1
|
Bian T, Jiang Y, Cao J, Wu W, Zhang L, Yang Y. Fabrication of piezoelectric/conductive composite nerve conduits for peripheral nerve regeneration. Colloids Surf B Biointerfaces 2025; 250:114544. [PMID: 39983450 DOI: 10.1016/j.colsurfb.2025.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Due to the complex regenerative microenvironment after peripheral nerve injury (PNI), developing a piezoelectric/conductive composite nerve guidance conduit (NGC) for repairing nerve defects remains a great challenge. The conductivity and piezoelectricity have been separately demonstrated to enhance the repair of PNI, yet there is a paucity of studies investigating the synergistic effects of both functions. Herein, a piezoelectric/conductive nerve conduit composed of chitosan (CS), reduced graphene oxide (rGO), and poly-L-lactic acid (PLLA) was fabricated, which provided the conductivity, mechanical support and piezoelectricity. Tensile strength, conductivity, antibacterial activity, and cell viability of piezoelectric/conductive composite NGCs were evaluated. Piezoelectric/conductive composite NGCs exhibited electrical signal output capability and conductive performance. Moreover, rGO significantly promoted cell proliferation and adhesion. Overall, the piezoelectric/conductive CS/rGO/PLLA nerve conduit shows great promise as a potential treatment of PNI.
Collapse
Affiliation(s)
- Taotao Bian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jie Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Wenpin Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
2
|
Wang J, Huang L, Guo T, Liu Z, Xu H, Yang H, Liu L, Feng G, Zhang L. A self-powered sandwich-structured scaffold with dual-electroactive properties to regenerate damaged intervertebral discs after discectomy. J Mater Chem B 2025. [PMID: 40237326 DOI: 10.1039/d5tb00100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Discectomy is the most commonly used surgery in treating herniation-induced nerve compression, but it often destroys the structural integrity and leaves a defect in the intervertebral disc (IVD), leading to re-herniation risk. Considering that electric signals play a crucial role in tissue regeneration, a dual-electroactive scaffold was fabricated to promote the repair effect of the discectomy-left IVD defect. An electroconductive scaffold (G10) was 3D-printed firstly by doping graphene to form electro-osmotic networks in a polycaprolactone (PCL) matrix, then tetragonal barium titanate (T-BT) doped polyvinylidene fluoride (PVDF) fibrous membranes (B5) with piezoelectricity were electrospun on both the upper and lower surfaces of G10 to obtain a sandwich-structured scaffold (G10B5) with both piezoelectric and electroconductive activities. The in vitro experimental results confirmed that the dual-electroactive G10B5 scaffold could well mimic the electroconductive properties of natural IVDs and harvest ambient mechanical energy to produce electrical stimuli, thus recruiting surrounding stem cells. Following implantation in defective IVDs of rats, the dual-electroactive scaffolds could effectively decrease the loss of cells and extracellular matrix (ECM) and maintain the composite cartilage structure of IVDs. The dual-electroactive scaffold with a sandwich structure is proposed here to provide a novel strategy for treating the IVD defects after discectomy and broaden the application of electroactive biomaterials in tissue regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Leizhen Huang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Tao Guo
- Department of Orthopedic Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Zheng Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Huilun Xu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Hao Yang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Limin Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Ganjun Feng
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Li Zhang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Han Q, Yu J, Gao Z, Li S, Wang Z, Wu J, Huang F. Polypyrrole-modified gelatin-based hydrogel: A dressing for intestinal perforation treatment with enhanced wound healing and anti-adhesion properties. Int J Biol Macromol 2025; 309:142738. [PMID: 40180106 DOI: 10.1016/j.ijbiomac.2025.142738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Intestinal perforation is a serious medical emergency, and traditional surgery often causes adhesion and other complications. Innovative hydrogels improve postoperative care and rehabilitation with their anti-adhesion, antibacterial, and hemostatic properties. We have developed an advanced anti-adhesion hydrogel, AA-A30, composed of polypyrrole-modified gelatin (PPy-GelMA), carboxymethyl chitosan (CMCS), and NHS-functionalized polyethylene glycol (PEG-NHS). This hydrogel is specifically tailored for intestinal perforations. Upon hydrolysis, PEG-NHS forms a protective barrier that effectively prevents adhesion to surrounding normal tissues. Furthermore, the integration of PPy-GelMA significantly extends the degradation duration of the hydrogel, from 24 to 48 h. In a mouse model of intestinal perforation, the AA-A30 hydrogel demonstrated remarkable efficacy in inhibiting inflammation and preventing tissue adhesion by modulating the expression of both inflammatory and tissue adhesion-related factors, such as IL-1β, TNF-α, and the ratio of tPA to PAI-1. These findings underscore the considerable potential of AA-A30 for the therapeutic management of intestinal perforations.
Collapse
Affiliation(s)
- Qingyue Han
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China
| | - Jingrong Yu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China
| | - Zhengkun Gao
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China
| | - Sitong Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China
| | - Zi Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China
| | - Fengjie Huang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Han Y, Sun LH, Cai B, Xia M, Zhu CQ, Li DS. 3D-printed Ti 3C 2/polycaprolactone composite scaffold with a DOPA-SDF1 surface modified for bone repair. Colloids Surf B Biointerfaces 2025; 248:114470. [PMID: 39733724 DOI: 10.1016/j.colsurfb.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
Large bone defects are a major clinical challenge in bone reconstructive surgery. 3D printing is a powerful technology that enables the manufacture of custom tissue-engineered scaffolds for bone regeneration. Electrical stimulation (ES) is a treatment method for external bone defects that compensates for damaged internal electrical signals and stimulates cell proliferation and differentiation. In this study, we propose a simple, reliable, and versatile strategy to prepare multifunctional 3D printed scaffold combined with ES for bone defect therapy. Firstly, scaffolds composed of polycaprolactone (PCL) and Ti3C2 were prepared by 3D printing technology, and then a stromal cell derived factor 1 (SDF1) containing DOPA tag was loaded onto the scaffold surface. Ti3C2 was selected as the electrode component because of its excellent electrical conductivity. The selection of DOPA-modified SDF-1(DOPA-SDF1) can improve the material binding ability and exert long-term stem cell recruitment function. The results show that prepared 3D printed scaffold (DOPA-SDF1@PCL#Ti3C2) has good hydrophilicity, electrical conductivity, antibacterial property, biocompatibility and stem cell recruitment ability. Furthermore, the expression of osteogenic specific genes in scaffold surface cells was significantly increased when pulse ES (PES) treatment was applied. The results of tibial plateau defect repair experiment showed that DOPA-SDF1@PCL#Ti3C2 scaffold can significantly promote the formation of new bone and collagen fibres. When the DOPA-SDF1@PCL#Ti3C2 scaffold was used in combination with PES therapy, the bone defect regeneration rate was further improved. This kind of scaffold could provide a new strategy for promoting the healing of large bone injuries and could expand the application of adjuvant therapy such as PES.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Hui Sun
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Cai
- Department of Diagnostic Ultrasound, People's Liberation Army 964 Hospital, Changchun 130028, China
| | - Ming Xia
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun-Quan Zhu
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Dong-Song Li
- Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Li R, Wang J, Lin Q, Yin Z, Zhou F, Chen X, Tan H, Su J. Mechano-Responsive Biomaterials for Bone Organoid Construction. Adv Healthc Mater 2025; 14:e2404345. [PMID: 39740101 DOI: 10.1002/adhm.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Mechanical force is essential for bone development, bone homeostasis, and bone fracture healing. In the past few decades, various biomaterials have been developed to provide mechanical signals that mimic the natural bone microenvironment, thereby promoting bone regeneration. Bone organoids, emerging as a novel research approach, are 3D micro-bone tissues that possess the ability to self-renew and self-organize, exhibiting biomimetic spatial characteristics. Incorporating mechano-responsive biomaterials in the construction of bone organoids presents a promising avenue for simulating the mechanical bone microenvironment. Therefore, this review commences by elucidating the impact of mechanical force on bone health, encompassing both cellular interactions and alterations in bone structure. Furthermore, the most recent applications of mechano-responsive biomaterials within the realm of bone tissue engineering are highlighted. Three different types of mechano-responsive biomaterials are introduced with a focus on their responsive mechanisms, construction strategies, and efficacy in facilitating bone regeneration. Based on a comprehensive overview, the prospective utilization and future challenges of mechano-responsive biomaterials in the construction of bone organoids are discussed. As bone organoid technology advances, these biomaterials are poised to become powerful tools in bone regeneration.
