y. Hou
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
| | - Kathleen A. McDonald
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
| |
Collapse
|
21
|
Leclercq B, Hicks D, Laurent V. Photoperiod integration in C3H rd1 mice. J Pineal Res 2021; 71:e12711. [PMID: 33326640 DOI: 10.1111/jpi.12711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCN) constitute the main circadian clock, receiving input from the retina which allows synchronization of endogenous biological rhythms with the daily light/dark cycle. Over the year, the SCN encodes photoperiodic variations through duration of melatonin secretion, with abundant nocturnal levels in winter and lower levels in summer. Thus, light information is critical to regulate seasonal reproduction in many species and is part of the central photoperiodic integration. Since intrinsically photosensitive retinal ganglion cells (ipRGCs) are vital for circadian photoentrainment and other nonvisual functions, we studied the contribution of ipRGCs in photoperiod integration in C3H retinal degeneration 1 (rd1) mice. We assessed locomotor activity and melatonin secretion in mice exposed to short or long photoperiods. Our results showed that rd1 mice are still responsive to photoperiod variations in term of locomotor activity, melatonin secretion, and regulation of the reproductive axis. In addition, retinas of animals exposed to short photoperiod exhibit higher melanopsin labeling intensity compared with the long photoperiod condition, suggesting seasonal-dependent changes within this photoreceptive system. These results show that ipRGCs in rd1 mice can still measure photoperiod and suggest a key role of melanopsin cells in photoperiod integration and the regulation of seasonal physiology.
Collapse
Affiliation(s)
- Bastien Leclercq
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - David Hicks
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - Virginie Laurent
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Lou L, Arumugam B, Hung LF, She Z, Beach KM, Smith EL, Ostrin LA. Long-Term Narrowband Lighting Influences Activity but Not Intrinsically Photosensitive Retinal Ganglion Cell-Driven Pupil Responses. Front Physiol 2021; 12:711525. [PMID: 34393828 PMCID: PMC8358670 DOI: 10.3389/fphys.2021.711525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose: Light affects a variety of non-image forming processes, such as circadian rhythm entrainment and the pupillary light reflex, which are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). The purpose of this study was to assess the effects of long- and short-wavelength ambient lighting on activity patterns and pupil responses in rhesus monkeys. Methods: Infant rhesus monkeys were reared under either broadband "white" light (n = 14), long-wavelength "red" light (n = 20; 630 nm), or short-wavelength "blue" light (n = 21; 465 nm) on a 12-h light/dark cycle starting at 24.1 ± 2.6 days of age. Activity was measured for the first 4 months of the experimental period using a Fitbit activity tracking device and quantified as average step counts during the daytime (lights-on) and nighttime (lights-off) periods. Pupil responses to 1 s red (651 nm) and blue (456 nm) stimuli were measured after approximately 8 months. Pupil metrics included maximum constriction and the 6 s post-illumination pupil response (PIPR). Results: Activity during the lights-on period increased with age during the first 10 weeks (p < 0.001 for all) and was not significantly different for monkeys reared in white, red, or blue light (p = 0.07). Activity during the 12-h lights-off period was significantly greater for monkeys reared in blue light compared to those in white light (p = 0.02), but not compared to those in red light (p = 0.08). However, blue light reared monkeys exhibited significantly lower activity compared to both white and red light reared monkeys during the first hour of the lights-off period (p = 0.01 for both) and greater activity during the final hour of the lights-off period (p < 0.001 for both). Maximum pupil constriction and the 6 s PIPR to 1 s red and blue stimuli were not significantly different between groups (p > 0.05 for all). Conclusion: Findings suggest that long-term exposure to 12-h narrowband blue light results in greater disruption in nighttime behavioral patterns compared to narrowband red light. Normal pupil responses measured later in the rearing period suggest that ipRGCs adapt after long-term exposure to narrowband lighting.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, TX, United States
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista M. Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, TX, United States
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| |
Collapse
|
23
|
Markwell EL, Feigl B, Zele AJ. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin Exp Optom 2021; 93:137-49. [DOI: 10.1111/j.1444-0938.2010.00479.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Emma L Markwell
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| | - Beatrix Feigl
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| | - Andrew J Zele
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| |
Collapse
|
24
|
Contreras EO, Dearing CG, Ashinhurst CA, Fish BA, Hossain SN, Rey AM, Silva PD, Thompson S. Pupillary reflex and behavioral masking responses to light as functional measures of retinal degeneration in mice. PLoS One 2021; 16:e0244702. [PMID: 33493166 PMCID: PMC7833141 DOI: 10.1371/journal.pone.0244702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pre-clinical testing of retinal pathology and treatment efficacy depends on reliable and valid measures of retinal function. The electroretinogram (ERG) and tests of visual acuity are the ideal standard, but can be unmeasurable while useful vision remains. Non-image-forming responses to light such as the pupillary light reflex (PLR) are attractive surrogates. However, it is not clear how accurately such responses reflect changes in visual capability in specific disease models. The purpose of this study was to test whether measures of non-visual responses to light correlate with previously determined visual function in two photoreceptor degenerations. METHODS The sensitivity of masking behavior (light induced changes in running wheel activity) and the PLR were measured in 3-month-old wild-type mice (WT) with intact inner retinal circuitry, Pde6b-rd1/rd1 mice (rd1) with early and rapid loss of rods and cones, and Prph2-Rd2/Rd2 mice (Rd2) with a slower progressive loss of rods and cones. RESULTS In rd1 mice, negative masking had increased sensitivity, positive masking was absent, and the sensitivity of the PLR was severely reduced. In Rd2 mice, positive masking identified useful vision at higher light levels, but there was a limited decrease in the irradiance sensitivity of negative masking and the PLR, and the amplitude of change for both underestimated the reduction in irradiance sensitivity of image-forming vision. CONCLUSIONS Together these data show that in a given disease, two responses to light can be affected in opposite ways, and that for a given response to light, the change in the response does not accurately represent the degree of pathology. However, the extent of the deficit in the PLR means that even a limited rescue of rod/cone function might be measured by increased PLR amplitude. In addition, positive masking has the potential to measure effective treatment in both models by restoring responses or shifting thresholds to lower irradiances.
