1
|
Luo X, Yang S, Cheng S, Yin C, Zhou Z, Li W, Jin H, Wang Z, Abliz Z. Multimodal mass spectrometry imaging reveals spatial metabolic reprogramming in diabetic liver disease. Talanta 2025; 291:127891. [PMID: 40056655 DOI: 10.1016/j.talanta.2025.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/05/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Diabetic liver injury (DLI) is a significant complication of diabetes mellitus, leading to severe liver dysfunction and non-alcoholic fatty liver disease (NAFLD). Understanding the metabolic alterations and reprogramming in DLI is critical for identifying therapeutic targets. Despite the prevalence of DLI, its underlying metabolic mechanisms remain poorly understood, and effective treatments are lacking. In this study, we employed a multimodal mass spectrometry imaging approach, combining air-flow-assisted desorption electrospray ionization (AFADESI-MSI) with matrix-assisted laser desorption ionization (MALDI-MSI) to achieve a comprehensive spatial analysis of metabolic changes in DLI model rats, focusing on the potential therapeutic effects of ferulic acid, a compound known for its antioxidant and anti-inflammatory properties. This approach allowed for the wide-coverage and high-resolution visualization of over 200 metabolites in the liver tissues of DLI model rats. The study involved comparing metabolic profiles between control, DLI, and ferulic acid-treated groups, with ferulic acid administered at a dosage of 50 mg/kg daily for 20 weeks. The analysis revealed significant metabolic reprogramming in DLI, characterized by alterations in glucose, lipid, bile acid, and nucleotide metabolism. Specifically, we identified over 100 metabolites with heterogeneous distributions across liver sections, highlighting region-specific metabolic impairments. Ferulic acid treatment notably reversed many of these metabolic disturbances, particularly in glucose and lipid metabolism, suggesting its potential to restore metabolic homeostasis in DLI. This study provides critical insights into the metabolic underpinnings of DLI and demonstrates the therapeutic potential of ferulic acid in modulating these pathways. The findings underscore the utility of AFADESI- and MALDI-MSI in studying liver diseases and suggest that the metabolites identified could serve as novel biomarkers for DLI diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyu Luo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuohan Cheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chang Yin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Peking Union Medical College, Beijing, 100050, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
2
|
Zhuang P, Zhang Y, Jiao J. Reply to the 'Comment on "Circulating fatty acids and risk of severe non-alcoholic fatty liver disease in the UK biobank: a prospective cohort of 116 223 individuals"' by Zhitao Chen, Yangjun Gu, Shusen Zheng, and Qiyong Li, Food & Function, 2025. Food Funct 2025. [PMID: 40396995 DOI: 10.1039/d5fo01025j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Affiliation(s)
- Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Niazpour F, Meshkani R. Unlocking the Therapeutic Potential of Autophagy Modulation by Natural Products in Tackling Non-Alcoholic Fatty Liver Disease. Phytother Res 2025; 39:2357-2373. [PMID: 40184168 DOI: 10.1002/ptr.8463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 04/05/2025]
Abstract
It is widely recognized that there is currently no established treatment for individuals with Non-alcoholic Fatty Liver Disease (NAFLD). In recent years, there has been a surge of interest in natural products derived from plants, driven by their minimal toxicity and notable efficacy. It was reported that natural products could ameliorate NAFLD via various mechanisms. On the other hand, autophagy has been suggested to be involved in the pathogenesis of NAFLD. The aim of this review is to understand whether the beneficial effects of natural products on NAFLD are mediated by affecting autophagy pathways. In this review, we have compiled data elucidating how these natural products exhibit the potential to improve NAFLD by modulating core autophagic pathways. Specifically, we demonstrate that these natural products, including resveratrol, berberine, curcumin, quercetin, punicalagin, epigallocatechin-3-gallate, apigenin, and many others, regulate autophagy through key signaling pathways, such as AMPK/SIRT1/mTOR. Interestingly, these compounds might activate or inhibit autophagy, depending on the context. We explore how autophagy activation promotes the degradation of lipid droplets and alleviates liver injury, while autophagy inhibition contributes to reducing inflammation, apoptosis, and pyroptosis, and also resulting in improved NAFLD outcomes. Taken together, these findings suggest that targeting autophagy with natural products presents a promising mechanism for preventing and treating NAFLD.
Collapse
Affiliation(s)
- Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang B, Chi CF. Marine Bioactive Peptides-Structure, Function, and Application 2.0. Mar Drugs 2025; 23:192. [PMID: 40422782 DOI: 10.3390/md23050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
In recent years, people's lifestyles have undergone relatively significant changes [...].
Collapse
Affiliation(s)
- Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
5
|
Wang J, Mo J, Wan X, Fan Y, Zhuang P. Meat and fish consumption, genetic risk and risk of severe metabolic-associated fatty liver disease: a prospective cohort of 487,875 individuals. Nutr J 2025; 24:65. [PMID: 40281620 PMCID: PMC12023461 DOI: 10.1186/s12937-025-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Diet, specifically meat consumption, has been implicated as a modifiable risk factor in the development of metabolic-associated fatty liver disease (MAFLD). This study aimed to investigate the associations between various types of meat intake and the risk of severe MAFLD and to examine whether genetic risk influences these associations. METHODS This research utilized data from the UK Biobank, which initially enrolled over 500,000 participants between 2006 and 2010, of whom 487,875 were eligible for our analyses. Meat intake, including unprocessed red meat, processed meat, poultry, and fish, was evaluated through a validated touchscreen questionnaire. Cox proportional hazards models were used to analyze the relationship between meat consumption and severe MAFLD risk, adjusting for potential confounders. Genetic risk scores (GRS) were calculated using five MAFLD-associated SNPs, allowing for analyses of gene-diet interactions. RESULTS During a follow-up period totaling 6,036,554 person-years (mean duration: 12.1 years), 5,731 new cases of severe MAFLD were identified. High intakes of total meat, processed meat, unprocessed red meat and poultry were associated with increased MAFLD risk, with adjusted hazard ratios (HR) of 1.76 (95% CI: 1.33-2.33), 1.19 (1.02-1.40), 1.34 (1.17-1.53), and 1.21 (0.98-1.49), respectively, for the highest versus lowest intake categories. In contrast, oily fish intake showed a protective association (HR: 0.72; 95% CI: 0.53-0.97). No significant interaction was observed between meat intake and GRS for any meat subtype, suggesting that the associations were independent of genetic predisposition. CONCLUSIONS High consumption of red and processed meat was associated with an increased risk of severe MAFLD, while oily fish intake showed an inverse association with the risk of MAFLD. These effects were consistent across genetic risk levels for MAFLD. Our findings reinforce dietary recommendations to limit red and processed meat and encourage oily fish intake for MAFLD prevention, irrespective of individual genetic risk.
Collapse
Affiliation(s)
- Jianjin Wang
- Department of Clinical Medicine, Shaoxing University School of Medicine, Zhejiang, 312000, Shaoxing, China
| | - Jianshu Mo
- Department of Secondary Internal Medicine, Yuyao Hospital of Traditional Chinese Medicine, Yuyao, 315400, Zhejiang, China
| | - Xuzhi Wan
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yilei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, 310053, Zhejiang, China.
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, Zhejiang, China.
| |
Collapse
|
6
|
Bazina I, Šešelja K, Pirman T, Horvatić A, Erman A, Mihalj M, Baus Lončar M. The Effect of Tff3 Deficiency on the Liver of Mice Exposed to a High-Fat Diet. Biomedicines 2025; 13:1024. [PMID: 40426854 PMCID: PMC12108639 DOI: 10.3390/biomedicines13051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Trefoil factor protein 3 (Tff3) is a small peptide known as an epithelial tissue-protective protein, and it is also identified as a novel participant in complex metabolic processes. In numerous mouse models of obesity, Tff3 has been found to be downregulated in the liver and its overexpression is associated with an improvement in metabolic parameters. These mouse models with metabolic phenotypes have a multigenic background, with numerous genes contributing to their phenotype. To elucidate the role of Tff3 protein in metabolic events, we developed a mouse model with Tff3 deficiency on a C57Bl6N background without other intrinsic mutations affecting metabolism. Methods: We investigated the effects of a high-fat diet (9 weeks) on the liver of Tff3 protein-deficient mice of both sexes and the corresponding wild type. We investigated the general metabolic status of the animals and analysed the expression of markers of relevant pathophysiological pathways in the liver. Results:Tff3-deficient mice had significantly lower body weight. They also had a comparable total liver fat content but it was distributed in small vesicles, indicating the protective effect of Tff3 deficiency. The results of molecular analysis showed no major gene expression changes in inflammation-, ER- and oxidative stress-, and lipid metabolism-related genes. Tff3-/- males had reduced expression of Il1α and Cxcr7 genes in the liver and no global proteome changes; Tff3-deficient females had decreased expression of Irs2 and Atf4 genes and total proteome comparison showed decreased levels of proteins related to ribosome biosynthesis and the inhibition of acetylation. Conclusions: Our results demonstrate that Tff3 deficiency reduces lipid accumulation in the liver and we set the direction for further studies aimed at uncovering the exact molecular mechanisms in other organs. Furthermore, it emphasises the need to include both sexes in future research, as the observed phenotype differs significantly depending on sex.