Collapse
Affiliation(s)
- Ruiyang Li
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hongbo Tan
- Department of Orthopedics, The 920th Hospital of Joint Logistics Support Force, Yunnan, 650020, P. R. China
| | - Jiacan Su
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Campione P, Rizzo MG, Bauso LV, Ielo I, Messina GML, Calabrese G. Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film. J Funct Biomater 2025; 16:10. [PMID: 39852566 PMCID: PMC11765816 DOI: 10.3390/jfb16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine.
Collapse
Affiliation(s)
- Paola Campione
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Grazia Maria Lucia Messina
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| |
Collapse
|
7
|
Tripathi P, Dubey AK. Role of Piezoelectricity in Disease Diagnosis and Treatment: A Review. ACS Biomater Sci Eng 2024; 10:6061-6077. [PMID: 39353103 DOI: 10.1021/acsbiomaterials.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Because of their unique electromechanical coupling response, piezoelectric smart biomaterials demonstrated distinctive capability toward effective, efficient, and quick diagnosis and treatment of a wide range of diseases. Such materials have potentiality to be utilized as wireless therapeutic methods with ultrasonic stimulation, which can be used as self-powered biomedical devices. An emerging advancement in the realm of personalized healthcare involves the utilization of piezoelectric biosensors for a range of therapeutic diagnosis such as diverse physiological signals in the human body, viruses, pathogens, and diseases like neurodegenerative ones, cancer, etc. The combination of piezoelectric nanoparticles with ultrasound has been established as a promising approach in sonodynamic therapy and piezocatalytic therapeutics and provides appealing alternatives for noninvasive treatments for cancer, chronic wounds, neurological diseases, etc. Innovations in implantable medical devices (IMDs), such as implantable piezoelectric energy generator (iPEG), offer significant advantages in improving physiological functioning and ability to power a cardiac pacemaker and restore the heart function. This comprehensive review critically evaluates the role of piezoelectricity in disease diagnosis and treatment, highlighting the implication of piezoelectric smart biomaterials for biomedical devices. It also discusses the potential of piezoelectric materials in healthcare monitoring, tissue engineering, and other medical applications while emphasizing future trends and challenges in the field.
Collapse
Affiliation(s)
- Pratishtha Tripathi
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
8
|
Zaszczyńska A, Zabielski K, Gradys A, Kowalczyk T, Sajkiewicz P. Piezoelectric Scaffolds as Smart Materials for Bone Tissue Engineering. Polymers (Basel) 2024; 16:2797. [PMID: 39408507 PMCID: PMC11479154 DOI: 10.3390/polym16192797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Bone repair and regeneration require physiological cues, including mechanical, electrical, and biochemical activity. Many biomaterials have been investigated as bioactive scaffolds with excellent electrical properties. Amongst biomaterials, piezoelectric materials (PMs) are gaining attention in biomedicine, power harvesting, biomedical devices, and structural health monitoring. PMs have unique properties, such as the ability to affect physiological movements and deliver electrical stimuli to damaged bone or cells without an external power source. The crucial bone property is its piezoelectricity. Bones can generate electrical charges and potential in response to mechanical stimuli, as they influence bone growth and regeneration. Piezoelectric materials respond to human microenvironment stimuli and are an important factor in bone regeneration and repair. This manuscript is an overview of the fundamentals of the materials generating the piezoelectric effect and their influence on bone repair and regeneration. This paper focuses on the state of the art of piezoelectric materials, such as polymers, ceramics, and composites, and their application in bone tissue engineering. We present important information from the point of view of bone tissue engineering. We highlight promising upcoming approaches and new generations of piezoelectric materials.
Collapse
Affiliation(s)
| | | | | | - Tomasz Kowalczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (A.Z.); (K.Z.); (A.G.); (P.S.)
| | | |
Collapse
|
9
|
Mokhtari F, Nam HY, Ruhparwar A, Raad R, Razal JM, Varley RJ, Wang CH, Foroughi J. Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices. J Mater Chem B 2024; 12:9727-9739. [PMID: 39224031 DOI: 10.1039/d4tb01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-performance biocompatible composite materials are gaining attention for their potential in various fields such as neural tissue scaffolds, bio-implantable devices, energy harvesting, and biomechanical sensors. However, these devices currently face limitations in miniaturization, finite battery lifetimes, fabrication complexity, and rigidity. Hence, there is an urgent need for smart and self-powering soft devices that are easily deployable under physiological conditions. Herein, we present a straightforward and efficient fabrication technique for creating flexible/stretchable fiber-based piezoelectric structures using a hybrid nanocomposite of polyvinylidene fluoride (PVDF), reduced graphene oxide (rGO), and barium-titanium oxide (BT). These nanocomposite fibers are capable of converting biomechanical stimuli into electrical signals across various structural designs (knit, braid, woven, and coil). It was found that a stretchable configuration with higher output voltage (4 V) and a power density (87 μW cm-3) was obtained using nanocomposite coiled fibers or knitted fibers, which are ideal candidates for real-time monitoring of physiological signals. These structures are being proposed for practical transition to the development of the next generation of fiber-based biomedical devices. The cytotoxicity and cytocompatibility of nanocomposite fibers were tested on human mesenchymal stromal cells. The obtained results suggest that the developed fibers can be utilized for smart scaffolds and bio-implantable devices.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Hui Yin Nam
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Arjang Ruhparwar
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
| | - Raad Raad
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Javad Foroughi
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Sauvage E, Matta J, Dang CT, Fan J, Cruzado G, Cicoira F, Merle G. Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels. J Biomed Mater Res A 2024; 112:1817-1826. [PMID: 38689450 DOI: 10.1002/jbm.a.37729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Engineering cardiac implants for treating myocardial infarction (MI) has advanced, but challenges persist in mimicking the structural properties and variability of cardiac tissues using traditional bioconstructs and conventional engineering methods. This study introduces a synthetic patch with a bioactive surface designed to swiftly restore functionality to the damaged myocardium. The patch combines a composite, soft, and conductive hydrogel-based on (3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA). This cardiac patch exhibits a reasonably high electrical conductivity (40 S/cm) and a stretchability up to 50% of its original length. Our findings reveal its resilience to 10% cyclic stretching at 1 Hz with no loss of conductivity over time. To mediate a strong cell-scaffold adhesion, we biofunctionalize the hydrogel with a N-cadherin mimic peptide, providing the cardiac patch with a bioactive surface. This modification promote increased adherence and proliferation of cardiac fibroblasts (CFbs) while effectively mitigating the formation of bacterial biofilm, particularly against Staphylococcus aureus, a common pathogen responsible for surgical site infections (SSIs). Our study demonstrates the successful development of a structurally validated cardiac patch possessing the desired mechanical, electrical, and biofunctional attributes for effective cardiac recovery. Consequently, this research holds significant promise in alleviating the burden imposed by myocardial infarctions.