Collapse
Affiliation(s)
- Ethan O. Contreras
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Carley G. Dearing
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
- College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States of America
| | - Crystal A. Ashinhurst
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Betty A. Fish
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Sajila N. Hossain
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Ariana M. Rey
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Primal D. Silva
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| | - Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, NM, United States of America
- Department of Biology, New Mexico Tech, Socorro, NM, United States of America
| |
Collapse
|
25
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
26
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020; 60:3625-3631. [DOI: 10.1002/anie.202010553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
27
|
Duffield GE, Han S, Hou TY, de la Iglesia HO, McDonald KA, Mecklenburg KL, Robles-Murguia M. Inhibitor of DNA binding 2 (Id2) Regulates Photic Entrainment Responses in Mice: Differential Responses of the Id2-/- Mouse Circadian System Are Dependent on Circadian Phase and on Duration and Intensity of Light. J Biol Rhythms 2020; 35:555-575. [PMID: 32981454 DOI: 10.1177/0748730420957504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ID2 is a rhythmically expressed helix-loop-helix transcriptional repressor, and its deletion results in abnormal properties of photoentrainment. By examining parametric and nonparametric models of entrainment, we have started to explore the mechanism underlying this circadian phenotype. Id2-/- mice were exposed to differing photoperiods, and the phase angle of entrainment under short days was delayed 2 h as compared with controls. When exposed to long durations of continuous light, enhanced entrainment responses were observed after a delay of the clock but not with phase advances. However, the magnitude of phase shifts was not different in Id2-/- mice tested in constant darkness using a discrete pulse of saturating light. No differences were observed in the speed of clock resetting when challenged by a series of discrete pulses interspaced by varying time intervals. A photic phase-response curve was constructed, although no genotypic differences were observed. Although phase shifts produced by discrete saturating light pulses at CT16 were similar, treatment with a subsaturating pulse revealed a ~2-fold increase in the magnitude of the Id2-/- shift. A corresponding elevation of light-induced per1 expression was observed in the Id2-/- suprachiasmatic nucleus (SCN). To test whether the phenotype is based on a sensitivity change at the level of the retina, pupil constriction responses were measured. No differences were observed in responses or in retinal histology, suggesting that the phenotype occurs downstream of the retina and retinal hypothalamic tract. To test whether the phenotype is due to a reduced amplitude of state variables of the clock, the expression of clock genes per1 and per2 was assessed in vivo and in SCN tissue explants. Amplitude, phase, and period length were normal in Id2-/- mice. These findings suggest that ID2 contributes to a photoregulatory mechanism at the level of the SCN central pacemaker through control of the photic induction of negative elements of the clock.
Collapse
Affiliation(s)
- Giles E Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| | - Sung Han
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Tim Y Hou
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana
| | - Horacio O de la Iglesia
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Kathleen A McDonald
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana
| | - Kirk L Mecklenburg
- Department of Biology, Indiana University South Bend, South Bend, Indiana
| | - Maricela Robles-Murguia
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
28
|
Cameron MA, Morley JW, Pérez-Fernández V. Seeing the light: different photoreceptor classes work together to drive adaptation in the mammalian retina. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
30
|
Baeza Moyano D, San Juan Fernández M, González Lezcano RA. Towards a Sustainable Indoor Lighting Design: Effects of Artificial Light on the Emotional State of Adolescents in the Classroom. SUSTAINABILITY 2020; 12:4263. [DOI: 10.3390/su12104263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, articles have been published on the non-visual effects of light, specifically the light emitted by the new luminaires with light emitting diodes (LEDs) and by the screens of televisions, computer equipment, and mobile phones. Professionals from the world of optometry have raised the possibility that the blue part of the visible light from sources that emit artificial light could have pernicious effects on the retina. The aim of this work is to analyze the articles published on this subject, and to use existing information to elucidate the spectral composition and irradiance of new LED luminaires for use in the home and in public spaces such as educational centers, as well as considering the consequences of the light emitted by laptops for teenagers. The results of this research show that the amount of blue light emitted by electronic equipment is lower than that emitted by modern luminaires and thousands of times less than solar irradiance. On the other hand, the latest research warns that these small amounts of light received at night can have pernicious non-visual effects on adolescents. The creation of new LED luminaires for interior lighting, including in educational centers, where the intensity of blue light can be increased without any specific legislation for its control, makes regulatory developments imperative due to the possible repercussions on adolescents with unknown and unpredictable consequences.