Collapse
Affiliation(s)
- Iva Bazina
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kate Šešelja
- Division of Molecular Medicine, Ruđer Boškovic Institute, Bjenička 54, 10000 Zagreb, Croatia;
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia;
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Martina Mihalj
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Mirela Baus Lončar
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
7
|
Chen Z, Gu Y, Zheng S, Li Q. Comment on "Circulating fatty acids and risk of severe non-alcoholic fatty liver disease in the UK biobank: a prospective cohort of 116 223 individuals" by P. Zhuang, Y. Ao, X. Liu, H. Ye, H. Li, X. Wan, Y. Zhang and J. Jiao, Food & Function, 2024, 15, 10527. Food Funct 2025. [PMID: 40261006 DOI: 10.1039/d4fo05002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, China.
| | - Yangjun Gu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, China.
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, China.
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
9
|
Zhao K, Zhang H, Ding W, Yu X, Hou Y, Liu X, Li X, Wang X. Adipokines regulate the development and progression of MASLD through organellar oxidative stress. Hepatol Commun 2025; 9:e0639. [PMID: 39878681 PMCID: PMC11781772 DOI: 10.1097/hc9.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.
Collapse
Affiliation(s)
- Ke Zhao
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Heng Zhang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyu Ding
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoshuai Yu
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanli Hou
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xihong Liu
- Department of Pathology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Xinhua Li
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaolei Wang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- First school of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
10
|
Arroyave-Ospina JC, Martínez M, Buist-Homan M, Palasantzas V, Arrese M, Moshage H. Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes. Antioxidants (Basel) 2025; 14:175. [PMID: 40002362 PMCID: PMC11851918 DOI: 10.3390/antiox14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes. METHODS Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated. RESULTS CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production. CONCLUSIONS CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.
Collapse
Affiliation(s)
- Johanna C. Arroyave-Ospina
- Department of Fisiología y Bioquímica and Grupo de Gastrohepatología, Facultad de Medicina Universidad de Antioquia, Medellín 050010, Colombia
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Magnolia Martínez
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Victoria Palasantzas
- Department of Genetics and Department of Pediatrics, University Medical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands;
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| |
Collapse
|
11
|
Wu G, Ying L, Zhang Q, Xiong H, Wang J, Chen S, Yang C, Jin Y, Lai Z, Feng N, Ge Y. Lipid droplet formation induced by icaritin derivative IC2 promotes a combination strategy for cancer therapy. Chin Med 2024; 19:178. [PMID: 39725994 PMCID: PMC11670343 DOI: 10.1186/s13020-024-01050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Lipid metabolism is crucial in cancer progression. Lipid droplets (LDs) generated in cancer cells can act as protective mechanisms through alleviating lipotoxicity under stress conditions. We previously developed IC2 from the Chinese medicine icaritin as an inhibitor of stearoyl-CoA desaturase 1 (SCD1). IC2 has been shown to disrupt lipid metabolism and inhibits cancer cell proliferation. However, the impact of IC2 on intracellular LDs and the potential of targeting LD formation for combination cancer therapy remain unexplored. METHODS LD formation in cancer cells was analyzed with oil red O or BODIPY staining by microscopy. LD quantification was normalized to the cell number. IC2-induced cellular responses were revealed by transcriptional analysis, real-time PCR, and immunoblotting. Mitochondrial functions were assessed by measuring ATP production and oxygen consumption. The lipid source for LD formation was studied using lipid transporter inhibitors or lipid deprivation. The effect of inhibiting LD formation on IC2's anti-tumor effects was evaluated using MTT assays and apoptosis assays, which was subsequently validated in an in vivo xenografted tumor model. RESULTS IC2 exerted anti-tumor effects, resulting in LD formation in various cancer cells. LD formation stimulated by IC2 was independent of extracellular lipid sources and did not result from increased de novo fatty acid (FA) synthesis within the cancer cells. Transcriptional analysis indicated that IC2 disturbed mitochondrial functions, which was confirmed by impaired mitochondrial membrane potential (MMP) and reduced capacity for ATP production and oxygen consumption. Moreover, IC2 treatment led to a greater accumulation of lipids in LDs outside the mitochondria compared with the control group. IC2 inhibited the proliferation of PC3 cells and promoted the apoptosis of the cancer cells. These effects were further enhanced after inhibiting the diacylglycerol acyltransferase 1 (DGAT1), a key intracellular enzyme involved in LD formation. In PC3-xenografted mice, the DGAT1 inhibitor augmented the IC2-induced reduction in tumor growth by modulating LD formation. CONCLUSION LD formation is a feedback response to IC2's anti-tumor effects, which compromises the anti-tumor actions. IC2's anti-tumor efficacy can be enhanced by combining it with inhibitors targeting LD formation. This strategy may be extended to other anti-tumor agents that regulate lipid metabolism.
Collapse
Affiliation(s)
- Guosheng Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Ying
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - He Xiong
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jie Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sitao Chen
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Chen Yang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), Suzhou, Anhui, China
| | - Yiyuan Jin
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Taizhou Center for Disease Control and Prevention, Taizhou, China
| | - Zengwei Lai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Yunjun Ge
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
12
|
Mu C, Wang S, Wang Z, Tan J, Yin H, Wang Y, Dai Z, Ding D, Yang F. Mechanisms and therapeutic targets of mitochondria in the progression of metabolic dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 30:101774. [PMID: 39701281 DOI: 10.1016/j.aohep.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) includes liver disease processes from simple fatty liver to nonalcoholic steatohepatitis, which may progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). As the incidence of HCC derived from viral hepatitis decreases, MASLD has emerged as a significant health threat, driven by lifestyle changes and rising obesity rates among patients. The pathogenesis of MASLD is complex, involving factors such as insulin resistance, gut microbiota imbalance, and genetic and epigenetic factors. In recent years, the role of mitochondrial dysfunction in MASLD has gained significant attention, involving β-oxidation imbalance, oxidative stress increase, mitophagy defects, and mitochondrial DNA (mtDNA) mutations. This article reviews the pathophysiological mechanisms of mitochondrial dysfunction in MASLD, diagnostic methods, and potential therapeutic strategies. By synthesizing current research findings, the review aims to highlight the critical role of mitochondrial dysfunction as a target for future diagnostic and therapeutic interventions. This focus could pave the way for innovative clinical strategies, ultimately improving treatment options and patient prognosis in MASLD.
Collapse
Affiliation(s)
- Chenyang Mu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Sijie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zenghan Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jian Tan
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yuefan Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Dongyang Ding
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China; Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China.
| |
Collapse
|
13
|
Chen M, Li H, Li Y, Luo Y, He Y, Shui X, Lei W. Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 2024; 54:115. [PMID: 39422043 PMCID: PMC11518579 DOI: 10.3892/ijmm.2024.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
Collapse
Affiliation(s)
- Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hui Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yun Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yangui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaorong Shui
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
14
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
15
|
Zhuang P, Ao Y, Liu X, Ye H, Li H, Wan X, Zhang Y, Jiao J. Circulating fatty acids and risk of severe non-alcoholic fatty liver disease in the UK biobank: a prospective cohort of 116 223 individuals. Food Funct 2024; 15:10527-10538. [PMID: 39370886 DOI: 10.1039/d4fo01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fatty acid (FA) metabolism plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). However, data on the relationship between circulating FAs and NAFLD risk are limited. This study aims to assess the associations between specific circulating FAs and severe NAFLD risk among the general population. Overall 116 223 participants without NAFLD and other liver diseases from the UK Biobank were enrolled between 2006 and 2010 and were followed up until the end of 2021. Plasma concentrations of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) were analyzed using an NMR-based biomarker profiling platform. Hazard ratios (HRs) and 95% confidence intervals (CIs) of NAFLD risk were estimated using Cox proportional-hazard models adjusted for other potential confounders. During a mean follow-up of 12.3 years, we documented 1394 cases of severe NAFLD. After multivariate adjustment, plasma SFAs and MUFAs were associated with a higher risk of severe NAFLD, whereas plasma n-3 PUFAs, n-6 PUFAs, and linoleic acid (LA) were associated with a lower risk. As compared with the lowest quartile, HRs (95% CIs) of severe NAFLD risk in the highest quartiles were 1.85 (1.45-2.36) for SFAs, 1.74 (1.23-2.44) for MUFAs, 0.79 (0.65-0.97) for n-3 PUFAs, 0.68 (0.48-0.96) for n-6 PUFAs, and 0.73 (0.54-0.99) for LA. The significant relationships were mainly mediated by serum TG for SFAs, HDL-C for MUFAs and n-6 PUFAs, and C-reactive protein for n-3 PUFAs. Plasma SFAs were associated with a more pronounced increase in the risk of severe NAFLD among participants with fewer SFA-associated alleles (P interaction = 0.032). Dietary recommendations for reducing plasma SFAs and MUFAs while increasing n-3 and n-6 PUFAs may be protective for severe NAFLD, which could be mediated by lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Hao Ye
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Haoyu Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuzhi Wan
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
16
|
Malakmahmoudi N, Pisu R, Laconi E, Marongiu F. Dietary Rhythms and MASLD-Related Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3481. [PMID: 39456575 PMCID: PMC11505995 DOI: 10.3390/cancers16203481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Dietary rhythms have emerged as a relevant variable in the equation relating nutrition and health. Both experimental and epidemiological studies point to potential beneficial effects of adequate fasting intervals between meals on the evolution of chronic diseases associated with aging. Metabolic dysfunction-associated steatotic liver disease (MASLD) is eminently related to diet and unsurprisingly, diet-based approaches are a mainstay in countering its long-term clinical evolution, including the emergence of hepatocellular carcinoma (HCC). We briefly discuss current evidence linking fasting intervals, MASLD, and HCC and propose a working hypothesis to reconcile some of the apparently conflicting results. This hypothesis relates the beneficial effects of time-restricted eating schedules to the quantity and quality of food, and it is easily amenable to testing.