Collapse
Affiliation(s)
- Erwan Sauvage
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Justin Matta
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cat-Thy Dang
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Graziele Cruzado
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Géraldine Merle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
11
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
12
|
Ye J, Pan X, Wen Z, Wu T, Jin Y, Ji S, Zhang X, Ma Y, Liu W, Teng C, Tang L, Wei W. Injectable conductive hydrogel remodeling microenvironment and mimicking neuroelectric signal transmission after spinal cord injury. J Colloid Interface Sci 2024; 668:646-657. [PMID: 38696992 DOI: 10.1016/j.jcis.2024.04.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Severe spinal cord injury (SCI) leads to dysregulated neuroinflammation and cell apoptosis, resulting in axonal die-back and the loss of neuroelectric signal transmission. While biocompatible hydrogels are commonly used in SCI repair, they lack the capacity to support neuroelectric transmission. To overcome this limitation, we developed an injectable silk fibroin/ionic liquid (SFMA@IL) conductive hydrogel to assist neuroelectric signal transmission after SCI in this study. The hydrogel can form rapidly in situ under ultraviolet (UV) light. The mechanical supporting and neuro-regenerating properties are provided by silk fibroin (SF), while the conductive capability is provided by the designed ionic liquid (IL). SFMA@IL showed attractive features for SCI repair, such as anti-swelling, conductivity, and injectability. In vivo, SFMA@IL hydrogel used in rats with complete transection injuries was found to remodel the microenvironment, reduce inflammation, and facilitate neuro-fiber outgrowth. The hydrogel also led to a notable decrease in cell apoptosis and the achievement of scar-free wound healing, which saved 45.6 ± 10.8 % of spinal cord tissue in SFMA@IL grafting. Electrophysiological studies in rats with complete transection SCI confirmed SFMA@IL's ability to support sensory neuroelectric transmission, providing strong evidence for its signal transmission function. These findings provide new insights for the development of effective SCI treatments.
Collapse
Affiliation(s)
- Jingjia Ye
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xihao Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang, China 310000
| | - Zhengfa Wen
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Tianxin Wu
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Yuting Jin
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xianzhu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanzhu Ma
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Chong Teng
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| | - Longguang Tang
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| | - Wei Wei
- Center for Regenerative Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
13
|
Dixon D, Landree EN, Gomillion CT. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2024; 7:4366-4378. [PMID: 38905196 PMCID: PMC11253088 DOI: 10.1021/acsabm.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Bone is remodeled through a dynamic process facilitated by biophysical cues that support cellular signaling. In healthy bone, signaling pathways are regulated by cells and the extracellular matrix and transmitted via electrical synapses. To this end, combining electrical stimulation (ES) with conductive scaffolding is a promising approach for repairing damaged bone tissue. Therefore, "smart" biomaterials that can provide multifunctionality and facilitate the transfer of electrical cues directly to cells have become increasingly more studied in bone tissue engineering. Herein, 3D-printed electrically conductive composite scaffolds consisting of demineralized bone matrix (DBM) and polycaprolactone (PCL), in combination with ES, for bone regeneration were evaluated for the first time. The conductive composite scaffolds were fabricated and characterized by evaluating mechanical, surface, and electrical properties. The DBM/PCL composites exhibited a higher compressive modulus (107.2 MPa) than that of pristine PCL (62.02 MPa), as well as improved surface properties (i.e., roughness). Scaffold electrical properties were also tuned, with sheet resistance values as low as 4.77 × 105 Ω/sq for our experimental coating of the highest dilution (i.e., 20%). Furthermore, the biocompatibility and osteogenic potential of the conductive composite scaffolds were tested using human mesenchymal stromal cells (hMSCs) both with and without exogenous ES (100 mV/mm for 5 min/day four times/week). In conjunction with ES, the osteogenic differentiation of hMSCs grown on conductive DBM/PCL composite scaffolds was significantly enhanced when compared to those cultured on PCL-only and nonconductive DBM/PCL control scaffolds, as determined through xylenol orange mineral staining and osteogenic protein analysis. Overall, these promising results suggest the potential of this approach for the development of biomimetic hybrid scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Damion
T. Dixon
- School
of Environmental, Civil, Agricultural and Mechanical Engineering,
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Erika N. Landree
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Cheryl T. Gomillion
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Jin Z, Wei S, Jin W, Lu B, Xu Y. Preparation and Structure-Property Relationship Study of Piezoelectric-Conductive Composite Polymer Nanofiber Materials for Bone Tissue Engineering. Polymers (Basel) 2024; 16:1952. [PMID: 39000807 PMCID: PMC11244484 DOI: 10.3390/polym16131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
This study aimed to develop Janus-, cross-network-, and coaxial-structured piezoelectric-conductive polymer nanofibers through electrospinning to mimic the piezoelectricity of bone and facilitate the conduction of electrical signals in bone tissue repair. These nanofibers were constructed using the piezoelectric polymer polyvinylidene fluoride, and the conductive fillers reduced graphene oxide and polypyrrole. The influence of structural features on the electroactivity of the fibers was also explored. The morphology and components of the various structural samples were characterized using SEM, TEM, and FTIR. The electroactivity of the materials was assessed with a quasi-static d33 meter and the four-probe method. The results revealed that the piezoelectric-conductive phases were successfully integrated. The Janus-structured nanofibers demonstrated the best electroactivity, with a piezoelectric constant d33 of 24.5 pC/N and conductivity of 6.78 × 10-2 S/m. The tensile tests and MIP measurements showed that all samples had porosity levels exceeding 70%. The tensile strength of the Janus and cross-network structures exceeded that of the periosteum (3-4 MPa), with average pore sizes of 1194.36 and 2264.46 nm, respectively. These properties indicated good mechanical performance, allowing material support while preventing fibroblast invasion. The CCK-8 and ALP tests indicated that the Janus-structured samples were biocompatible and significantly promoted the proliferation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Zhengyang Jin
- School of Mechanical Engineering, Xinjiang University, Urumchi 830017, China; (Z.J.)
| | - Suiyan Wei
- The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830054, China
| | - Wenyang Jin
- School of Mechanical Engineering, Xinjiang University, Urumchi 830017, China; (Z.J.)
| | - Bingheng Lu
- School of Mechanical Engineering, Xinjiang University, Urumchi 830017, China; (Z.J.)
- Mirco- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Innovation Institute of Additive Manufacturing, Xi’an 710000, China
| | - Yan Xu
- School of Mechanical Engineering, Xinjiang University, Urumchi 830017, China; (Z.J.)
| |
Collapse
|
15
|
Zhang Y, Chen S, Huang C, Dai Y, Zhu S, Wang R, Gou X. Dynamic regulation of stem cell adhesion and differentiation on degradable piezoelectric poly (L-lactic acid) (PLLA) nanofibers. Biomed Eng Lett 2024; 14:775-784. [PMID: 38946806 PMCID: PMC11208363 DOI: 10.1007/s13534-024-00374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
Degradable piezoelectric materials possess significant potential for application in the realm of bone tissue regeneration. However, the correlation between cell regulation mechanisms and the dynamic variation caused by material degradation has not been explained, hindering the optimization of material design and its in vivo application. Herein, piezoelectric poly (L-lactic acid) (PLLA) nanofibers with different molecular weights (MW) were fabricated, and the effects of their piezoelectric properties, structural morphology, and material products during degradation on the adhesion and osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Our results demonstrated that cell adhesion-mediated piezoelectric stimulation could significantly enhance cell spreading, cell orientation, and upregulate the expression of calmodulin, which further triggers downstream signaling cascade to regulate osteogenic differentiation markers of type I collagen and runt-related transcription factor 2. Additionally, during the degradation of the nanofibers, the piezoelectric properties of PLLA weakened, the fibrous structure gradually diminished, and pH levels in the vicinity decreased, which resulting in reduced osteogenic differentiation capability of MSCs. However, nanofibers with higher MW (280 kDa) have the ability to maintain the fibrous morphology and piezoelectricity for a longer time, which can regulate the osteogenic differentiation of stem cells for more than 4 weeks. These findings have provide a new insight to correlate cell behavior with MW and the biodegradability of piezopolymers, which revealed an active method for cell regulation through material optimization for bone tissue engineering in near future.
Collapse
Affiliation(s)
- Yimeng Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Chenjun Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
| | - Yujie Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
| | - Shaomei Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
| | - Ran Wang
- BGI Research, Shenzhen, 518083 China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
| |
Collapse
|
16
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
17
|
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review. Polymers (Basel) 2024; 16:1533. [PMID: 38891481 PMCID: PMC11175044 DOI: 10.3390/polym16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, researchers have increasingly directed their focus toward the biomedical field, driven by the goal of engineering polymer systems that possess a unique combination of both electrical conductivity and biodegradability. This convergence of properties holds significant promise, as it addresses a fundamental requirement for biomedical applications: compatibility with biological environments. These polymer systems are viewed as auspicious biomaterials, precisely because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of advantageous characteristics. Their exceptional processability enables facile fabrication into various forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover, their low production costs make them economically viable options for large-scale applications. Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities for applications that demand such functionality. As the focus of this review, a survey into the use of biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial applications is conducted.