Collapse
Affiliation(s)
- David Baeza Moyano
- Department of Chemistry and Biochemistry, Universidad San Pablo CEU, Campus Montepríncipe, Boadilla del Monte, 28925 Madrid, Spain
| | - Mónica San Juan Fernández
- Faculty of Languages and Education. Campus de Princesa-Madrid. Universidad Antonio de Nebrija, 28015 Madrid, Spain
| | - Roberto Alonso González Lezcano
- Architecture and Design Department, Escuela Politécnica Superior, Universidad San Pablo CEU, CEU Universities, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
31
|
Lee SI, Kinoshita S, Noguchi A, Eto T, Ohashi M, Nishimura Y, Maeda K, Motomura Y, Awata Y, Higuchi S. Melatonin suppression during a simulated night shift in medium intensity light is increased by 10-minute breaks in dim light and decreased by 10-minute breaks in bright light. Chronobiol Int 2020; 37:897-909. [PMID: 32326827 DOI: 10.1080/07420528.2020.1752704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.
Collapse
Affiliation(s)
- Sang-Il Lee
- Department of Human Science, Faculty of Design, Kyushu University , Fukuoka, Japan.,Division of Human Environmental Systems, Faculty of Engineering, Hokkaido University , Sapporo, Japan
| | - Saki Kinoshita
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Anna Noguchi
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Taisuke Eto
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Michihiro Ohashi
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Yuki Nishimura
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan.,Occupational Stress and Health Management Research Group, National Institute of Occupational Safety and Health , Kawasaki, Japan
| | - Kaho Maeda
- Ground Facilities Department, Japan Aerospace Exploration Agency , Tsukuba, Japan
| | - Yuki Motomura
- Department of Human Science, Faculty of Design, Kyushu University , Fukuoka, Japan
| | - Yasuhiro Awata
- Ground Facilities Department, Japan Aerospace Exploration Agency , Tsukuba, Japan
| | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University , Fukuoka, Japan
| |
Collapse
|
32
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Te Kulve M, Schlangen LJM, van Marken Lichtenbelt WD. Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light. Sci Rep 2019; 9:16064. [PMID: 31690740 PMCID: PMC6831674 DOI: 10.1038/s41598-019-52352-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
The widespread use of electric light and electronic devices has resulted in an excessive exposure to light during the late-evening and at night. This late light exposure acutely suppresses melatonin and sleepiness and delays the circadian clock. Here we investigate whether the acute effects of late-evening light exposure on our physiology and sleepiness are reduced when this light exposure is preceded by early evening bright light. Twelve healthy young females were included in a randomised crossover study. All participants underwent three evening (18:30-00:30) sessions during which melatonin, subjective sleepiness, body temperature and skin blood flow were measured under different light conditions: (A) dim light, (B) dim light with a late-evening (22:30-23:30) light exposure of 750 lx, 4000 K, and (C) the same late-evening light exposure, but now preceded by early-evening bright light exposure (18.30-21.00; 1200 lx, 4000 K). Late-evening light exposure reduced melatonin levels and subjective sleepiness and resulted in larger skin temperature gradients as compared to dim. Interestingly, these effects were reduced when the late-evening light was preceded by an early evening 2.5-hour bright light exposure. Thus daytime and early-evening exposure to bright light can mitigate some of the sleep-disruptive consequences of light exposure in the later evening.
Collapse
Affiliation(s)
- Marije Te Kulve
- Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands. .,bba indoor environmental consultancy, The Hague, The Netherlands.
| | - Luc J M Schlangen
- Intelligent Lighting Institute, Department of Human Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands.,Signify, Eindhoven, The Netherlands
| | | |
Collapse
|
34
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Nagare R, Plitnick B, Figueiro MG. Effect of exposure duration and light spectra on nighttime melatonin suppression in adolescents and adults. LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2019; 51:530-543. [PMID: 31191119 PMCID: PMC6561500 DOI: 10.1177/1477153518763003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated how light exposure duration affects melatonin suppression, a well-established marker of circadian phase, and whether adolescents (13-18 years) are more sensitive to short-wavelength (blue) light than adults (32-51 years). Twenty-four participants (12 adolescents, 12 adults) were exposed to three lighting conditions during successive 4-h study nights that were separated by at least one week. In addition to a dim light (<5 lux) control, participants were exposed to two light spectra (warm (2700 K) and cool (5600 K)) delivering a circadian stimulus of 0.25 at eye level. Repeated measures analysis of variance revealed a significant main effect of exposure duration, indicating that a longer duration exposure suppressed melatonin to a greater degree. The analysis further revealed a significant main effect of spectrum and a significant interaction between spectrum and participant age. For the adolescents, but not the adults, melatonin suppression was significantly greater after exposure to the 5600 K intervention (43%) compared to the 2700 K intervention (29%), suggesting an increased sensitivity to short-wavelength radiation. These results will be used to extend the model of human circadian phototransduction to incorporate factors such as exposure duration and participant age to better predict effective circadian stimulus.