Collapse
Affiliation(s)
| | | | - Ezio Laconi
- Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy; (N.M.); (R.P.); (F.M.)
| | | |
Collapse
|
17
|
Kim DH. Endoplasmic reticulum stress induces hepatic steatosis through interaction between PPARα and FoxO6 in vivo and in vitro. J Mol Med (Berl) 2024; 102:1267-1284. [PMID: 39198274 PMCID: PMC11416408 DOI: 10.1007/s00109-024-02480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is a major cause of hepatic steatosis through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signaling to glucose and lipid metabolism. Therefore, dysregulated FoxO6 is involved in hepatic lipogenesis. This study elucidated the role of FoxO6 in ER stress-induced hepatic steatosis in vivo and in vitro. Hepatic ER stress responses and β-oxidation were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. For the in vitro study, liver cells overexpressing constitutively active FoxO6 and FoxO6-siRNA were treated with high glucose, and lipid metabolism alterations were measured. ER stress-induced FoxO6 activation suppressed hepatic β-oxidation in vivo. The expression and transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) were significantly decreased in the constitutively active FoxO6 allele. Otherwise, inhibiting β-oxidation genes were reduced in the FoxO6-siRNA and FoxO6-KO mice. Our data showed that the FoxO6-induced hepatic lipid accumulation was negatively regulated by insulin signaling. High glucose treatment as a hyperglycemia condition caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in liver cells. However, high glucose-mediated ER stress suppressed β-oxidation gene expression through interactions between PPARα and FoxO6 corresponding to findings in the in vivo study-lipid catabolism is also regulated by FoxO6. Furthermore, insulin resistance suppressed b-oxidation through the interaction between FoxO6 and PPARα promotes hepatic steatosis, which, due to hyperglycemia-induced ER stress, impairs insulin signaling. KEY MESSAGES: Our original aims were to delineate the interrelation between the regulation of PPARα and the transcription factor FoxO6 pathway in relation to lipid metabolism at molecular levels. Evidence on high glucose promoted FoxO6 activation induced lipid accumulation in liver cells. The effect of PPARα activation of the insulin signaling. FoxO6 plays a pivotal role in hepatic lipid accumulation through inactivation of PPARα in FoxO6-overexpression mice.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Food Science & Technology, College of Natural Resources and Life Science, Pusan National University, Miryang-Si, Gyeongsangnam-Do, 50463, Republic of Korea.
| |
Collapse
|
18
|
Chen F, Hao T, Chen Q, Sun Y, Shen Y, Zhao Z, Du J, Li Y, Mai K, Ai Q. FABP1 induces lipogenesis by regulating the processing of SREBP1 in hepatocytes of large yellow croaker (Larimichthys crocea). FASEB J 2024; 38:e70036. [PMID: 39275940 DOI: 10.1096/fj.202401087rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.
Collapse
Affiliation(s)
- Fan Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuning Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
19
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
20
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
21
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
22
|
Yang L, Jiang Z, Yang L, Zheng W, Chen Y, Qu F, Crabbe MJC, Zhang Y, Andersen ME, Zheng Y, Qu W. Disinfection Byproducts of Haloacetaldehydes Disrupt Hepatic Lipid Metabolism and Induce Lipotoxicity in High-Fat Culture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12356-12367. [PMID: 38953388 DOI: 10.1021/acs.est.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unhealthy lifestyles, obesity, and environmental pollutants are strongly correlated with the development of nonalcoholic fatty liver disease (NAFLD). Haloacetaldehyde-associated disinfection byproducts (HAL-DBPs) at various multiples of concentrations found in finished drinking water together with high-fat (HF) were examined to gauge their mixed effects on hepatic lipid metabolism. Using new alternative methods (NAMs), studying effects in human cells in vitro for risk assessment, we investigated the combined effects of HF and HAL-DBPs on hepatic lipid metabolism and lipotoxicity in immortalized LO-2 human hepatocytes. Coexposure of HAL-DBPs at various multiples of environmental exposure levels with HF increased the levels of triglycerides, interfered with de novo lipogenesis, enhanced fatty acid oxidation, and inhibited the secretion of very low-density lipoproteins. Lipid accumulation caused by the coexposure of HAL-DBPs and HF also resulted in more severe lipotoxicity in these cells. Our results using an in vitro NAM-based method provide novel insights into metabolic reprogramming in hepatocytes due to coexposure of HF and HAL-DBPs and strongly suggest that the risk of NAFLD in sensitive populations due to HAL-DBPs and poor lifestyle deserves further investigation both with laboratory and epidemiological tools. We also discuss how results from our studies could be used in health risk assessments for HAL-DBPs.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lan Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fei Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yubin Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Wang J, Li J, Fu Y, Zhu Y, Lin L, Li Y. Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). Int J Mol Med 2024; 53:32. [PMID: 38362962 PMCID: PMC10903931 DOI: 10.3892/ijmm.2024.5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso‑phosphatidyl‑choline acyltransferases (LPCATs), expedite incorporation into the sn‑2 site of phosphatidyl‑choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non‑alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.
Collapse
Affiliation(s)
- Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
24
|
Ma K, Yi X, Yang ST, Zhu H, Liu TY, Jia SS, Fan JH, Hu DJ, Lv GP, Huang H. Isolation, purification, and structural characterization of polysaccharides from Codonopsis pilosula and its therapeutic effects on non-alcoholic fatty liver disease in vitro and in vivo. Int J Biol Macromol 2024; 265:130988. [PMID: 38518942 DOI: 10.1016/j.ijbiomac.2024.130988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of →1)-Fruf-(2→, Fruf-(1→ and Glcp-(1→ residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 → [2)-β-D-Fruf-(1 → 2)-β-D-Fruf-(1]26 → 2)-β-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.
Collapse
Affiliation(s)
- Kai Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin Yi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Shu-Ting Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Hua Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tian-Yu Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Si-Si Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jia-Hao Fan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - De-Jun Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guang-Ping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
25
|
Wang X, Zhang L, Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024:01515467-990000000-00739. [PMID: 38349726 PMCID: PMC11323288 DOI: 10.1097/hep.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths and ranks as the sixth most prevalent cancer type globally. NAFLD or metabolic dysfunction-associated steatotic liver disease, and its more severe manifestation, NASH or metabolic dysfunction-associated steatohepatitis (MASH), pose a significant global health concern, affecting approximately 20%-25% of the population. The increased prevalence of metabolic dysfunction-associated steatotic liver disease and MASH is parallel to the increasing rates of obesity-associated metabolic diseases, including type 2 diabetes, insulin resistance, and fatty liver diseases. MASH can progress to MASH-related HCC (MASH-HCC) in about 2% of cases each year, influenced by various factors such as genetic mutations, carcinogen exposure, immune microenvironment, and microbiome. MASH-HCC exhibits distinct molecular and immune characteristics compared to other causes of HCC and affects both men and women equally. The management of early to intermediate-stage MASH-HCC typically involves surgery and locoregional therapies, while advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune checkpoint inhibitors. In this comprehensive review, we consolidate previous research findings while also providing the most current insights into the intricate molecular processes underlying MASH-HCC development. We delve into MASH-HCC-associated genetic variations and somatic mutations, disease progression and research models, multiomics analysis, immunological and microenvironmental impacts, and discuss targeted/combined therapies to overcome immune evasion and the biomarkers to recognize treatment responders. By furthering our comprehension of the molecular mechanisms underlying MASH-HCC, our goal is to catalyze the advancement of more potent treatment strategies, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Liang Zhang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bingning Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Luo R, Hu Y, Wang L, Wang W, Wang P, Ke Z, Lou D, Tian W. Hesperidin Protects Against High-Fat Diet-Induced Lipotoxicity in Rats by Inhibiting Pyroptosis. J Med Food 2024; 27:154-166. [PMID: 38294790 DOI: 10.1089/jmf.2023.k.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
It is currently thought that excess fatty acid-induced lipotoxicity in hepatocytes is a critical initiator in the development of nonalcoholic fatty liver disease (NAFLD). Lipotoxicity can induce hepatocyte death; thus, reducing lipotoxicity is one of the most effective therapeutic methods to combat NAFLD. Abundant evidence has shown that hesperidin (HSP), a type of flavanone mainly found in citrus fruits, is able to ameliorate NAFLD, but the molecular mechanisms are unclear. We previously reported that pyroptosis contributed to NAFLD development and that inhibiting pyroptosis contributed to blunting the progression of NAFLD in rat models. Therefore, we questioned whether HSP could contribute to ameliorating NAFLD by modulating pyroptosis. In this study, a high-fat diet (HFD) induced dyslipidemia and hepatic lipotoxicity in rats, and HSP supplementation ameliorated dyslipidemia and insulin resistance. In addition, the HFD also caused pyroptosis in the liver and pancreas, while HSP supplementation ameliorated pyroptosis. In vitro, we found that HSP ameliorated palmitic acid-induced lipotoxicity and pyroptosis in HepG2 and INS-1E cells. In conclusion, we showed for the first time that HSP has a protective effect against liver and pancreas damage in terms of pyroptosis and provides a novel mechanism for the protective effects of HSP on NAFLD.