Collapse
Affiliation(s)
- Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Gayathri Vadivel
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Balan Ramasamy
- Department of Physics, Government Arts and Science College, Mettupalayam 641104, Tamil Nadu, India
| | - Gowtham Murugesan
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Tamer A. Sebaey
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Sharkia, Egypt
| |
Collapse
|
18
|
Ren D, Zhang Y, Du B, Wang L, Gong M, Zhu W. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing. Int J Nanomedicine 2024; 19:4495-4513. [PMID: 38799696 PMCID: PMC11123069 DOI: 10.2147/ijn.s460700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Du
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lina Wang
- Department of Pediatric Respiration, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Meiheng Gong
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
19
|
Xu Y, Xu C, Song H, Feng X, Ma L, Zhang X, Li G, Mu C, Tan L, Zhang Z, Liu Z, Luo Z, Yang C. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. J Nanobiotechnology 2024; 22:250. [PMID: 38750519 PMCID: PMC11094931 DOI: 10.1186/s12951-024-02430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Huan Song
- Otorhinolaryngology Head and Neck Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, 430033, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengdong Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Clinical Medicine, Department of Orthopedics, Chengdu Medical College, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
20
|
Pinho TS, Cibrão JR, Silva D, Barata-Antunes S, Campos J, Afonso JL, Sampaio-Marques B, Ribeiro C, Macedo AS, Martins P, Cunha CB, Lanceros-Mendez S, Salgado AJ. In vitro neuronal and glial response to magnetically stimulated piezoelectric poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/cobalt ferrite (CFO) microspheres. BIOMATERIALS ADVANCES 2024; 159:213798. [PMID: 38364446 DOI: 10.1016/j.bioadv.2024.213798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Polymer biomaterials are being considered for tissue regeneration due to the possibility of resembling different extracellular matrix characteristics. However, most current scaffolds cannot respond to physical-chemical modifications of the cell microenvironment. Stimuli-responsive materials, such as electroactive smart polymers, are increasingly gaining attention once they can produce electrical potentials without external power supplies. The presence of piezoelectricity in human tissues like cartilage and bone highlights the importance of electrical stimulation in physiological conditions. Although poly(vinylidene fluoride) (PVDF) is one of the piezoelectric polymers with the highest piezoelectric response, it is not biodegradable. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a promising copolymer of poly(hydroxybutyrate) (PHB) for tissue engineering and regeneration applications. It offers biodegradability, piezoelectric properties, biocompatibility, and bioactivity, making it a superior option to PVDF for biomedical purposes requiring biodegradability. Magnetoelectric polymer composites can be made by combining magnetostrictive particles and piezoelectric polymers to further tune their properties for tissue regeneration. These composites convert magnetic stimuli into electrical stimuli, generating local electrical potentials for various applications. Cobalt ferrites (CFO) and piezoelectric polymers have been combined and processed into different morphologies, maintaining biocompatibility for tissue engineering. The present work studied how PHBV/CFO microspheres affected neural and glial response in spinal cord cultures. It is expected that the electrical signals generated by these microspheres due to their magnetoelectric nature could aid in tissue regeneration and repair. PHBV/CFO microspheres were not cytotoxic and were able to impact neurite outgrowth and promote neuronal differentiation. Furthermore, PHBV/CFO microspheres led to microglia activation and induced the release of several bioactive molecules. Importantly, magnetically stimulated microspheres ameliorated cell viability after an in vitro ROS-induced lesion of spinal cord cultures, which suggests a beneficial effect on tissue regeneration and repair.
Collapse
Affiliation(s)
- Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Jorge Ribeiro Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - João L Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - André S Macedo
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Martins
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Cristiana B Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal.
| |
Collapse
|
21
|
Muraev AA, Manukyan GG, Salekh KM, Bonartsev AP, Volkov AV. Magnetic field application in bone tissue regeneration: issue current status and prospects for method development. RUDN JOURNAL OF MEDICINE 2024; 28:9-22. [DOI: 10.22363/2313-0245-2024-28-1-9-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Relevance. Magnets have long been used to treat various diseases, especially in inflammatory processes. According to existing historical data, magnetotherapy was already used in ancient times by the Chinese, Egyptians and Greeks. Different magnetic field strengths affect cells in different ways, with medium-strength magnetic fields being the most widely used. The review presents a brief history and current state of the issue of using a magnetic field in bone tissue regeneration. Modern knowledge about the mechanisms of physiological and reparative regeneration, restoration of bone tissue is clarified, and modern areas of bone tissue engineering are considered, taking into account the characteristics of microcirculation and the effect of a magnetic field on the physiology of bone tissue and reparative regeneration. One of the key findings of the review is that the magnetic field improves bone tissue repair by influencing the metabolic behavior of cells. Studies show that magnetotherapy promotes the activation of cellular processes, accelerates the formation of new bone tissue and improves its quality. It is also noted that the magnetic field has a positive effect on microcirculation, improving the blood supply to tissues and facilitating a better supply of nutrients to the site of injury. This contributes to faster wound healing and early rehabilitation of patients. Conclusion. Magnetotherapy is one of the effective physical and rehabilitation methods of treatment that will become increasingly important in modern medicine. However, further research is needed to better understand the mechanisms of action of a magnetic field on bone tissue and to determine the optimal parameters for its application.
Collapse
|
22
|
Xie C, Xu J, Wang X, Jiang S, Zheng Y, Liu Z, Jia Z, Jia Z, Lu X. Smart Hydrogels for Tissue Regeneration. Macromol Biosci 2024; 24:e2300339. [PMID: 37848181 DOI: 10.1002/mabi.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Indexed: 10/19/2023]
Abstract
The rapid growth in the portion of the aging population has led to a consequent increase in demand for biomedical hydrogels, together with an assortment of challenges that need to be overcome in this field. Smart hydrogels can autonomously sense and respond to the physiological/pathological changes of the tissue microenvironment and continuously adapt the response according to the dynamic spatiotemporal shifts in conditions. This along with other favorable properties, make smart hydrogels excellent materials for employing toward improving the precision of treatment for age-related diseases. The key factor during the smart hydrogel design is on accurately identifying the characteristics of natural tissues and faithfully replicating the composition, structure, and biological functions of these tissues at the molecular level. Such hydrogels can accurately sense distinct physiological and external factors such as temperature and biologically active molecules, so they may in turn actively and promptly adjust their response, by regulating their own biological effects, thereby promoting damaged tissue repair. This review summarizes the design strategies employed in the creation of smart hydrogels, their response mechanisms, as well as their applications in field of tissue engineering; and concludes by briefly discussing the relevant challenges and future prospects.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jie Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xinyi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shengxi Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yujia Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zexin Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhuo Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhanrong Jia
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
23
|
Nabipour M, Mellati A, Abasi M, Barough SE, Karimizade A, Banikarimi P, Hasanzadeh E. Preparation of bilayer tissue-engineered polyurethane/poly-L-lactic acid nerve conduits and their in vitro characterization for use in peripheral nerve regeneration. J Biol Eng 2024; 18:16. [PMID: 38388447 PMCID: PMC10885435 DOI: 10.1186/s13036-024-00412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Due to loss of peripheral nerve structure and/or function resulting from trauma, accidents, and other causes, peripheral nerve injuries continue to be a major clinical problem. These injuries can cause partial or total loss of sensory, motor, and autonomic capabilities as well as neuropathic pain. PNI affects between 13 and 23 out of every 100,000 people annually in developed countries. Regeneration of damaged nerves and restoration of function after peripheral nerve injury remain significant therapeutic challenges. Although autologous nerve graft transplantation is a viable therapy option in several clinical conditions, donor site morbidity and a lack of donor tissue often hinder full functional recovery. Biomimetic conduits used in tissue engineering to encourage and direct peripheral nerve regeneration by providing a suitable microenvironment for nerve ingrowth are only one example of the cutting-edge methods made possible by this field. Many innate extracellular matrix (ECM) structures of different tissues can be successfully mimicked by nanofibrous scaffolds. Nanofibrous scaffolds can closely mimic the surface structure and morphology of native ECMs of many tissues. METHODS In this study, we have produced bilayer nanofibrous nerve conduit based on poly-lactic acid/polyurethane/multiwall carbon nanotube (PLA/PU/MWCNT), for application as composite scaffolds for static nerve tissue engineering. The contact angle was indicated to show the hydrophilicity properties of electrospun nanofibers. The SEM images were analyzed to determine the fiber's diameters, scaffold morphology, and endometrial stem cell adhesion. Moreover, MTT assay and DAPI staining were used to show the viability and proliferation of endometrial stem cells. RESULTS The constructed bilayer PLA/PU/MWCNT scaffolds demonstrated the capacity to support cell attachment, and the vitality of samples was assessed using SEM, MTT assay, and DAPI staining technique. CONCLUSIONS According to an in vitro study, electrospun bilayer PLA/PU/MWCNT scaffolds can encourage the adhesion and proliferation of human endometrial stem cells (hEnSCs) and create the ideal environment for increasing cell survival.