Collapse
Affiliation(s)
- R Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - B Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - M G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
36
|
Wong LR, Flynn-Evans E, Ruskin KJ. Fatigue Risk Management: The Impact of Anesthesiology Residents' Work Schedules on Job Performance and a Review of Potential Countermeasures. Anesth Analg 2019; 126:1340-1348. [PMID: 29049076 DOI: 10.1213/ane.0000000000002548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long duty periods and overnight call shifts impair physicians' performance on measures of vigilance, psychomotor functioning, alertness, and mood. Anesthesiology residents typically work between 64 and 70 hours per week and are often required to work 24 hours or overnight shifts, sometimes taking call every third night. Mitigating the effects of sleep loss, circadian misalignment, and sleep inertia requires an understanding of the relationship among work schedules, fatigue, and job performance. This article reviews the current Accreditation Council for Graduate Medical Education guidelines for resident duty hours, examines how anesthesiologists' work schedules can affect job performance, and discusses the ramifications of overnight and prolonged duty hours on patient safety and resident well-being. We then propose countermeasures that have been implemented to mitigate the effects of fatigue and describe how training programs or practice groups who must work overnight can adapt these strategies for use in a hospital setting. Countermeasures include the use of scheduling interventions, strategic naps, microbreaks, caffeine use during overnight and extended shifts, and the use of bright lights in the clinical setting when possible or personal blue light devices when the room lights must be turned off. Although this review focuses primarily on anesthesiology residents in training, many of the mitigation strategies described here can be used effectively by physicians in practice.
Collapse
Affiliation(s)
- Lily R Wong
- From the San Jose State University Research Foundation, San Jose, California.,Human Factors Research Division, NASA Ames Research Center, Moffett Field, California
| | - Erin Flynn-Evans
- Human Factors Research Division, NASA Ames Research Center, Moffett Field, California
| | - Keith J Ruskin
- Department of Anesthesia and Critical Care, University of Chicago School of Medicine, Chicago, Illinois
| |
Collapse
|
37
|
Prayag AS, Najjar RP, Gronfier C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J Pineal Res 2019; 66:e12562. [PMID: 30697806 DOI: 10.1111/jpi.12562] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Light elicits a range of non-visual responses in humans. Driven predominantly by intrinsically photosensitive retinal ganglion cells (ipRGCs), but also by rods and/or cones, these responses include melatonin suppression. A sigmoidal relationship has been established between melatonin suppression and light intensity; however, photoreceptoral involvement remains unclear. METHODS AND RESULTS In this study, we first modelled the relationships between alpha-opic illuminances and melatonin suppression using an extensive dataset by Brainard and colleagues. Our results show that (a) melatonin suppression is better predicted by melanopic illuminance compared to other alpha-opic illuminances, (b) melatonin suppression is predicted to occur at levels as low as ~1.5 melanopic lux (melanopsin-weighted irradiance 0.2 µW/cm2 ), (c) saturation occurs at 305 melanopic lux (melanopsin-weighted irradiance 36.6 µW/cm2 ). We then tested this melanopsin-weighted illuminance-response model derived from Brainard and colleagues' data and show that it predicts equally well melatonin suppression data from our laboratory, although obtained using different intensities and exposure duration. DISCUSSION Together, our findings suggest that melatonin suppression by monochromatic lights is predominantly driven by melanopsin and that it can be initiated at extremely low melanopic lux levels in experimental conditions. This emphasizes the concern of the non-visual impacts of low light intensities in lighting design and light-emitting devices.
Collapse
Affiliation(s)
- Abhishek S Prayag
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| | - Raymond P Najjar
- Department of Visual Neuroscience, Singapore Eye Research Institute, Singapore
- The Ophthalmology & Visual Sciences ACP, Duke-NUS Medical School, Singapore
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
38
|
Harrison EM, Yablonsky AM, Powell AL, Ancoli-Israel S, Glickman GL. Reported light in the sleep environment: enhancement of the sleep diary. Nat Sci Sleep 2019; 11:11-26. [PMID: 30988646 PMCID: PMC6438264 DOI: 10.2147/nss.s193902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Light is the primary synchronizing cue for the circadian timing system, capable of exerting robust physiological effects, even with very dim and/or brief photic exposure. Mammals, including humans, are particularly susceptible to light at night. As such, measures of light in the sleeping environment are critical for evaluating sleep health. Sleep diaries provide inexpensive measures of sleep, but do not typically include light information. METHODS Four questions probing visual perception of light in the bedtime and waking environments were added to the Consensus Sleep Diary for Morning administration. As part of a lighting intervention study, 18 hospital Labor and Delivery Department personnel completed the sleep diary for 1 week in each of two experimental conditions while wearing Actiwatch devices equipped with photosensors. Diary responses were evaluated against photosensor values from the beginning and end of each rest interval (n=194 rest intervals), as well as against sleep measures, utilizing linear mixed models. RESULTS Responses to light questions were related to actual light measures at bedtime, controlling for shift type and experimental condition. In addition, subjective light information at bedtime and waking was related to both objective and subjective sleep parameters, with data generally indicating poorer sleep with light in the sleeping environment. CONCLUSION Questions addressing perception of light in the sleeping environment may provide a crude yet affordable metric of relative photic intensity. Further, as responses relate to sleep outcomes, subjective light information may yield valuable insights regarding mechanisms and outcomes of clinical significance in sleep and circadian research.