Collapse
Affiliation(s)
- Ruixi Luo
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yudie Hu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - La Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjia Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ping Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zunli Ke
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Didong Lou
- Department of Forensic Medicine, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiyi Tian
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
27
|
Lai D, Wang D, Shao X, Qin J, Zhuang Q, Xu H, Xiao W. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of osthole on Penicillium choerospondiatis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105749. [PMID: 38225092 DOI: 10.1016/j.pestbp.2023.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Blue mold induced by Penicillium choerospondiatis is a primary cause of growth and postharvest losses in the fruit of Phyllanthus emblica. There is an urgent need to explore novel and safe fungicides to control this disease. Here, we demonstrated osthole, a natural coumarin compound isolated from Cnidium monnieri, exhibited a strong inhibitory effect on mycelia growth, conidial germination rate and germ tube length of P. choerospondiatis, and effectively suppressed the blue mold development in postharvest fruit of P. emblica. The median effective concentration of osthole was 9.86 mg/L. Osthole treatment resulted in cellular structural disruption, reactive oxygen species (ROS) accumulation, and induced autophagic vacuoles containing cytoplasmic components in fungal cells. Transcriptome analysis revealed that osthole treatment led to the differentially expressed genes mainly enriched in the cell wall synthesis, TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation. Moreover, osthole treatment led to increase genes expression involved in peroxisome, autophagy and endocytosis. Particularly, the autophagy pathway related genes (PcATG1, PcATG3, PcATG15, PcATG27, PcYPT7 and PcSEC18) were prominently up-regulated by osthole. Summarily, these results revealed the potential antifungal mechanism of osthole against P. choerospondiatis. Osthole has potentials to develop as a natural antifungal agent for controlling blue mold disease in postharvest fruits.
Collapse
Affiliation(s)
- Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Delin Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jian Qin
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Qingli Zhuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
28
|
Wang C, Chen Z, Yi Y, Ding Y, Xu F, Kang H, Lin K, Shu X, Zhong Z, Zhang Z, Liu J, Xu Z, Liu L, He X, Chang Y, Zhao Q. RBM45 reprograms lipid metabolism promoting hepatocellular carcinoma via Rictor and ACSL1/ACSL4. Oncogene 2024; 43:328-340. [PMID: 38040804 DOI: 10.1038/s41388-023-02902-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Reprogramming of lipid metabolism during hepatocarcinogenesis is not well elucidated. Here, we aimed to explore pivotal RNA-binding motif proteins (RBMs) in lipid metabolism and their therapeutic potential in hepatocellular carcinoma (HCC). Through bioinformatic analysis, we identified RBM45 as a critical gene of interest among differentially expressed RBMs in HCC, with significant prognostic relevance. RBM45 influenced the malignant biological phenotype and lipid metabolism of HCC cells. Mechanically, RBM45 promotes de novo lipogenesis in HCC by directly targeting two key enzymes involved in long-chain fatty acid synthesis, ACSL1 and ACSL4. RBM45 also targets Rictor, which has been demonstrated to modulate lipid metabolism profoundly. RBM45 also aided lipid degradation through activating a key fatty acid β oxidation enzyme, CPT1A. Thus, RBM45 boosted lipid synthesis and decomposition, indicating an enhanced utility of lipid fuels in HCC. Clinically, body mass index was positively correlated with RBM45 in human HCCs. The combination of a PI3K/AKT/mTOR pathway inhibitor in vitro or Sorafenib in orthotopic liver cancer mouse models with shRBM45 has a more significant therapeutic effect on liver cancer than the drug alone. In summary, our findings highlight the versatile roles of RBM45 in lipid metabolism reprogramming and its therapeutic potential in HCC. Lipids induced RBM45 expression. In turn, RBM45 promoted the utility of lipid in HCCs through accelerating both de novo lipogenesis and fatty acid β oxidation, which required the participation of Rictor, a core component of mTORC2 that has been demonstrated to modulate lipid metabolism potently, as well as ACSL1/ACSL4, two key enzymes of long-chain fatty acid synthesis. When the first-line chemotherapy drug sorafenib is combined with a PI3K/AKT/mTOR pathway inhibitor (MK2206 is an AKT inhibitor, rapamycin is a mTOR inhibitor, and inhibiting RBM45 can significantly inhibit Rictor), cell cycle, proliferation, lipid metabolism reprogramming, and hepatocarcinogenesis can be significantly inhibited, while apoptosis can be significantly enhanced.
Collapse
Affiliation(s)
- Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhihang Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xiawen Shu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zibiao Zhong
- Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
29
|
Effenberger M, Grander C, Grabherr F, Tilg H. Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link. J Clin Transl Hepatol 2023; 11:1498-1507. [PMID: 38161503 PMCID: PMC10752805 DOI: 10.14218/jcth.2023.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Ruan G, Wu F, Shi D, Sun H, Wang F, Xu C. Metformin: update on mechanisms of action on liver diseases. Front Nutr 2023; 10:1327814. [PMID: 38192642 PMCID: PMC10773879 DOI: 10.3389/fnut.2023.1327814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Substantial attention has been paid to the various effects of metformin on liver diseases; the liver is the targeted organ where metformin exerts its antihyperglycemic properties. In non-alcoholic fatty liver disease (NAFLD), studies have shown that metformin affects the ATP/AMP ratio to activate AMPK, subsequently governing lipid metabolism. The latest research showed that low-dose metformin targets the lysosomal AMPK pathway to decrease hepatic triglyceride levels through the PEN2-ATP6AP1 axis in an AMP-independent manner. Metformin regulates caspase-3, eukaryotic initiation factor-2a (eIF2a), and insulin receptor substrate-1 (IRS-1) in palmitate-exposed HepG2 cells, alleviating endoplasmic reticulum (ER) stress. Recent observations highlighted the critical association with intestinal flora, as confirmed by the finding that metformin decreased the relative abundance of Bacteroides fragilis while increasing Akkermansia muciniphila and Bifidobacterium bifidum. The suppression of intestinal farnesoid X receptor (FXR) and the elevation of short-chain fatty acids resulted in the upregulation of tight junction protein and the alleviation of hepatic inflammation induced by lipopolysaccharide (LPS). Additionally, metformin delayed the progression of cirrhosis by regulating the activation and proliferation of hepatic stellate cells (HSCs) via the TGF-β1/Smad3 and succinate-GPR91 pathways. In hepatocellular carcinoma (HCC), metformin impeded the cell cycle and enhanced the curative effect of antitumor medications. Moreover, metformin protects against chemical-induced and drug-induced liver injury (DILI) against hepatotoxic drugs. These findings suggest that metformin may have pharmacological efficacy against liver diseases.
Collapse
Affiliation(s)
- Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangquan Wu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Zou P, Wang L. Dietary pattern and hepatic lipid metabolism. LIVER RESEARCH 2023; 7:275-284. [PMID: 39958775 PMCID: PMC11791920 DOI: 10.1016/j.livres.2023.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2025]
Abstract
The liver is the leading site for lipid metabolism, involving not only fatty acid beta-oxidation but also de novo synthesis of endogenous triglycerides and ketogenesis. The liver maintains systemic lipid homeostasis by regulating lipid synthesis, catabolism, and transportation. Dysregulation of hepatic lipid metabolism precipitates disorders, such as non-alcoholic fatty liver disease (NAFLD), affecting the whole body. Thus, comprehending and studying hepatic lipid metabolism is crucial for preventing and treating metabolic liver diseases. Traditionally, researchers have investigated the impact of a single nutrient on hepatic lipid metabolism. However, real-life dietary patterns encompass diverse nutrients rather than single components. In recent years, there have been increased studies and notable progress regarding the effects of distinct dietary patterns on hepatic lipid metabolism. This review summarizes the influence of diverse dietary patterns on hepatic lipid metabolism, elucidating underlying molecular mechanisms and appraising the therapeutic potential of dietary patterns in managing hepatic steatosis.