Collapse
Affiliation(s)
- Mehran Nabipour
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Somayeh Ebrahimi Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayoob Karimizade
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parnian Banikarimi
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
24
|
Fırlak Demirkan M, Öztürk D, Çifçibaşı ZS, Ertan F, Hardy JG, Nurşeval Oyunlu A, Darıcı H. Controlled Sr(ii) ion release from in situ crosslinking electroactive hydrogels with potential for the treatment of infections. RSC Adv 2024; 14:4324-4334. [PMID: 38304567 PMCID: PMC10828636 DOI: 10.1039/d3ra07061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.
Collapse
Affiliation(s)
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | - Fatma Ertan
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | | | - Hakan Darıcı
- HD Bioink Biotechnology Corp. İstanbul Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University Istanbul Turkey
- Faculty of Medicine, Dept. of Histology & Embryology, Istinye University Istanbul Turkey
- Stem Cell, and Tissue Engineering R&D Center, Istinye University Istanbul Turkey
| |
Collapse
|
25
|
Lu J, Wang M, Meng Y, An W, Wang X, Sun G, Wang H, Liu W. Current advances in biomaterials for inner ear cell regeneration. Front Neurosci 2024; 17:1334162. [PMID: 38282621 PMCID: PMC10811200 DOI: 10.3389/fnins.2023.1334162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Inner ear cell regeneration from stem/progenitor cells provides potential therapeutic strategies for the restoration of sensorineural hearing loss (SNHL), however, the efficiency of regeneration is low and the functions of differentiated cells are not yet mature. Biomaterials have been used in inner ear cell regeneration to construct a more physiologically relevant 3D culture system which mimics the stem cell microenvironment and facilitates cellular interactions. Currently, these biomaterials include hydrogel, conductive materials, magneto-responsive materials, photo-responsive materials, etc. We analyzed the characteristics and described the advantages and limitations of these materials. Furthermore, we reviewed the mechanisms by which biomaterials with different physicochemical properties act on the inner ear cell regeneration and depicted the current status of the material selection based on their characteristics to achieve the reconstruction of the auditory circuits. The application of biomaterials in inner ear cell regeneration offers promising opportunities for the reconstruction of the auditory circuits and the restoration of hearing, yet biomaterials should be strategically explored and combined according to the obstacles to be solved in the inner ear cell regeneration research.
Collapse
Affiliation(s)
- Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Gaoying Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
26
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
27
|
Yadav D, Sharma PK, Malviya R, Mishra PS, Surendra AV, Rao GSNK, Rani BR. Stimuli-responsive Biomaterials for Tissue Engineering Applications. Curr Pharm Biotechnol 2024; 25:981-999. [PMID: 37594093 DOI: 10.2174/1389201024666230818121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transformation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | | | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University, Mumbai, India
| | - Budha Roja Rani
- Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, A.P., India
| |
Collapse
|
28
|
Voinova VV, Zhuikov VA, Zhuikova YV, Sorokina AA, Makhina TK, Bonartseva GA, Parshina EY, Hossain MA, Shaitan KV, Pryadko AS, Chernozem RV, Mukhortova YR, Shlapakova LE, Surmenev RA, Surmeneva MA, Bonartsev AP. Adhesion of Escherichia coli and Lactobacillus fermentum to Films and Electrospun Fibrous Scaffolds from Composites of Poly(3-hydroxybutyrate) with Magnetic Nanoparticles in a Low-Frequency Magnetic Field. Int J Mol Sci 2023; 25:208. [PMID: 38203380 PMCID: PMC10778586 DOI: 10.3390/ijms25010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.
Collapse
Affiliation(s)
- Vera V. Voinova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Yulia V. Zhuikova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Anastasia A. Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Tatiana K. Makhina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Garina A. Bonartseva
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Evgeniia Yu. Parshina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Muhammad Asif Hossain
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Artyom S. Pryadko
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman V. Chernozem
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Yulia R. Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Lada E. Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Anton P. Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| |
Collapse
|
29
|
Xu Y, Liu J, Zhang P, Ao X, Li Y, Tian Y, Qiu X, Guo J, Hu X. Zwitterionic Conductive Hydrogel-Based Nerve Guidance Conduit Promotes Peripheral Nerve Regeneration in Rats. ACS Biomater Sci Eng 2023; 9:6821-6834. [PMID: 38011305 DOI: 10.1021/acsbiomaterials.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent years, conductive biomaterials have been widely used to enhance peripheral nerve regeneration. However, most biomaterials use electronic conductors to increase the conductivity of materials. As information carriers, electronic conductors always transmit discontinuous electrical signals, while biological systems essentially transmit continuous signals through ions. Herein, an ion-based conductive hydrogel was fabricated by simple copolymerization of the zwitterionic monomer sulfobetin methacrylate and hydroxyethyl methacrylate. Benefiting from the excellent mechanical stability, suitable electrical conductivity, and good cytocompatibility of the zwitterionic hydrogel, the Schwann cells cultured on the hydrogel could grow and proliferate better, and dorsal root ganglian had an increased neurite length. The zwitterionic hydrogel-based nerve guidance conduits were then implanted into a 10 mm sciatic nerve defect model in rats. Morphological analysis and electrophysiological data showed that the grafts achieved a regeneration effect close to that of the autologous nerve. Overall, our developed zwitterionic hydrogel facilitates efficient and efficacious peripheral nerve regeneration by mimicking the electrical and mechanical properties of the extracellular matrix and creating a suitable regeneration microenvironment, providing a new material reserve for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Yizhou Xu
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiang Ao
- Department of Human Anatomy, Histology and Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Yunlun Li
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhong Qiu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- National Experimental Education Demonstration Center for Basic Medical Sciences, National Virtual & Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaofang Hu
- Department of Human Anatomy, Histology and Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
- Department of Histology and Embryology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Wang YT, Meng XT. A review of the evidence to support electrical stimulation -induced vascularization in engineered tissue. Regen Ther 2023; 24:237-244. [PMID: 37534238 PMCID: PMC10393514 DOI: 10.1016/j.reth.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
31
|
Wu L, Gao H, Han Q, Guan W, Sun S, Zheng T, Liu Y, Wang X, Huang R, Li G. Piezoelectric materials for neuroregeneration: a review. Biomater Sci 2023; 11:7296-7310. [PMID: 37812084 DOI: 10.1039/d3bm01111a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The purpose of nerve regeneration via tissue engineering strategies is to create a microenvironment that mimics natural nerve growth for achieving functional recovery. Biomaterial scaffolds offer a promising option for the clinical treatment of large nerve gaps due to the rapid advancement of materials science and regenerative medicine. The design of biomimetic scaffolds should take into account the inherent properties of the nerve and its growth environment, such as stiffness, topography, adhesion, conductivity, and chemical functionality. Various advanced techniques have been employed to develop suitable scaffolds for nerve repair. Since neuronal cells have electrical activity, the transmission of bioelectrical signals is crucial for the functional recovery of nerves. Therefore, an ideal peripheral nerve scaffold should have electrical activity properties similar to those of natural nerves, in addition to a delicate structure. Piezoelectric materials can convert stress changes into electrical signals that can activate different intracellular signaling pathways critical for cell activity and function, which makes them potentially useful for nerve tissue regeneration. However, a comprehensive review of piezoelectric materials for neuroregeneration is still lacking. Thus, this review systematically summarizes the development of piezoelectric materials and their application in the field of nerve regeneration. First, the electrical signals and natural piezoelectricity phenomenon in various organisms are briefly introduced. Second, the most commonly used piezoelectric materials in neural tissue engineering, including biocompatible piezoelectric polymers, inorganic piezoelectric materials, and natural piezoelectric materials, are classified and discussed. Finally, the challenges and future research directions of piezoelectric materials for application in nerve regeneration are proposed.