Collapse
Affiliation(s)
| | - Abigail M Yablonsky
- Clinical Investigations Department, Naval Medical Center San Diego, San Diego, CA, USA
| | - Alexandra L Powell
- Center for Circadian Biology, University of California, San Diego, CA, USA,
| | - Sonia Ancoli-Israel
- Center for Circadian Biology, University of California, San Diego, CA, USA,
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, CA, USA,
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
39
|
Abstract
Dynamic vision is crucial to not only animals’ hunting behaviors but also human activities, and yet little is known about how to enhance it, except for extensive trainings like athletics do. Exposure to blue light has been shown to enhance human alertness (Chellappa et al., 2011), perhaps through intrinsically photosensitive retinal ganglion cells (ipRGCs), which are sensitive to motion perception as revealed by animal studies. However, it remains unknown whether blue light can enhance human dynamic vision, a motion-related ability. We conducted five experiments under blue or orange light to test three important components of dynamic vision: eye pursuit accuracy (EPA, Experiment 1), kinetic visual acuity (KVA, Experiment 1 and 2), and dynamic visual acuity (DVA, Experiment 3–5). EPA was measured by the distance between the position of the fixation and the position of the target when participants tracked a target dot. In the KVA task, participants reported three central target numbers (randomly chosen from 0 to 9) moving toward participants in the depth plane, with speed threshold calculated by a staircase procedure. In the DVA task, three numbers were presented along the meridian line on the same depth plane, with motion direction (Experiment 3) and difficulty level (Experiment 4) manipulated, and a blue light filter lens was used to test the ipRGCs contribution (Experiment 5). Results showed that blue light enhanced EPA and DVA, but reduced KVA. Further, DVA enhancement was modulated by difficulty level: blue light enhancement effect was found only with hard task in the downward motion in Experiment 3 and with the low contrast target in Experiment 4. However, this blue light enhancement effect was not caused by mechanism of the ipRGCs, at least not in the range we tested. In this first study demonstrating the relationship between different components of dynamic vision and blue light, our findings that DVA can be enhanced under blue light with hard but not easy task indicate that blue light can enhance dynamic visual discrimination when needed.
Collapse
Affiliation(s)
- Hung-Wen Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Abstract
Light, through its non-imaging forming effects, plays a dominant role on a myriad of physiological functions, including the human sleep–wake cycle. The non-image forming effects of light heavily rely on specific properties such as intensity, duration, timing, pattern, and wavelengths. Here, we address how specific properties of light influence sleep and wakefulness in humans through acute effects, e.g., on alertness, and/or effects on the circadian timing system. Of critical relevance, we discuss how different characteristics of light exposure across the 24-h day can lead to changes in sleep–wake timing, sleep propensity, sleep architecture, and sleep and wake electroencephalogram (EEG) power spectra. Ultimately, knowledge on how light affects sleep and wakefulness can improve light settings at home and at the workplace to improve health and well-being and optimize treatments of chronobiological disorders.
Collapse
|
41
|
Nagare R, Rea MS, Plitnick B, Figueiro MG. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure. J Biol Rhythms 2019; 34:178-194. [PMID: 30803301 DOI: 10.1177/0748730419828056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human circadian system is primarily regulated by the 24-h LD cycle incident on the retina, and nocturnal melatonin suppression is a primary outcome measure for characterizing the biological clock's response to those light exposures. A limited amount of data related to the combined effects of light level, spectrum, and exposure duration on nocturnal melatonin suppression has impeded the development of circadian-effective lighting recommendations and light-treatment methods. The study's primary goal was to measure nocturnal melatonin suppression for a wide range of light levels (40 to 1000 lux), 2 white light spectra (2700 K and 6500 K), and an extended range of nighttime light exposure durations (0.5 to 3.0 h). The study's second purpose was to examine whether differences existed between adolescents' and adults' circadian sensitivity to these lighting characteristics. The third purpose was to provide an estimate of the absolute threshold for the impact of light on acute melatonin suppression. Eighteen adolescents (age range, 13 to 18 years) and 23 adults (age range, 24 to 55 years) participated in the study. Results showed significant main effects of light level, spectrum, and exposure duration on melatonin suppression. Moreover, the data also showed that the relative suppressing effect of light on melatonin diminishes with increasing exposure duration for both age groups and both spectra. The present results do not corroborate our hypothesis that adolescents exhibit greater circadian sensitivity to short-wavelength radiation compared with adults. As for threshold, it takes longer to observe significant melatonin suppression at lower CS levels than at higher CS levels. Dose-response curves (amount and duration) for both white-light spectra and both age groups can guide lighting recommendations when considering circadian-effective light in applications such as offices, schools, residences, and healthcare facilities.