Collapse
Affiliation(s)
- Peng Zou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
32
|
Hu C, Huang R, Li R, Ning N, He Y, Zhang J, Wang Y, Ma Y, Jin L. Low-Carbohydrate and Low-Fat Diet with Metabolic-Dysfunction-Associated Fatty Liver Disease. Nutrients 2023; 15:4763. [PMID: 38004162 PMCID: PMC10674227 DOI: 10.3390/nu15224763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND This observational cross-sectional study was designed to explore the effects of a low-carbohydrate diet (LCD) and a low-fat diet (LFD) on metabolic-dysfunction-associated fatty liver disease (MAFLD). METHODS This study involved 3961 adults. The associations between LCD/LFD scores and MAFLD were evaluated utilizing a multivariable logistic regression model. Additionally, a leave-one-out model was applied to assess the effect of isocaloric substitution of specific macronutrients. RESULTS Participants within the highest tertile of healthy LCD scores (0.63; 95% confidence interval [CI], 0.45-0.89) or with a healthy LFD score (0.64; 95%CI, 0.48-0.86) faced a lower MAFLD risk. Furthermore, compared with tertile 1, individuals with unhealthy LFD scores in terile 2 or tertile 3 had 49% (95%CI, 1.17-1.90) and 77% (95%CI, 1.19-2.63) higher risk levels for MAFLD, respectively. CONCLUSIONS Healthy LCD and healthy LFD are protective against MAFLD, while unhealthy LFD can increase the risk of MAFLD. Both the quantity and quality of macronutrients might have significant influences on MAFLD.
Collapse
Affiliation(s)
- Chengxiang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (C.H.); (R.L.); (Y.H.); (J.Z.); (Y.W.)
| | - Rong Huang
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (R.H.); (N.N.)
| | - Runhong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (C.H.); (R.L.); (Y.H.); (J.Z.); (Y.W.)
| | - Ning Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (R.H.); (N.N.)
| | - Yue He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (C.H.); (R.L.); (Y.H.); (J.Z.); (Y.W.)
| | - Jiaqi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (C.H.); (R.L.); (Y.H.); (J.Z.); (Y.W.)
| | - Yingxin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (C.H.); (R.L.); (Y.H.); (J.Z.); (Y.W.)
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (R.H.); (N.N.)
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (C.H.); (R.L.); (Y.H.); (J.Z.); (Y.W.)
| |
Collapse
|
33
|
Chen S, Wang X, Liu Z, Wang J, Guo Y, Wang Q, Huang H, Li Y, Yu C, Xu C. Olfactomedin 4 deletion exacerbates nonalcoholic fatty liver disease through P62-dependent mitophagy in mice. Metabolism 2023; 148:155679. [PMID: 37611821 DOI: 10.1016/j.metabol.2023.155679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Olfactomedin 4 (OLFM4) is a glycoprotein that is related to obesity and insulin resistance. This study aims to investigate the role and mechanisms of OLFM4 in nonalcoholic fatty liver disease (NAFLD). APPROACH & RESULTS OLFM4 expression levels were significantly increased in liver samples from NAFLD patients and in cellular and mouse models of NAFLD. Cell lines deficient in or overexpressing OLFM4 and Olfm4-/- mice were established to study its role in NAFLD. OLFM4 deficiency significantly aggravated diet-induced hepatic steatosis and inflammation, while re-expression of OLFM4 ameliorated diet-induced hepatic steatosis and inflammation in mice. Mechanistically, OLFM4 deficiency disrupted mitochondrial structure and decreased mitophagy in hepatocytes, thereby aggravating hepatic lipogenesis, inflammation, and insulin resistance. Moreover, OLFM4 directly interacted with P62, and OLFM4 deficiency decreased mitophagy in both cellular and mouse models of NAFLD through a P62-dependent mechanism. We also show that blocking the P62-ZZ-domain using XRK3F2 prevented diet-induced NAFLD in Olfm4-/- mice. CONCLUSION OLFM4 is significantly upregulated in NAFLD, and OLFM4 deletion exacerbates NAFLD through P62-dependent mitophagy.
Collapse
Affiliation(s)
- Shenghui Chen
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhening Liu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinghua Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hangkai Huang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
34
|
Yin K, Wang D, Zhang Y, Lu H, Wang Y, Xing M. Dose-effect of polystyrene microplastics on digestive toxicity in chickens (Gallus gallus): Multi-omics reveals critical role of gut-liver axis. J Adv Res 2023; 52:3-18. [PMID: 36334886 PMCID: PMC10555772 DOI: 10.1016/j.jare.2022.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Microplastic pollution seriously threatens the health and safety of humans and wildlife. Avian is one of the main species endangered by microplastics. However, the damage mechanism of microplastics to the digestive system of avian is not clear. OBJECTIVES The gut-liver axis is a bidirectional channel that regulates the exchange of information between the gut and the liver and is also a key target for tissue damage caused by pollutants. This study aimed to elucidate the digestive toxicity of microplastics in avian and the key role of the gut-liver axis in it. METHODS We constructed an exposure model for microplastics in environmental concentrations and toxicological concentrations in chickens and reveal the digestive toxicity of polystyrene microplastics (PS-MPs) in avian by 16S rRNA, transcriptomics and metabolomics. RESULTS PS-MPs changed the death mode from apoptosis to necrosis and pyroptosis by upregulating Caspase 8, disrupting the intestinal vascular barrier, disturbing the intestinal flora and promoting the accumulation of lipopolysaccharide. Harmful flora and metabolites were translocated to the liver through the liver-gut axis, eliciting hepatic immune responses and promoting hepatic lipid metabolism disorders and apoptosis. Liver injury involves multiple molecular effects of mitochondrial dynamics disturbance, oxidative stress, endoplasmic reticulum stress, and cell cycle disturbance. Furthermore, metabolomics suggested that caffeine and melanin metabolites may be potential natural resistance substances for microplastics. CONCLUSION Taken together, our data demonstrate the digestive damage of PS-MPs in avian, revealing a critical role of the liver-gut axis in it. This will provide a reference for protecting the safety of avian populations.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
35
|
Papadopoulos G, Legaki AI, Georgila K, Vorkas P, Giannousi E, Stamatakis G, Moustakas II, Petrocheilou M, Pyrina I, Gercken B, Kassi E, Chavakis T, Pateras IS, Panayotou G, Gika H, Samiotaki M, Eliopoulos AG, Chatzigeorgiou A. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity. Metabolism 2023; 144:155552. [PMID: 36996933 DOI: 10.1016/j.metabol.2023.155552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND High-Fructose Corn Syrup (HFCS), a sweetener rich in glucose and fructose, is nowadays widely used in beverages and processed foods; its consumption has been correlated to the emergence and progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nevertheless, the molecular mechanisms by which HFCS impacts hepatic metabolism remain scarce, especially in the context of obesity. Besides, the majority of current studies focuses either on the detrimental role of fructose in hepatic steatosis or compare separately the additive impact of fructose versus glucose in high fat diet-induced NAFLD. AIM By engaging combined omics approaches, we sought to characterize the role of HFCS in obesity-associated NAFLD and reveal molecular processes, which mediate the exaggeration of steatosis under these conditions. METHODS Herein, C57BL/6 mice were fed a normal-fat-diet (ND), a high-fat-diet (HFD) or a HFD supplemented with HFCS (HFD-HFCS) and upon examination of their metabolic and NAFLD phenotype, proteomic, lipidomic and metabolomic analyses were conducted to identify HFCS-related molecular alterations of the hepatic metabolic landscape in obesity. RESULTS Although HFD and HFD-HFCS mice displayed comparable obesity, HFD-HFCS mice showed aggravation of hepatic steatosis, as analysis of the lipid droplet area in liver sections revealed (12,15 % of total section area in HFD vs 22,35 % in HFD-HFCS), increased NAFLD activity score (3,29 in HFD vs 4,86 in HFD-HFCS) and deteriorated hepatic insulin resistance, as compared to the HFD mice. Besides, the hepatic proteome of HFD-HFCS mice was characterized by a marked upregulation of 5 core proteins implicated in de novo lipogenesis (DNL), while an increased phosphatidyl-cholines(PC)/phosphatidyl-ethanolamines(PE) ratio (2.01 in HFD vs 3.04 in HFD-HFCS) was observed in the livers of HFD-HFCS versus HFD mice. Integrated analysis of the omics datasets indicated that Tricarboxylic Acid (TCA) cycle overactivation is likely contributing towards the intensification of steatosis during HFD-HFCS-induced NAFLD. CONCLUSION Our results imply that HFCS significantly contributes to steatosis aggravation during obesity-related NAFLD, likely deriving from DNL upregulation, accompanied by TCA cycle overactivation and deteriorated hepatic insulin resistance.