Collapse
Affiliation(s)
- Linliang Wu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- The People's Hospital of Rugao, Affiliated Hospital of Nantong University, 226599, Nantong, P. R. China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Qi Han
- Department of Science and Technology, Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Tiantian Zheng
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaolu Wang
- Suzhou SIMATECH Co. Ltd, 215168, Suzhou, P.R. China
| | - Ran Huang
- Zhejiang Cathaya International Co., Ltd, 310006, Hangzhou, P.R. China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Yu M, Sun P, Sun C, Jin WL. Bioelectronic medicine potentiates endogenous NSCs for neurodegenerative diseases. Trends Mol Med 2023; 29:886-896. [PMID: 37735022 DOI: 10.1016/j.molmed.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Neurodegenerative diseases (NDs) are commonly observed and while no therapy is universally applicable, cell-based therapies are promising. Stem cell transplantation has been investigated, but endogenous neural stem cells (eNSCs), despite their potential, especially with the development of bioelectronic medicine and biomaterials, remain understudied. Here, we compare stem cell transplantation therapy with eNSC-based therapy and summarize the combined use of eNSCs and developing technologies. The rapid development of implantable biomaterials has resulted in electronic stimulation becoming increasingly effective and decreasingly invasive. Thus, the combination of bioelectronic medicine and eNSCs has substantial potential for the treatment of NDs.
Collapse
Affiliation(s)
- Maifu Yu
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Pin Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
33
|
Zang X, Gao F, Zhang Z, Shen L, Pan Y. Synergistic effects of electroactive antibacterial material and electrical stimulation in enhancing skin tissue regeneration: A next-generation dermal wound dressing. Skin Res Technol 2023; 29:e13465. [PMID: 38009021 PMCID: PMC10603310 DOI: 10.1111/srt.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE We aimed to develop an electroactive antibacterial material for the treatment of skin wound diseases. METHOD To this aim, we modified chitosan (CS), a biocompatible polymer, by coupling it with graphene (rGO) and an antimicrobial polypeptide DOPA-PonG1. The material's effect on skin injury healing was studied in combination with external electrical stimulation (EEM). The structure, surface composition, and hydrophilicity of the modified CS materials were evaluated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle measurements. We studied NIH3T3 cells cultured with modified materials and subjected to EEM to assess viability, adhesion, and tissue repair-related gene expression. RESULTS SEM data demonstrated that rGO was distributed uniformly on the surface of the CS material, increasing surface roughness, and antimicrobial peptides had minimal impact on surface morphology. FTIR confirmed the uniform distribution of rGO and antibacterial peptides on the material surface. Both rGO and DOPA-PonG1 enhanced the hydrophilicity of CS materials, with rGO also improving tensile strength. The dual modification of CS with rGO and DOPA-PonG1 synergistically increased antibacterial efficacy. Cellular events and gene expression relevant to tissue repair process were enhanced by these modifications. Furthermore, EEM accelerated epidermal regeneration more than the material alone. In a rat skin wound model, DOPA-PonG1@CS/rGO dressing combined with electrical stimulation exhibited accelerated healing of skin defect. CONCLUSION Overall, our results demonstrate that CS materials modified with rGO and DOPA-PonG1 have increased hydrophilicity, antibacterial characteristics, and tissue regeneration capacities. This modified material in conjunction with EEM hold promise for the clinical management for dermal wounds.
Collapse
Affiliation(s)
| | - Fei Gao
- Qingdao UniversityQingdaoShandongChina
| | | | - Lin‐Hua Shen
- Department of Trauma Microsurgery970 Hospital of the PLA Joint Logistic Support ForceYantaiShandongChina
| | | |
Collapse
|
34
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
35
|
Acharya R, Dutta SD, Patil TV, Ganguly K, Randhawa A, Lim KT. A Review on Electroactive Polymer-Metal Composites: Development and Applications for Tissue Regeneration. J Funct Biomater 2023; 14:523. [PMID: 37888188 PMCID: PMC10607043 DOI: 10.3390/jfb14100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Electroactive polymer-metal composites (EAPMCs) have gained significant attention in tissue engineering owing to their exceptional mechanical and electrical properties. EAPMCs develop by combining an electroactive polymer matrix and a conductive metal. The design considerations include choosing an appropriate metal that provides mechanical strength and electrical conductivity and selecting an electroactive polymer that displays biocompatibility and electrical responsiveness. Interface engineering and surface modification techniques are also crucial for enhancing the adhesion and biocompatibility of composites. The potential of EAPMC-based tissue engineering revolves around its ability to promote cellular responses, such as cell adhesion, proliferation, and differentiation, through electrical stimulation. The electrical properties of these composites can be used to mimic natural electrical signals within tissues and organs, thereby aiding tissue regeneration. Furthermore, the mechanical characteristics of the metallic components provide structural reinforcement and can be modified to align with the distinct demands of various tissues. EAPMCs have extraordinary potential as regenerative biomaterials owing to their ability to promote beneficial effects in numerous electrically responsive cells. This study emphasizes the characteristics and applications of EAPMCs in tissue engineering.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
36
|
Benko A, Webster TJ. How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering. Front Chem 2023; 11:1267018. [PMID: 37901157 PMCID: PMC10602933 DOI: 10.3389/fchem.2023.1267018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cardiovascular diseases bear strong socioeconomic and ecological impact on the worldwide healthcare system. A large consumption of goods, use of polymer-based cardiovascular biomaterials, and long hospitalization times add up to an extensive carbon footprint on the environment often turning out to be ineffective at healing such cardiovascular diseases. On the other hand, cardiac cell toxicity is among the most severe but common side effect of drugs used to treat numerous diseases from COVID-19 to diabetes, often resulting in the withdrawal of such pharmaceuticals from the market. Currently, most patients that have suffered from cardiovascular disease will never fully recover. All of these factors further contribute to the extensive negative toll pharmaceutical, biotechnological, and biomedical companies have on the environment. Hence, there is a dire need to develop new environmentally-friendly strategies that on the one hand would promise cardiac tissue regeneration after damage and on the other hand would offer solutions for the fast screening of drugs to ensure that they do not cause cardiovascular toxicity. Importantly, both require one thing-a mature, functioning cardiac tissue that can be fabricated in a fast, reliable, and repeatable manner from environmentally friendly biomaterials in the lab. This is not an easy task to complete as numerous approaches have been undertaken, separately and combined, to achieve it. This review gathers such strategies and provides insights into which succeed or fail and what is needed for the field of environmentally-friendly cardiac tissue engineering to prosper.