Collapse
Affiliation(s)
- Rohan Nagare
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Barbara Plitnick
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
42
|
Rukmini AV, Milea D, Gooley JJ. Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Front Neurol 2019; 10:76. [PMID: 30809186 PMCID: PMC6379484 DOI: 10.3389/fneur.2019.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The pupillary light reflex is mediated by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs), which also receive input from rods and cones. Melanopsin-dependent pupillary light responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower to activate and de-activate compared with rod/cone-mediated responses. Given that rod/cone photoreceptors and melanopsin differ in their response properties, light stimuli can be designed to stimulate preferentially each of the different photoreceptor types, providing a read-out of their function. This has given rise to chromatic pupillometry methods that aim to assess the health of outer retinal photoreceptors and ipRGCs by measuring pupillary responses to blue or red light stimuli. Here, we review different types of chromatic pupillometry protocols that have been tested in patients with retinal or optic nerve disease, including approaches that use short-duration light exposures or continuous exposure to light. Across different protocols, patients with outer retinal disease (e.g., retinitis pigmentosa or Leber congenital amaurosis) show reduced or absent pupillary responses to dim blue-light stimuli used to assess rod function, and reduced responses to moderately-bright red-light stimuli used to assess cone function. By comparison, patients with optic nerve disease (e.g., glaucoma or ischemic optic neuropathy, but not mitochondrial disease) show impaired pupillary responses during continuous exposure to bright blue-light stimuli, and a reduced post-illumination pupillary response after light offset, used to assess melanopsin function. These proof-of-concept studies demonstrate that chromatic pupillometry methods can be used to assess damage to rod/cone photoreceptors and ipRGCs. In future studies, it will be important to determine whether chromatic pupillometry methods can be used for screening and early detection of retinal and optic nerve diseases. Such methods may also prove useful for objectively evaluating the degree of recovery to ipRGC function in blind patients who undergo gene therapy or other treatments to restore vision.
Collapse
Affiliation(s)
- A V Rukmini
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology and Visual Sciences Academic Clinical Programme (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
43
|
Quattrochi LE, Stabio ME, Kim I, Ilardi MC, Michelle Fogerson P, Leyrer ML, Berson DM. The M6 cell: A small-field bistratified photosensitive retinal ganglion cell. J Comp Neurol 2019; 527:297-311. [PMID: 30311650 PMCID: PMC6594700 DOI: 10.1002/cne.24556] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 01/26/2023]
Abstract
We have identified a novel, sixth type of intrinsically photosensitive retinal ganglion cell (ipRGC) in the mouse-the M6 cell. Its spiny, highly branched dendritic arbor is bistratified, with dendrites restricted to the inner and outer margins of the inner plexiform layer, co-stratifying with the processes of other ipRGC types. We show that M6 cells are by far the most abundant ganglion cell type labeled in adult pigmented Cdh3-GFP BAC transgenic mice. A few M5 ipRGCs are also labeled, but no other RGC types were encountered. Several distinct subnuclei in the geniculate complex and the pretectum contain labeled retinofugal axons in the Cdh3-GFP mouse. These are presumably the principle central targets of M6 cells (as well as M5 cells). Projections from M6 cells to the dorsal lateral geniculate nucleus were confirmed by retrograde tracing, suggesting they contribute to pattern vision. M6 cells have low levels of melanopsin expression and relatively weak melanopsin-dependent light responses. They also exhibit strong synaptically driven light responses. Their dendritic fields are the smallest and most abundantly branched of all ipRGCs. They have small receptive fields and strong antagonistic surrounds. Despite deploying dendrites partly in the OFF sublamina, M6 cells appear to be driven exclusively by the ON pathway, suggesting that their OFF arbor, like those of certain other ipRGCs, may receive ectopic input from passing ON bipolar cells axons in the OFF sublayer.
Collapse
Affiliation(s)
- Lauren E Quattrochi
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Inkyu Kim
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Marissa C Ilardi
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - P Michelle Fogerson
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Megan L Leyrer
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - David M Berson
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| |
Collapse
|
44
|
Łaszewska K, Goroncy A, Weber P, Pracki T, Tafil-Klawe M. Influence of the Spectral Quality of Light on Daytime Alertness Levels in Humans. Adv Cogn Psychol 2018; 14:192-208. [PMID: 32509040 PMCID: PMC7263078 DOI: 10.5709/acp-0250-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Exposure to light is very important for human health. However, the characteristics of the light stimulus and the appropriate timing of such exposure are essential. Studies that have used monochromatic light exposure have shown no systematic patterns for the effects of blue light compared to longer wavelengths. Previous studies have shown that red light exposure increases objective and subjective measures of alertness at night without suppressing nocturnal melatonin or inducing circadian disruption. The present study investigated whether noon time exposure to red light would increase both objective and subjective measures of alertness such as those measured by EEG, cognitive-behavioral performance, and subjective sleepiness. The three lighting conditions were as follows: dim light (< 0.01 lux at cornea), blue light (465 nm, 72 μW/cm2), and red light (625 nm, 18 μW/cm2), both at 40 lux. The results of the EEG data showed an increase in theta power over time in dim light only. In red light, alpha power showed a decrease over time. The impact of red light was observed in the performance measures: The only significant effect was a deterioration in the continuous performance test after red light exposure. Subjective measures of alertness were not affected by light in either condition, in contrast to darkness, when subjects reported greater sleepiness than before. None of the changes in objective measures of alertness induced by red light exposure translated into subjective sleepiness at noon. Thus, we concluded that behavioral effects of light at noon are very limited at best.