Collapse
Affiliation(s)
- Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Konstantina Georgila
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology, 57001, Thermi, Thessaloniki, Greece
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - George Stamatakis
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Ioannis I Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Maria Petrocheilou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001, Thermi, Thessaloniki, Greece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Ioannis S Pateras
- 2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Panayotou
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Helen Gika
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001, Thermi, Thessaloniki, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
36
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Liu M, Niu Q, Wang Z, Qi H, Liang X, Gai Y, Wang B, Yin S. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of 6-pentyl-2H-pyran-2-one on Clarireedia jacksonii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105456. [PMID: 37248022 DOI: 10.1016/j.pestbp.2023.105456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Clarireedia spp. is a destructive phytopathogenic fungus that causes turf dollar spot of bent-grass, leading to widespread lawn death. In this study, we explored the antifungal capability of 6-pentyl-2H-pyran-2-one (6PP), a natural metabolite volatilized by microorganisms, which plays an important role in the biological control of turfgrass dollar spot. However, the mechanisms by which 6PP inhibits Clarireedia jacksonii remain unknown. In the present study, C. jacksonii mycelial growth was inhibited by the 6PP treatment and the 6PP treatment damaged cell membrane integrity, causing an increase in relative conduc-tivity. Furthermore, physiological and biochemistry assay showed that 6PP treatment can enhance reactive oxygen species (ROS) levels, malondialdehyde (MDA) content obviously increased with 6PP exposure, increased alchohol dehydrogenase (ADH) and depleted acetalde-hyde dehydrogenase (ALDH), and activated the activities of many antioxidant enzymes in C. jacksonii. Gen Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that some genes in C. jacksonii after 6PP treatment related to integrity of the cell wall and membrane, and oxidative stress were significantly downregulated. It is worth mentioning that the fatty acid degradation pathway is significantly upregulated, with an increase in ATP content and ATP synthase activity, which may promote fungal cell apoptosis. Moreover, we found that the expression of ABC transporters, and glutathione metabolism encoding genes were increased to respond to external stimuli. Taken together, these findings revealed the potential antifungal mechanism of 6PP against Clarireedia spp., which also provides a theoretical basis for the commercial utilization of 6PP as a green pesticide in the future.
Collapse
Affiliation(s)
- Man Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Qichen Niu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Ziyue Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Hongyin Qi
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Xingxing Liang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Baisen Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Shuxia Yin
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Liu X, Li X, Su S, Yuan Y, Liu W, Zhu M, Zheng Q, Zeng X, Fu F, Lu Y, Chen Y. Oleic acid improves hepatic lipotoxicity injury by alleviating autophagy dysfunction. Exp Cell Res 2023:113655. [PMID: 37253404 DOI: 10.1016/j.yexcr.2023.113655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Lipotoxicity caused by excess free fatty acids, particularly saturated fatty acids (SFAs) such as palmitic acid (PA), is one of the most important pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, unsaturated fatty acids (UFAs), such as oleic acid (OA), are nontoxic and can combat SFA-induced toxicity through alleviation of cell apoptosis, endoplasmic reticulum stress (ER stress) and lipids metabolism disorder. However, whether OA is able to regulate autophagy is largely unknown. So, this study aims to investigate the mechanism underlying OA mediated modulation of autophagy in hepatocytes and mice with NAFLD. In vitro, human hepatoma cell line HepG2 cells, human normal liver cells L-02 and mouse normal liver cells AML12 were treated with palmitic acid (PA)/tunicamycin (TM) or/and OA for 48 h. In vivo, C57/BL6 mice were fed with high fat diet (HFD) to induce NAFLD. And the HFD was partial replaced by olive oil to observe the protective effects of olive oil. We demonstrated that PA/TM impaired cell viability and induced cellular apoptosis in HepG2 cells and L-02 cells. Moreover, PA/TM induced autophagy impairment by reducing the nuclear translocation of transcription factor EB (TFEB) and inhibiting the activity of CTSB. However, OA substantially alleviated PA/TM induced cellular apoptosis and autophagy dysfunction in hepatocytes. Additionally, restoring autophagy function is able to reduce ER stress. Similarly, HFD for 20 weeks successfully established NAFLD model in C57/BL6 mice, and significant autophagy impairment were observed in liver tissues. Noteworthily, 30% replacement of HFD with olive oil had profoundly reversed NAFLD. It significantly impoved steatosis, and reduced autophagy dysfunction, ER stress and apoptosis in liver tissue. Conclusively, these data demonstrated that OA is able to effectively impove autophagy dysfunction under the context of both PA and ER stress inducer induced lipotoxicity, and OA mediated regulation of lysosome dysfunction through TFEB plays an important role, suggesting that the regulation of ER stress-autophagy axis is a critical mechanism in OA driven protection in NAFLD.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Shan Su
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujia Yuan
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wen Liu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Min Zhu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Zheng
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Zeng
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yanrong Lu
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Younan Chen
- Department of Clinical Nutrition and Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
39
|
Zhu Y, Chai XX, Zhao Y, Feng Q, Dong R, Shi MJ, Zhou J, Zhao Y, Peng J, Tian Y, Chen G, Luo C, Sheng J. Saturated fatty acids synergizes cadmium to induce macrophages M1 polarization and hepatic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115040. [PMID: 37235898 DOI: 10.1016/j.ecoenv.2023.115040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Exposure to the toxic metal cadmium (Cd) is a well-established risk factor for hepatic inflammation, but it remains unclear how metabolic components, such as different fatty acids (FAs), interact with Cd to influence this process. Understanding these interactions is essential for identifying potential preventative and therapeutic targets for this disorder. To address this question, we conducted in vitro and in vivo studies to investigate the combinatorial effect of Cd and saturated FAs on hepatic inflammation. Specifically, we assessed the cytotoxicity of Cd on macrophages and their polarization and inflammatory activation upon co-exposure to Cd and saturated FAs. Our results showed that while saturated FAs had minimal impact on the cytotoxicity of Cd on macrophages, they significantly collaborated with Cd in predisposing macrophages towards a pro-inflammatory M1 polarization, thereby promoting inflammatory activation. This joint effect of Cd and saturated FAs resulted in persistent inflammation and hepatic steatohepatitis in vivo. In summary, our study identified macrophage polarization as a novel mechanism by which co-exposure to Cd and saturated lipids induces hepatic inflammation. Our findings suggest that intervening in macrophage polarization may be a potential approach for mitigating the adverse hepatic effects of Cd.
Collapse
Affiliation(s)
- Yi Zhu
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Chai
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Zhao
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Feng
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People's Hospital), Guiyang, China
| | - Meng-Jie Shi
- MD-PhD Program, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhou
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yurong Zhao
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Youjia Tian
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
40
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
41
|
Del Bo' C, Perna S, Allehdan S, Rafique A, Saad S, AlGhareeb F, Rondanelli M, Tayyem RF, Marino M, Martini D, Riso P. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023; 15:nu15102250. [PMID: 37242133 DOI: 10.3390/nu15102250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The effectiveness of the Mediterranean diet (MD) in non-alcoholic fatty liver disease (NAFLD) subjects has been evaluated in several randomized controlled trials (RCTs). This systematic review and meta-analysis aimed to evaluate the overall effects of MD intervention in a cohort of NAFLD patients targeting specific markers such as central obesity, lipid profile, liver enzymes and fibrosis, and intrahepatic fat (IHF). Google Scholar, PubMed, and Scopus were explored to collect relevant studies from the last 10 years. RCTs with NAFLD subjects were included in this systematic review with a mean intervention duration from 6 weeks to 1 year, and different intervention strategies, mainly including energy restriction MD (normal or low glycaemic index), low-fat MD with increased monounsaturated and polyunsaturated fatty acids, and increased exercise expenditure. The outcomes measured in this meta-analysis were gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), total cholesterol (TC), waist circumference (WC), and liver fibrosis. Ten randomized controlled trials, which involved a total of 737 adults with NAFLD, were included. According to the results, the MD seems to decrease the liver stiffness (kPa) by -0.42 (CI95% -0.92, 0.09) (p = 0.10) and significantly reduce the TC by -0.46 mg/dl (CI95% -0.55, -0.38) (p = 0.001), while no significant findings were documented for liver enzymes and WC among patients with NAFLD. In conclusion, the MD might reduce indirect and direct outcomes linked with NAFLD severity, such as TC, liver fibrosis, and WC, although it is important to consider the variations across trials. Further RCTs are necessary to corroborate the findings obtained and provide further evidence on the role of the MD in the modulation of other disorders related to NAFLD.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sabika Allehdan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Ayesha Rafique