Collapse
Affiliation(s)
| | - Thomas J. Webster
- Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|
37
|
Li J, Wu C, Zeng M, Zhang Y, Wei D, Sun J, Fan H. Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. J Mater Chem B 2023; 11:9056-9083. [PMID: 37649427 DOI: 10.1039/d3tb01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nerve injuries and neurological diseases remain intractable clinical challenges. Despite the advantages of stem cell therapy in treating neurological disorders, uncontrollable cell fates and loss of cell function in vivo are still challenging. Recently, increasing attention has been given to the roles of external physical signals, such as electricity and ultrasound, in regulating stem cell fate as well as activating or inhibiting neuronal activity, which provides new insights for the treatment of neurological disorders. However, direct physical stimulations in vivo are short in accuracy and safety. Functional materials that can absorb energy from a specific physical field exerted in a wireless way and then release another localized physical signal hold great advantages in mediating noninvasive or minimally invasive accurate indirect physical stimulations to promote the therapeutic effect on neurological disorders. In this review, the mechanism by which various physical signals regulate stem cell fate and neuronal activity is summarized. Based on these concepts, the approaches of using functional materials to mediate indirect wireless physical stimulation for neuro-modulation and regeneration are systematically reviewed. We expect that this review will contribute to developing wireless platforms for neural stimulation as an assistance for the treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Jialu Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
38
|
Wang X, Huang H, Xu R, Fang Y, Weng Y, Wang Z, Xiong X, Liu H. Robust but On-Demand Detachable Wet Tissue Adhesive Hydrogel Enhanced with Modified Tannic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45676-45688. [PMID: 37733382 DOI: 10.1021/acsami.3c10140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Adhesives with robust but readily detachable wet tissue adhesion are of great significance for wound closure. Polyelectrolyte complex adhesive (PECA) is an important wet tissue adhesive. However, its relatively weak cohesive and adhesive strength cannot satisfy clinical applications. Herein, modified tannic acid (mTA) with a catechol group, a long alkyl hydrophobic chain, and a phenyl group was prepared first, and then, it was mixed with acrylic acid (AA) and polyethylenimine (PEI), followed by UV photopolymerization to make a wet tissue adhesive hydrogel with tough cohesion and adhesion strength. The hydrogel has a strong wet tissue interfacial toughness of ∼1552 J/m2, good mechanical properties (∼7220 kPa cohesive strength, ∼873% strain, and ∼33,370 kJ/m3 toughness), and a bursting pressure of ∼1575 mmHg on wet porcine skin. The hydrogel can realize quick and effective adhesion to various wet biological tissues including porcine skin, liver, kidney, and heart and can be changed easily with triggering urea solution to avoid tissue damage or uncomfortable pain to the patient. This biosafe adhesive hydrogel is very promising for wound closure and may provide new ideas for the design of robust wet tissue adhesives.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Hongjian Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Renfeng Xu
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Xiaopeng Xiong
- College of Materials, Xiamen University, Fujian 361005, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Fujian 350007, China
- Engineering Research Center of Industrial Biocatalysis, Fujian 350007, China
| |
Collapse
|
39
|
Yu C, Ying X, Shahbazi MA, Yang L, Ma Z, Ye L, Yang W, Sun R, Gu T, Tang R, Fan S, Yao S. A nano-conductive osteogenic hydrogel to locally promote calcium influx for electro-inspired bone defect regeneration. Biomaterials 2023; 301:122266. [PMID: 37597298 DOI: 10.1016/j.biomaterials.2023.122266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
Conductive nano-materials and electrical stimulation (ES) have been recognized as a synergetic therapy for ordinary excitable tissue repair. It is worth noting that hard tissues, such as bone tissue, possess bioelectrical properties as well. However, insufficient attention is paid to the synergetic therapy for bone defect regeneration via conductive biomaterials with ES. Here, a novel nano-conductive hydrogel comprising calcium phosphate-PEDOT:PSS-magnesium titanate-methacrylated alginate (CPM@MA) was synthesized for electro-inspired bone tissue regeneration. The nano-conductive CPM@MA hydrogel has demonstrated excellent electroactivity, biocompatibility, and osteoinductivity. Additionally, it has the potential to enhance cellular functionality by increasing endogenous transforming growth factor-beta1 (TGF-β1) and activating TGF-β/Smad2 signaling pathway. The synergetic therapy could facilitate intracellular calcium enrichment, resulting in a 5.8-fold increase in calcium concentration compared to the control group in the CPM@MA ES + group. The nano-conductive CPM@MA hydrogel with ES could significantly promote electro-inspired bone defect regeneration in vivo, uniquely allowing a full repair of rat femoral defect within 4 weeks histologically and mechanically. These results demonstrate that our synergistic strategy effectively promotes bone restoration, thereby offering potential advancements in the field of electro-inspired hard tissue regeneration using novel nano-materials with ES.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, 310003, Zhejiang, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Zaiqiang Ma
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China.
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
40
|
Xu Y, Xu C, Yang K, Ma L, Li G, Shi Y, Feng X, Tan L, Duan D, Luo Z, Yang C. Copper Ion-Modified Germanium Phosphorus Nanosheets Integrated with an Electroactive and Biodegradable Hydrogel for Neuro-Vascularized Bone Regeneration. Adv Healthc Mater 2023; 12:e2301151. [PMID: 37421228 DOI: 10.1002/adhm.202301151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Severe bone defects accompanied by vascular and peripheral nerve injuries represent a huge orthopedic challenge and are often accompanied by the risk of infection. Thus, biomaterials with antibacterial and neurovascular regeneration properties are highly desirable. Here, a newly designed biohybrid biodegradable hydrogel (GelMA) containing copper ion-modified germanium-phosphorus (GeP) nanosheets, which act as neuro-vascular regeneration and antibacterial agents, is designed. The copper ion modification process serves to improve the stability of the GeP nanosheets and offers a platform for the sustained release of bioactive ions. Study findings show that GelMA/GeP@Cu has effective antibacterial properties. The integrated hydrogel can significantly boost the osteogenic differentiation of bone marrow mesenchymal stem cells, facilitate angiogenesis in human umbilical vein endothelial cells, and up-regulate neural differentiation-related proteins in neural stem cells in vitro. In vivo, in the rat calvarial bone defect mode, the GelMA/GeP@Cu hydrogel is found to enhance angiogenesis and neurogenesis, eventually contributing to bone regeneration. These findings indicate that in the field of bone tissue engineering, GelMA/GeP@Cu can serve as a valuable biomaterial for neuro-vascularized bone regeneration and infection prevention.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunsong Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Deyu Duan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
41
|
Panda AK, Basu B. Regenerative bioelectronics: A strategic roadmap for precision medicine. Biomaterials 2023; 301:122271. [PMID: 37619262 DOI: 10.1016/j.biomaterials.2023.122271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
In the past few decades, stem cell-based regenerative engineering has demonstrated its significant potential to repair damaged tissues and to restore their functionalities. Despite such advancement in regenerative engineering, the clinical translation remains a major challenge. In the stance of personalized treatment, the recent progress in bioelectronic medicine likewise evolved as another important research domain of larger significance for human healthcare. Over the last several years, our research group has adopted biomaterials-based regenerative engineering strategies using innovative bioelectronic stimulation protocols based on either electric or magnetic stimuli to direct cellular differentiation on engineered biomaterials with a range of elastic stiffness or functional properties (electroactivity/magnetoactivity). In this article, the role of bioelectronics in stem cell-based regenerative engineering has been critically analyzed to stimulate futuristic research in the treatment of degenerative diseases as well as to address some fundamental questions in stem cell biology. Built on the concepts from two independent biomedical research domains (regenerative engineering and bioelectronic medicine), we propose a converging research theme, 'Regenerative Bioelectronics'. Further, a series of recommendations have been put forward to address the current challenges in bridging the gap in stem cell therapy and bioelectronic medicine. Enacting the strategic blueprint of bioelectronic-based regenerative engineering can potentially deliver the unmet clinical needs for treating incurable degenerative diseases.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
42
|
Najafian S, Eskandani M, Derakhshankhah H, Jaymand M, Massoumi B. Extracellular matrix-mimetic electrically conductive nanofibrous scaffolds based on polyaniline-grafted tragacanth gum and poly(vinyl alcohol) for skin tissue engineering application. Int J Biol Macromol 2023; 249:126041. [PMID: 37516227 DOI: 10.1016/j.ijbiomac.2023.126041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
As pivotal role of scaffold in tissue engineering (TE), the aim of present study was to design and development of extracellular matrix (ECM)-mimetic electrically conductive nanofibrous scaffolds composed of polyaniline-grafted tragacanth gum (TG-g-PANI) and poly(vinyl alcohol) (PVA) with different PANI content for skin tissue engineering (STE) application. The fabricated scaffolds were preliminary evaluated in terms of some physicochemical and biological properties. Cytocompatibility and cells proliferation properties of the scaffolds were examined with the well-known MTT assay, and it was found that the developed scaffolds have proper cytocompatibilities and can enhances the mouse fibroblast L929 cells adhesion as well as proliferation, which confirm their potential for STE applications. Hemocompatibility assay revealed that the hemolysis rate of the fabricated scaffolds were <2 % even at a relatively high concentration (200 μgmL-1) of samples, therefore, these scaffolds can be considered as safe. Human serum albumin (HSA) protein adsorption capacities of the fabricated scaffolds were quantified as 42 and 49 μgmg-1 that represent suitable values for a successful TE. Overall, the fabricated scaffold with 20 wt% of TG-g-PANI showed higher potential in both physicochemical and biological features than scaffold with 30 wt% of mentioned copolymer for STE application.