Collapse
Affiliation(s)
- Kamila Łaszewska
- Department of Psychology, Faculty of Humanities, Nicolaus Copernicus University, Fosa Staromiejska 1a, 87-100 Toruń, Poland
| | - Agnieszka Goroncy
- Department of Mathematical Statistics and Data Analysis, Faculty of Mathematics and Computer Science, Nicolaus CopernicusUniversity, Chopina 12/18, 87-100 Toruń, Poland
| | - Piotr Weber
- Atomic and Optical Physics Division, Department of Atomic, Molecular and Optical Physics, Faculty of Applied Physics andMathematics, Gdańsk University of Technology, Narutowicza 11/12, 80- 233 Gdańsk, Poland
| | - Tadeusz Pracki
- Department of Human Physiology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz,Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Małgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz,Karłowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
45
|
Bonmati-Carrion MA, Hild K, Isherwood CM, Sweeney SJ, Revell VL, Madrid JA, Rol MA, Skene DJ. Effect of Single and Combined Monochromatic Light on the Human Pupillary Light Response. Front Neurol 2018; 9:1019. [PMID: 30555403 PMCID: PMC6282540 DOI: 10.3389/fneur.2018.01019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
The pupillary light reflex (PLR) is a neurological reflex driven by rods, cones, and melanopsin-containing retinal ganglion cells. Our aim was to achieve a more precise picture of the effects of 5-min duration monochromatic light stimuli, alone or in combination, on the human PLR, to determine its spectral sensitivity and to assess the importance of photon flux. Using pupillometry, the PLR was assessed in 13 participants (6 women) aged 27.2 ± 5.41 years (mean ± SD) during 5-min light stimuli of purple (437 nm), blue (479 nm), red (627 nm), and combinations of red+purple or red+blue light. In addition, nine 5-min, photon-matched light stimuli, ranging in 10 nm increments peaking between 420 and 500 nm were tested in 15 participants (8 women) aged 25.7 ± 8.90 years. Maximum pupil constriction, time to achieve this, constriction velocity, area under the curve (AUC) at short (0-60 s), and longer duration (240-300 s) light exposures, and 6-s post-illumination pupillary response (6-s PIPR) were assessed. Photoreceptor activation was estimated by mathematical modeling. The velocity of constriction was significantly faster with blue monochromatic light than with red or purple light. Within the blue light spectrum (between 420 and 500 nm), the velocity of constriction was significantly faster with the 480 nm light stimulus, while the slowest pupil constriction was observed with 430 nm light. Maximum pupil constriction was achieved with 470 nm light, and the greatest AUC0-60 and AUC240-300 was observed with 490 and 460 nm light, respectively. The 6-s PIPR was maximum after 490 nm light stimulus. Both the transient (AUC0-60) and sustained (AUC240-300) response was significantly correlated with melanopic activation. Higher photon fluxes for both purple and blue light produced greater amplitude sustained pupillary constriction. The findings confirm human PLR dependence on wavelength, monochromatic or bichromatic light and photon flux under 5-min duration light stimuli. Since the most rapid and high amplitude PLR occurred within the 460-490 nm light range (alone or combined), our results suggest that color discrimination should be studied under total or partial substitution of this blue light range (460-490 nm) by shorter wavelengths (~440 nm). Thus for nocturnal lighting, replacement of blue light with purple light might be a plausible solution to preserve color discrimination while minimizing melanopic activation.
Collapse
Affiliation(s)
- Maria A Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Konstanze Hild
- Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Cheryl M Isherwood
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Stephen J Sweeney
- Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Victoria L Revell
- Surrey Clinical Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juan A Madrid
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Maria A Rol
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
46
|
Lechner M, Breeze CE, Ohayon MM, Kotecha B. Snoring and breathing pauses during sleep: interview survey of a United Kingdom population sample reveals a significant increase in the rates of sleep apnoea and obesity over the last 20 years - data from the UK sleep survey. Sleep Med 2018; 54:250-256. [PMID: 30597439 DOI: 10.1016/j.sleep.2018.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/06/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
STUDY OBJECTIVES (1) To determine the prevalence of snoring, breathing pauses during sleep and obstructive sleep apnoea syndrome in the United Kingdom (UK) and determine the relation between these events and obesity and other sociodemographic variables. (2) To compare and integrate this data with published UK population data. METHODS A total of 664 women and 575 men aged 18-100 years who formed a representative sample of the non-institutionalised UK population participated in an online interview survey directed by a previously validated computerised system. RESULTS Overall, 38% of men and 30.4% of women report that they snore at night. Furthermore, 8.7% of men and 5.6% of women state that they stop breathing at night. Comparing our data to published data from the 1990s, this study observes a highly significant increase in the rates of reported breathing pauses during sleep (sleep apnoea) in the UK over the last 20 years (p < 0.0001). In addition, we observe a highly significant increase in the prevalence of obesity (BMI>30) in the UK population between 1994 and 2015 (p < 0.0001). Integration of our data with NHS and public health England data on obesity confirms this increase. CONCLUSIONS Our data demonstrate a significant increase in the rates of reported breathing pauses during sleep (sleep apnoea) and obesity in the UK over the last 20 years. Sociodemographic and behavioural changes have likely contributed to this. Moreover, our data also suggests that sleep disordered breathing (SDB) is widely underdiagnosed in the UK.