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Sara Saad
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Fahad AlGhareeb
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Reema F Tayyem
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
42
|
Tourkochristou E, Mouzaki A, Triantos C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int J Mol Sci 2023; 24:ijms24098288. [PMID: 37175993 PMCID: PMC10179740 DOI: 10.3390/ijms24098288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with increasing prevalence worldwide. The genetic and molecular background of NAFLD pathogenesis is not yet clear. The vitamin D/vitamin D receptor (VDR) axis is significantly associated with the development and progression of NAFLD. Gene polymorphisms may influence the regulation of the VDR gene, although their biological significance remains to be elucidated. VDR gene polymorphisms are associated with the presence and severity of NAFLD, as they may influence the regulation of adipose tissue activity, fibrosis, and hepatocellular carcinoma (HCC) development. Vitamin D binds to the hepatic VDR to exert its biological functions, either by activating VDR transcriptional activity to regulate gene expression associated with inflammation and fibrosis or by inducing intracellular signal transduction through VDR-mediated activation of Ca2+ channels. VDR activity has protective and detrimental effects on hepatic steatosis, a characteristic feature of NAFLD. Vitamin D-VDR signaling may control the progression of NAFLD by regulating immune responses, lipotoxicity, and fibrogenesis. Elucidation of the genetic and molecular background of VDR in the pathophysiology of NAFLD will provide new therapeutic targets for this disease through the development of VDR agonists, which already showed promising results in vivo.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
43
|
Xie P, Xie JB, Xiao MY, Guo M, Qi YS, Li FF, Piao XL. Liver lipidomics analysis reveals the anti-obesity and lipid-lowering effects of gypnosides from heat-processed Gynostemma pentaphyllum in high-fat diet fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154834. [PMID: 37094422 DOI: 10.1016/j.phymed.2023.154834] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In traditional Chinese medicine, Gynostemma pentaphyllum (G. pentaphyllum) is widely used to treat conditions associated with hyperlipidemia, and its therapeutic potential has been demonstrated in numerous studies. However, the mechanism of lipid metabolism in hyperlipidemic by G. pentaphyllum, especially heat-processed G. pentaphyllum is not yet clear. PURPOSE The aim of this study was to investigate the therapeutic mechanism of gypenosides from heat-processed G. pentaphyllum (HGyp) in hyperlipidemic mice by means of a lipidomics. METHODS The content of the major components of HGyp was determined by ultra-performance liquid chromatography-electrospray ionization ion trap mass spectrometry (UPLC-ESI-MS). An animal model of hyperlipidaemia was constructed using C57BL/6J mice fed with high-fat diet. HGyp was also administered at doses of 50, 100 and 200 mg/kg, all for 12 weeks. Serum parameters were measured, histological sections were prepared and liver lipidome analysis using UPLC-MS coupled with multivariate statistical analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to analyze the genes and proteins associated with lipid lowering in HGyp. RESULTS HGyp reduced body weight, serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) and hepatic lipid accumulation in hyperlipidemic obese mice. To explore specific changes in lipid metabolism in relation to HGyp administration, lipid analysis of the liver was performed. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots showed that HGyp altered lipid metabolism in HFD mice. In particular, fatty acids (FA), triglycerides (DG), TG and ceramides (CER) were significantly altered. Eleven lipids were identified as potential lipid biomarkers, namely TG (18:2/20:5/18:2), TG (18:2/18:3/20:4), DG (18:3/20:0/0:0), Cer (d18:1/19:0), Cer (d16:1/23:0), Ceramide (d18:1/9Z-18:1), PS (19:0/18:3), PS (20:2/0:0), LysoPC (22:5), LysoPE (0:0/18:0), PE (24:0/16:1). Western blot and qRT-PCR analysis showed that these metabolic improvements played a role by down-regulating genes and proteins related to fat production (SREBP1, ACC1, SCD1), up-regulating genes and proteins related to lipid oxidation (CPTA1, PPARα) and lipid transport decomposition in the bile acid pathway (LXRα, PPARγ, FXR, BSEP). CONCLUSION The lipid-lowering effect of gypenosides from heat-processed G. pentaphyllum is regulate lipid homeostasis and metabolism.
Collapse
Affiliation(s)
- Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
44
|
Régnier M, Carbinatti T, Parlati L, Benhamed F, Postic C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 2023; 19:336-349. [PMID: 37055547 DOI: 10.1038/s41574-023-00809-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 04/15/2023]
Abstract
Excessive sugar consumption and defective glucose sensing by hepatocytes contribute to the development of metabolic diseases including type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). Hepatic metabolism of carbohydrates into lipids is largely dependent on the carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses intracellular carbohydrates and activates many different target genes, through the activation of de novo lipogenesis (DNL). This process is crucial for the storage of energy as triglycerides in hepatocytes. Furthermore, ChREBP and its downstream targets represent promising targets for the development of therapies for the treatment of NAFLD and T2DM. Although lipogenic inhibitors (for example, inhibitors of fatty acid synthase, acetyl-CoA carboxylase or ATP citrate lyase) are currently under investigation, targeting lipogenesis remains a topic of discussion for NAFLD treatment. In this Review, we discuss mechanisms that regulate ChREBP activity in a tissue-specific manner and their respective roles in controlling DNL and beyond. We also provide in-depth discussion of the roles of ChREBP in the onset and progression of NAFLD and consider emerging targets for NAFLD therapeutics.
Collapse
Affiliation(s)
- Marion Régnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| | - Thaïs Carbinatti
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| |
Collapse
|
45
|
Anene DO, Akter Y, Groves PJ, Horadagoda N, Liu SY, Moss A, Hutchison C, O'Shea CJ. Association of feed efficiency with organ characteristics and fatty liver haemorrhagic syndrome in laying hens. Sci Rep 2023; 13:5872. [PMID: 37041185 PMCID: PMC10090132 DOI: 10.1038/s41598-023-30007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Poor feed efficiency (FE) in hens impacts body weight (BW) and may reflect suboptimal health. Fatty Liver Haemorrhagic Syndrome (FLHS) is mostly observed in laying hens and affects egg production and hen performance. The aim of this study was to investigate the relationships of FE and BW with organ characteristics, liver composition and incidence of FLHS of 150 individually housed ISA Brown hens ranked on the basis of feed conversion ratio (FCR) attained from early lay. At 45 weeks, 10 birds per FE group (HFE-High feed efficient; MFE-medium feed efficient; LFE-low feed efficient) were randomly selected and euthanized. Hen BW was positively associated with feed intake and FCR. The HFE hens had a lower abdominal fat pad and liver weight compared to LFE hens. FLHS lesion score was higher (worse) in the LFE than HFE hen group and was moderately positively associated with BW and abdominal fat pad, but strongly positively associated with liver weight. Liver pathology of LFE hens showed hepatocytes with abnormal retention of lipids causing distended cytoplasmic vacuoles compared to the HFE hens. Hens which exhibited poorer FE in early lay had heavier abdominal fat pads, heavier, fatter livers and were more prone to FLHS.
Collapse
Affiliation(s)
- Doreen Onyinye Anene
- School of Biosciences, Department of Animal Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE512RD, UK
| | - Yeasmin Akter
- School of Life and Environmental Sciences (SOLES), Faculty of Science, University of Sydney, Camden, NSW, 2570, Australia
| | - Peter John Groves
- Sydney School of Veterinary Science, Faculty of Science, Poultry Research Foundation, University of Sydney, Camden, NSW, 2570, Australia
| | - Neil Horadagoda
- Sydney School of Veterinary Science, Faculty of Science, University Veterinary Teaching Hospital Camden, The University of Sydney, Camden, NSW, 2570, Australia
| | - Sonia Yun Liu
- School of Life and Environmental Sciences (SOLES), Faculty of Science, University of Sydney, Camden, NSW, 2570, Australia
| | - Amy Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 82351, Australia
| | - Christine Hutchison
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, 2753, Australia
| | - Cormac John O'Shea
- School of Biosciences, Department of Animal Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE512RD, UK.
- Department of Bioveterinary and Microbial Sciences, Technological University of the Shannon: Midlands Midwest-Athlone, Co Westmeath, N37 HD68, Ireland.
| |
Collapse
|
46
|
Geng Y, Arroyave-Ospina JC, Buist-Homan M, Plantinga J, Olinga P, Reijngoud DJ, Van Vilsteren FGI, Blokzijl H, Kamps JAAM, Moshage H. Differential effects of oleate on vascular endothelial and liver sinusoidal endothelial cells reveal its toxic features in vitro. J Nutr Biochem 2023; 114:109255. [PMID: 36623779 DOI: 10.1016/j.jnutbio.2022.109255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g. oleic acid) protect against lipotoxicity in hepatocytes. However, the effect of oleic acid on other liver cell types, in particular liver sinusoidal endothelial cells (LSECs), is unknown. Human umbilical vein endothelial cells (HUVECs) are often used as a substitute for LSECs, however, because of the unique phenotype of LSECs, HUVECs cannot represent the same biological features as LSECs. In this study, we investigate the effects of oleate and palmitate (the sodium salts of oleic acid and palmitic acid) on primary rat LSECs in comparison to their effects on HUVECs. Oleate induces necrotic cell death in LSECs, but not in HUVECs. Necrotic cell death of LSECs can be prevented by supplementation of 2-stearoylglycerol, which promotes cellular triglyceride (TG) synthesis. Repressing TG synthesis, by knocking down DGAT1 renders HUVECs sensitive to oleate-induced necrotic death. Mechanistically, oleate causes a sharp drop of intracellular ATP level and impairs mitochondrial respiration in LSECs. The combination of oleate and palmitate reverses the toxic effect of oleate in both LSECs and HUVECs. These results indicate that oleate is toxic and its toxicity can be attenuated by stimulating TG synthesis. The toxicity of oleate is characterized by mitochondrial dysfunction and necrotic cell death. Moreover, HUVECs are not suitable as a substitute model for LSECs.