Collapse
Affiliation(s)
- Shila Najafian
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | |
Collapse
|
43
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
44
|
Vukomanović M, Gazvoda L, Kurtjak M, Maček-Kržmanc M, Spreitzer M, Tang Q, Wu J, Ye H, Chen X, Mattera M, Puigmartí-Luis J, Pane SV. Filler-Enhanced Piezoelectricity of Poly-L-Lactide and Its Use as a Functional Ultrasound-Activated Biomaterial. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301981. [PMID: 37186376 DOI: 10.1002/smll.202301981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.
Collapse
Affiliation(s)
- Marija Vukomanović
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Lea Gazvoda
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Mario Kurtjak
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Marjeta Maček-Kržmanc
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Matjaž Spreitzer
- Advanced Materials Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Qiao Tang
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jiang Wu
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Michele Mattera
- Department of Physical Chemistry, University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Salvador Vidal Pane
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
45
|
Liu X, Cui B, Wang X, Zheng M, Bai Z, Yue O, Fei Y, Jiang H. Nature-Skin-Derived e-Skin as Versatile "Wound Therapy-Health Monitoring" Bioelectronic Skin-Scaffolds: Skin to Bio-e-Skin. Adv Healthc Mater 2023; 12:e2202971. [PMID: 36946644 DOI: 10.1002/adhm.202202971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/19/2023] [Indexed: 03/23/2023]
Abstract
Electronic skins (e-skins) have the potential to turn into breakthroughs in biomedical applications. Herein, a novel acellular dermal matrix (ADM)-based bioelectronic skin (e-ADM) is used to fabricate versatile "wound therapy-health monitoring" tissue-nanoengineered skin scaffolds via a facile "one-pot" bio-compositing strategy to incorporate the conductive carbon nanotubes and self-assembled micro-copper oxide microspheres with a cicada-wing-like rough surface and nanocone microstructure. The e-ADM exhibits robust tensile strength (22 MPa), flexibility, biodegradability, electroactivity, and antibacterial properties. Interestingly, e-ADM exhibits the pH-responsive ability for intelligent command between sterilization and wound repair . Additionally, e-ADM enables accurate real-time monitoring of human activities, providing a novel flexible e-skin sensor to record injury and motions. In vitro and in vivo experiments show that with electrical stimulation, e-ADM could prominently facilitate cell growth and proliferation and further promote full-thickness skin wound healing, providing a comprehensive therapeutic strategy for smart sensing and tissue repair, guiding the development of high-performance "wound therapy-health monitoring" bioelectronic skin-scaffolds.
Collapse
Affiliation(s)
- Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Boqiang Cui
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Manhui Zheng
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ouyang Yue
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yifan Fei
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Huie Jiang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
46
|
Liu W, Zhao H, Zhang C, Xu S, Zhang F, Wei L, Zhu F, Chen Y, Chen Y, Huang Y, Xu M, He Y, Heng BC, Zhang J, Shen Y, Zhang X, Huang H, Chen L, Deng X. In situ activation of flexible magnetoelectric membrane enhances bone defect repair. Nat Commun 2023; 14:4091. [PMID: 37429900 DOI: 10.1038/s41467-023-39744-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe2O4@BaTiO3/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe2O4 core can increase charge density on the BaTiO3 shell and strengthens the β-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Han Zhao
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Chenguang Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shiqi Xu
- School of Materials Science and Engineering & Advanced Research, Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Fengyi Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Ling Wei
- Third Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Fangyu Zhu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying Chen
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Yumin Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, P. R. China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing Department of Materials Science and Engineering Tsinghua University, Beijing, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China.
| | - Houbing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China.
| |
Collapse
|
47
|
Omer SA, McKnight KH, Young LI, Song S. Stimulation strategies for electrical and magnetic modulation of cells and tissues. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:21. [PMID: 37391680 DOI: 10.1186/s13619-023-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/01/2023] [Indexed: 07/02/2023]
Abstract
Electrical phenomena play an important role in numerous biological processes including cellular signaling, early embryogenesis, tissue repair and remodeling, and growth of organisms. Electrical and magnetic effects have been studied on a variety of stimulation strategies and cell types regarding cellular functions and disease treatments. In this review, we discuss recent advances in using three different stimulation strategies, namely electrical stimulation via conductive and piezoelectric materials as well as magnetic stimulation via magnetic materials, to modulate cell and tissue properties. These three strategies offer distinct stimulation routes given specific material characteristics. This review will evaluate material properties and biological response for these stimulation strategies with respect to their potential applications in neural and musculoskeletal research.
Collapse
Affiliation(s)
- Suleyman A Omer
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Kaitlyn H McKnight
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Lucas I Young
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
48
|
Hoque MA, Mahmood N, Ali KM, Sefat E, Huang Y, Petersen E, Harrington S, Fang X, Gluck JM. Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System. Biomimetics (Basel) 2023; 8:biomimetics8020170. [PMID: 37092422 PMCID: PMC10123682 DOI: 10.3390/biomimetics8020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Cells can sense and respond to different kinds of continuous mechanical strain in the human body. Mechanical stimulation needs to be included within the in vitro culture system to better mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The surface of the fiber robot is formed by a braiding structure, which provides promising surface contact and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be easily implemented to study complex biological phenomena in vitro.
Collapse
Affiliation(s)
- Muh Amdadul Hoque
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Nasif Mahmood
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Kiran M Ali
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Eelya Sefat
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Yihan Huang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Emily Petersen
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Shane Harrington
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Jessica M Gluck
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
49
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
50
|
Ayran M, Karabulut H, Deniz KI, Akcanli GC, Ulag S, Croitoru AM, Tihăuan BM, Sahin A, Ficai D, Gunduz O, Ficai A. Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue. Pharmaceutics 2023; 15:pharmaceutics15030920. [PMID: 36986781 PMCID: PMC10056538 DOI: 10.3390/pharmaceutics15030920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Skeletal muscle tissue engineering presents a promising avenue to address the limitations pertaining to the regenerative potential of stem cells in case of injury or damage. The objective of this research was to evaluate the effects of utilizing novel microfibrous scaffolds, containing the compound quercetin (Q), on skeletal muscle regeneration. Morphological test results showed us that the combination of bismuth ferrite (BFO), polycaprolactone (PCL), and Q were bonded and well-ordered with each other, and a uniform microfibrous structure was obtained. Antimicrobial susceptibility testing of PCL/BFO/Q was conducted, and microbial reduction was found to be over 90% in the highest concentration of Q-loaded microfibrous scaffolds with the most inhibitory effect on S. aureus strains. Further, biocompatibility was investigated by performing MTT testing, fluorescence testing, and SEM imaging on mesenchymal stem cells (MSCs) to determine whether they could act as suitable microfibrous scaffolds for skeletal muscle tissue engineering. Incremental changes in the concentration of Q led to increased strength and strain, allowing muscles to withstand stretching during the healing process. In addition, electrically conductive microfibrous scaffolds enhanced the drug release capability by revealing that Q can be released significantly more quickly by applying the appropriate electric field, compared with conventional drug-release techniques. These findings suggest a possible use for PCL/BFO/Q microfibrous scaffolds in skeletal muscle regeneration by demonstrating that the combined action of both guidance biomaterials was more successful than Q itself acting alone.
Collapse
Affiliation(s)
- Musa Ayran
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Hatice Karabulut
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Kudret Irem Deniz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Gamze Ceren Akcanli
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, 050567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Calugareni, Romania
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
- Correspondence:
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050044 Bucharest, Romania
| |
Collapse
|