Collapse
Affiliation(s)
- Matt Lechner
- Royal National Throat, Nose & Ear Hospital, Grays Inn Road, London, UK; UCL Cancer Institute, 72 Huntley Street, London, UK
| | - Charles E Breeze
- UCL Cancer Institute, 72 Huntley Street, London, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Maurice M Ohayon
- Division of Public Mental Health & Population Sciences, Stanford Sleep Epidemiology Research Center, Stanford University, School of Medicine, Palo Alto, USA.
| | - Bhik Kotecha
- Royal National Throat, Nose & Ear Hospital, Grays Inn Road, London, UK.
| |
Collapse
|
47
|
Łaszewska K, Goroncy A, Weber P, Pracki T, Tafil-Klawe M, Pracka D, Złomańczuk P. Daytime Acute Non-Visual Alerting Response in Brain Activity Occurs as a Result of Short- and Long-Wavelengths of Light. J PSYCHOPHYSIOL 2018. [DOI: 10.1027/0269-8803/a000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Very recent preliminary findings concerning the alerting capacities of light stimulus with long-wavelengths suggest the existence of neural pathways other than melatonin suppression that trigger the nonvisual response. Though the nonvisual effects of light during the daytime have not been investigated thoroughly, they are definitely worth investigating. The purpose of the present study is to enrich existing evidence by describing how quantitative electroencephalography (EEG) signal analysis can give insight into the measurement of the acute nonvisual response observed in brain states generated during daytime exposure to light (when melatonin secretion is negligible). EEG changes were assessed in 19 subjects during the daytime while being exposed to both short- (blue, 72 μW/cm2) and long-wavelength (red, 18 μW/cm2) radiation. We showed that artificial light stimulus as low as 40 lux decreases the synchronization in the upper theta, lower alpha, and upper alpha EEG activity spectrum. The direction of change was consistent with an increased level of alertness. We can conclude that EEG analysis is an indicator of the acute nonvisual response to daytime light. Surprisingly, the response was more spread over the scalp during exposure to red light than to blue light. According to our study, the response to long-wavelength stimulus that inhibits sleepiness, thereby inducing alertness, also takes place at the bright part of the 24-hr day when human beings are naturally predisposed to be exposed to a high level of sunlight: between 12 and 4 PM. The absorption spectrum of the nonvisual system seems to have different characteristics than was previously suspected: it is not dominated by the short-wavelengths, but involves long-wavelengths. Since we observed the predominance of the red-light alerting effect over the blue-light in this experiment, we conclude that more than one mechanism, beyond the melatonin pathway, must be involved.
Collapse
Affiliation(s)
- Kamila Łaszewska
- Department of Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Agnieszka Goroncy
- Department of Probability Theory and Stochastic Analysis, Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Piotr Weber
- Department of Atomic, Molecular and Optical Physics, Gdańsk University of Technology, Gdańsk, Poland
| | - Tadeusz Pracki
- Department of Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Małgorzata Tafil-Klawe
- Department of Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Daria Pracka
- Department of Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Piotr Złomańczuk
- Department of Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
48
|
Atkins N, Ren S, Hatcher N, Burgoon PW, Mitchell JW, Sweedler JV, Gillette MU. Functional Peptidomics: Stimulus- and Time-of-Day-Specific Peptide Release in the Mammalian Circadian Clock. ACS Chem Neurosci 2018; 9:2001-2008. [PMID: 29901982 DOI: 10.1021/acschemneuro.8b00089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.
Collapse
|
49
|
Functional Assessment of Melanopsin-Driven Light Responses in the Mouse: Multielectrode Array Recordings. Methods Mol Biol 2018; 1753:289-303. [PMID: 29564797 DOI: 10.1007/978-1-4939-7720-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a special subset of retinal output neurons capable of detecting and responding to light via a unique photopigment called melanopsin. Melanopsin activation is essential to a wide array of physiological functions, especially to those related to non-image-forming vision. Since ipRGCs only constitute a very small proportion of retinal ganglion cells, targeted recording of melanopsin-driven responses used to be a big challenge to vision researchers. Multielectrode array (MEA) recording provides a noninvasive, high throughput method to monitor melanopsin-driven responses. When synaptic inputs from rod/cone photoreceptors are silenced with glutamatergic blockers, extracellular electric signals derived from melanopsin activation can be recorded from multiple ipRGCs simultaneously by tens of microelectrodes aligned in an array. In this chapter we describe how our labs have approached MEA recording of melanopsin-driven light responses in adult mouse retinas. Instruments, tools and chemical reagents routinely used for setting up a successful MEA recording are listed, and a standard experimental procedure is provided. The implementation of this technique offers a useful paradigm that can be used to conduct functional assessments of ipRGCs and NIF vision.
Collapse
|
50
|
Milner ES, Do MTH. A Population Representation of Absolute Light Intensity in the Mammalian Retina. Cell 2017; 171:865-876.e16. [PMID: 28965762 PMCID: PMC6647834 DOI: 10.1016/j.cell.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.
Collapse
Affiliation(s)
- Elliott Scott Milner
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Tri Hoang Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|