Collapse
Affiliation(s)
- Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave-Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josée Plantinga
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederike G I Van Vilsteren
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
47
|
Hasan KM, Parveen M, Pena A, Bautista F, Rivera JC, Huerta RR, Martinez E, Espinoza-Derout J, Sinha-Hikim AP, Friedman TC. Fatty Acid Excess Dysregulates CARF to Initiate the Development of Hepatic Steatosis. Cells 2023; 12:1069. [PMID: 37048142 PMCID: PMC10093423 DOI: 10.3390/cells12071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
CARF (CDKN2AIP) regulates cellular fate in response to various stresses. However, its role in metabolic stress is unknown. We found that fatty livers from mice exhibit low CARF expression. Similarly, overloaded palmitate inhibited CARF expression in HepG2 cells, suggesting that excess fat-induced stress downregulates hepatic CARF. In agreement with this, silencing and overexpressing CARF resulted in higher and lower fat accumulation in HepG2 cells, respectively. Furthermore, CARF overexpression lowered the ectopic palmitate accumulation in HepG2 cells. We were interested in understanding the role of hepatic CARF and underlying mechanisms in the development of NAFLD. Mechanistically, transcriptome analysis revealed that endoplasmic reticulum (ER) stress and oxidative stress pathway genes significantly altered in the absence of CARF. IRE1α, GRP78, and CHOP, markers of ER stress, were increased, and the treatment with TUDCA, an ER stress inhibitor, attenuated fat accumulation in CARF-deficient cells. Moreover, silencing CARF caused a reduction of GPX3 and TRXND3, leading to oxidative stress and apoptotic cell death. Intriguingly, CARF overexpression in HFD-fed mice significantly decreased hepatic steatosis. Furthermore, overexpression of CARF ameliorated the aberrant ER function and oxidative stress caused by fat accumulation. Our results further demonstrated that overexpression of CARF alleviates HFD-induced insulin resistance assessed with ITT and GTT assay. Altogether, we conclude that excess fat-induced reduction of CARF dysregulates ER functions and lipid metabolism leading to hepatic steatosis.
Collapse
Affiliation(s)
- Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Meher Parveen
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Alondra Pena
- California State University Dominguez Hills, Carson, CA 90747, USA
| | | | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Roxana Ramirez Huerta
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Erica Martinez
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Zheng J, Lee J, Byun J, Yu D, Ha JH. Partial replacement of high-fat diet with n-3 PUFAs enhanced beef tallow attenuates dyslipidemia and endoplasmic reticulum stress in tunicamycin-injected rats. Front Nutr 2023; 10:1155436. [PMID: 37006935 PMCID: PMC10060633 DOI: 10.3389/fnut.2023.1155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Metabolic syndrome (MetS) is considered as a complex, intertwined multiple risk factors that directly increase the risk of various metabolic diseases, especially cardiovascular atherosclerotic diseases and diabetes mellitus type 2. While lifestyle changes, including dietary intervention are effective in mitigating or preventing MetS, there are no specific therapies against MetS. Typical western diets comprise of high saturated fatty acid, cholesterol, and simple sugar; consequently their consumption may increase the potential pathological developmental risk of MetS. Partial replacement of dietary fatty acids with polyunsaturated fatty acids (PUFAs) is widely recommended measure to manage MetS-related disorders. Methods In the present study, we used rat model to investigate the role of n-3 PUFA enriched beef tallows (BT) on MetS and tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, by partially replacing dietary fat (lard) with equal amounts of two different BTs; regular BT or n-3 PUFA-enriched BT. The experimental rats were randomly assigned to three different dietary groups (n = 16 per group): (1) high-fat and high-cholesterol diet (HFCD); (2) HFCD partially replaced with regular BT (HFCD + BT1); (3) HFCD partially replaced with n-3 enhanced BT (w/w) (HFCD + BT2). After 10 weeks of dietary intervention, each experimental rodent was intraperitoneally injected with either phosphate-buffered saline or 1 mg/kg body weight of TM. Results HFCD + BT2 showed improved dyslipidemia before TM injection, and increased serum high-density lipoprotein cholesterol (HDL-C) levels after TM injection. BT replacement groups had significantly reduced hepatic triglyceride (TG) levels, and decreased total cholesterol (TC) and TG levels in epididymal adipose tissue (EAT). Furthermore, BT replacement remarkably attenuated TM-induced unfolded protein responses (UPRs) in liver, showing reduced ER stress, with BT2 being more effective in the EAT. Discussion Therefore, our findings suggest that partially replacing dietary fats with n-3 PUFA to lower the ratio of n-6/n-3 PUFAs is beneficial in preventing pathological features of MetS by alleviating HFCD- and/or TM-induced dyslipidemia and ER stress.
Collapse
Affiliation(s)
- Jiaxiang Zheng
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
49
|
Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages. Antioxidants (Basel) 2023; 12:antiox12030711. [PMID: 36978959 PMCID: PMC10045849 DOI: 10.3390/antiox12030711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatic fat accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD). Our aim was to determine the plasma levels of oxylipins, free polyunsaturated fatty acids (PUFA) and markers of lipid peroxidation in patients with NAFLD in progressive stages of the pathology. Ninety 40–60-year-old adults diagnosed with metabolic syndrome were distributed in without, mild, moderate or severe NAFLD stages. The free PUFA and oxylipin plasma levels were determined by the UHPLC–MS/MS system. The plasma levels of oxylipins produced by cyclooxygenases, lipoxygenases and cytochrome P450, such as prostaglandin 2α (PGF2α), lipoxinB4 and maresin-1, were higher in severe NAFLD patients, pointing to the coexistence of both inflammation and resolution processes. The plasma levels of the saturated oxylipins 16-hydroxyl-palmitate and 3-hydroxyl-myristate were also higher in the severe NAFLD patients, suggesting a dysregulation of oxidation of fatty acids. The plasma 12-hydroxyl-estearate (12HEST) levels in severe NAFLD were higher than in the other stages, indicating that the hydroxylation of saturated fatty acid produced by reactive oxygen species is more present in this severe stage of NAFLD. The plasma levels of 12HEST and PGF2α are potential candidate biomarkers for diagnosing NAFLD vs. non-NAFLD. In conclusion, the NAFLD progression can be monitored by measuring the plasma levels of free PUFA and oxylipins characterizing the different NAFLD stages or the absence of this disease in metabolic syndrome patients.
Collapse
|
50
|
Zhang Y, Cai L, Dong Z, Wu B, Gong Y, Zhang B, Wang B, Kang J, Ke T, Xu Z, Storebakken T, Shi B. Evaluation of intervention effects of dietary coenzyme Q10 supplementation on oxidized fish oil-induced stress response in largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108604. [PMID: 36758654 DOI: 10.1016/j.fsi.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The aim of this experiment was to investigate whether dietary coenzyme Q10 could alleviate stress response of Micropterus salmoides caused by oxidized fish oil. Four isonitrogenous and isoenergetic diets were formulated to contain 100% fresh fish oil (FFO), 50% fresh fish oil + 50% oxidized fish oil (BFO), 100% oxidized fish oil (OFO) and 100% oxidized fish oil + 0.1% coenzyme Q10 (QFO) and were fed to Micropterus salmoides (95 ± 0.60 g) for 70 days. Higher weight gain rate was recorded in fish fed diet supplemented with coenzyme Q10 (CoQ10). FFO and BFO significantly increased contents of fat and energy in whole-body, while protein and energy retention significantly decreased in fish fed OFO. Apparent digestibility of energy and fat showed a significant decrease trend with increased the proportion of dietary oxidized fish oil. Fish fed OFO significantly increased activities of superoxide dismutase and catalase, while CoQ10 supplementation significantly reduced activities of alanine aminotransferase and aspartate aminotransferase in plasma. Contents of n-3 polyunsaturated fatty acids and highly unsaturated fatty acids, especially EPA and DHA in liver and muscle significantly decreased in fish fed OFO. Transcriptome analysis indicated that a total of 1238, 1189 and 1773 differentially expressed genes (DEGs, |log2(fold change) | >= 1 and q-value<=0.001) were found in the three comparison groups (FFO vs. OFO, FFO vs. QFO, OFO vs. QFO), respectively. After KEGG enrichment, the main changed pathways in the two comparison groups (FFO vs. OFO, OFO vs. QFO) related to the immune system. Dietary OFO up-regulated the expression of immune-related genes and inflammatory factors, while dietary CoQ10 supplementation reduced these effects.
Collapse
Affiliation(s)
- Yuexing Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Linwei Cai
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Zhiyong Dong
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; Norwegian University of Life Science, Faculty of Bioscience, Department of Animal and Aquaculture Science, NO-1432, Ås, Norway
| | - Bowen Wu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yangyang Gong
- Zhejiang NHU Co., Ltd., Xinchang, Zhejiang, 312500, China
| | - Baoping Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Bo Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jiaming Kang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Tianhong Ke
- Application R&D Centre for Asian and Pacific, Bühler Group, Liyang, Jiangsu, 213300, China
| | - Zhijin Xu
- Zhoushan Fisheries Research Institute of Zhejiang, Zhoushan, Zhejiang, 316000, China
| | - Trond Storebakken
- Norwegian University of Life Science, Faculty of Bioscience, Department of Animal and Aquaculture Science, NO-1432, Ås, Norway
| | - Bo Shi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|